JP3835966B2 - Waste fluidized bed incinerator - Google Patents

Waste fluidized bed incinerator Download PDF

Info

Publication number
JP3835966B2
JP3835966B2 JP2000020754A JP2000020754A JP3835966B2 JP 3835966 B2 JP3835966 B2 JP 3835966B2 JP 2000020754 A JP2000020754 A JP 2000020754A JP 2000020754 A JP2000020754 A JP 2000020754A JP 3835966 B2 JP3835966 B2 JP 3835966B2
Authority
JP
Japan
Prior art keywords
fluidized bed
combustion
burner
waste
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000020754A
Other languages
Japanese (ja)
Other versions
JP2001208319A (en
Inventor
季男 吉田
史郎 笹谷
裕姫 本多
出 石川
謙一 川村
一生 山村
滋 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000020754A priority Critical patent/JP3835966B2/en
Publication of JP2001208319A publication Critical patent/JP2001208319A/en
Application granted granted Critical
Publication of JP3835966B2 publication Critical patent/JP3835966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は廃棄物流動層式焼却炉に係り、特に下水汚泥焼却に用いる流動層式焼却炉に関する。
【0002】
【従来の技術】
従来より廃棄物焼却炉にはストーカ式焼却炉と流動層式焼却炉が主流を占めているが、下水汚泥焼却においては、熱負荷容量の大きい流動層式焼却炉が有利である。
一方、下水汚泥には廃棄物中の窒素分が高く、又流動層式焼却炉を用いても廃棄物中の含水率が高いために燃焼温度が低くなることから、酸化窒素(NO)に比較して亜酸化窒素(NO)が多くなる傾向がある。
然も亜酸化窒素は温室効果係数が二酸化炭素(CO)の310倍であり、地球温暖化の影響が極めて大きい。
【0003】
このため流動層内の亜酸化窒素(NO)の低減技術としてはNOの期限となるHCNやNHからNOとNOへの転換割合(選択率)を変えることであり、燃焼温度を上げる、酸素濃度(空気比)を下げる、接触粒子との混合を促進する、などの方法が有効である。
【0004】
【発明が解決しようとする課題】
しかしながらこのような方法を採っても端にNOとNOへの転換割合が変わるだけで窒素酸化物全体としての排出濃度の合計値(2NO+NO)はほぼ一定している。
即ち、NOを低減しようとするとNOが増大し、一方NOを低減しようとするとNOが増大してしまう。そしてNOは大気汚染上極めて問題となる物質である。
このため両者を同時に低減できる物質として二段燃焼法が有効であるが、二段燃焼法は燃焼効率や脱硫効率の低下を招く。
本発明は、かかる課題に鑑み、燃焼効率や脱硫効率の低下を招くことなく、NOとNOの両者を同時に低減できる廃棄物流動床焼却を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明はかかる課題を解決するために、請求項1記載の発明は、廃棄物が投入される流動層の上方に、燃焼ガス生成物等が再燃焼されるフリーボード域を設けてなる廃棄物流動層式焼却炉において、前記流動層の上方に昇温バーナを、更にその上方に二次空気導入ノズルと対面する炉壁位置に第2の昇温バーナを配し、前記二次空気導入ノズルと前記第2 の昇温バーナの組み合わせで燃焼促進体を構成し、燃焼促進体を挟んで空気比が異なる区域を形成し、昇温バーナより燃焼促進体入口側の空気比を、燃焼促進体出口側の空気比より低く設定したことを特徴とする。
前記二次空気導入ノズルと前記第2の昇温バーナの組み合わせで燃焼促進体を構成し、燃焼促進体入口側の空気比を、燃焼促進体出口側の空気比より低く設定することによって、NOとN Oの発生量をいずれも低減できる。
【0006】
また、請求項2記載の発明は、廃棄物が投入される流動層の上方に、燃焼ガス生成物等が再燃焼されるフリーボード域を設けてなる廃棄物流動層式焼却炉において、前記流動層の上方に昇温バーナを、更にその上方に二次空気導入ノズルと対面する炉壁位置に第2の昇温バーナを配し、前記二次空気導入ノズルと前記第2の昇温バーナの組み合わせで燃焼促進体を構成し、昇温バーナより燃焼促進体入口側の酸素濃度を、燃焼促進体出口側の酸素濃度より低く設定したことを特徴とする。
前記二次空気導入ノズルと前記第2の昇温バーナの組み合わせで燃焼促進体を構成し、燃焼促進体入口側の酸素濃度を、燃焼促進体出口側の酸素濃度より低く設定することによって、NOとN Oの発生量をいずれも低減できる。
【0007】
【0008】
【0009】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
図1は本発明の第1実施形態にかかる流動層式燃焼装置で、1は流動層式燃焼炉、2は押し込みファン、3はエアヒータで、該エアヒータ3で加熱された空気は一次空気として流動層11底部より、流動層11内に導入される。又前記加熱空気の一部は二次空気として二次空気導入ノズル12より導入されている。
【0010】
4は下水汚泥投入ポンプで、加熱された流動層11内に汚泥が投入される。
5は昇温バーナで、LPGやLNG等の可燃ガスにより生成された燃焼炎が流動層11上方に位置する昇温バーナ5より燃焼促進体6入口側の空間を加熱するとともにその空間Aの空気比の低減、言い換えれば酸素濃度の低減を図る。
燃焼促進体6の上方は二次空気により燃焼ガス生成物等(熱分解ガス)が再燃焼されるフリーボード域Bが形成されている。
【0011】
そして前記流動層式燃焼炉1から排出された排ガス等は、ガスクーラ7、サイクロン8等を介して飛灰や大気汚染物を除去した後、誘引ファン9、煙突10を介して大気放出される。かかる点は公知である。
【0012】
図2は多数のAl2O3等のセラミック管21の集合体からなる輻射変換体20で、前記セラミック管21とこれを固定するフレーム板22からなり、前記セラミック管21同士の隣接空間23を加熱された燃焼ガス生成物等(熱分解ガス)が通過することにより、該セラミック管21が加熱されて輻射率が80%程度の輻射変換体を形成しうる。
そしてかかる輻射変換体20が前記燃焼促進体6として用いられている。
【0013】
次にかかる実施例に基づく作用を説明する。
O、NOの発生には、廃棄物窒素分から生成されるHCN、NHなどの中間生成物が大きな役割を果たしている。NOの生成はこのうち主としてHCNによるものであり、HCNが酸化されてできたNCOをNOとの(1)の反応により生成される。
温度との関係をみると、NO排出温度は燃焼温度に強く依存し、730〜830℃で最大値を示す。これより高温場では(2)、(3)のNCOのNOへの転換反応が(1)のNOへの転換反応より速くなるため、NOは温度の増加に伴い減少する。また、1230℃以上の高温場では(4)のNO生成抑制反応およびH、OHラジカルによる(5)、(6)の分解反応が生成反応を上回り、NO生成はさらに抑制されるが、一方ではサーマルNOxが顕著に増加してしまう。
【0014】
NCO+NO→NO+CO (1)
NCO+O →NO+CO (2)
NCO+OH→NO+CO+H (3)
NCO+H →NH+CO (4)
O+H →N+OH (5)
O+OH→N+HO (6)
【0015】
また、燃焼温度とNOとNOの関係についてまとめると、図4の通り燃焼温度上昇に伴い両方とも低減化する傾向となる。
従来技術においては燃焼温度の増加に伴いNO生成量は増加し、またNO生成量は減少すると言われているが、今回の試験結果において、NOの生成量は、燃焼温度の上昇に伴い低減するという従来の知見とは逆の傾向になった。
【0016】
即ち、図4のRUN1は昇温バーナも燃焼促進体6(輻射変換体20)も設けない状態で燃焼したもの、RUN2は燃焼促進体6(輻射変換体20)のみを設けた状態で燃焼したもの、RUN3は本発明の実施例で、昇温バーナと燃焼促進体(輻射変換体)とを設けた状態で燃焼したものを示し、図4は、流動層上面と燃焼体入口温度の平均値とNOとNOの濃度の関係を示すグラフ図である。
本図より明らかな如くRUN3はRUN1より燃焼平均温度が880℃〜970℃と100℃以上上昇し、これに比例してNOとNOのいずれもが低下している。
【0017】
一方、流動層上面から燃焼促進体入口部での空気比とNOとN2Oの関系についての試験結果を図5にまとめた。
本図より明らかな如く、RUN3はRUN1やRUN2より空気比が1.31.4から1.0〜1.1に低減し、これに比例してNOとNOのいずれもが低下している。
又燃焼促進体5出口側のフリーボード域Bは二次空気の導入により空気比が高く、これにより、昇温バーナ5より燃焼促進体6入口側の空間Aの空気比を、燃焼促進体6出口側のフリーボード域Bの空気比より低く設定し、言い換えれば、前記流動層11の上方に昇温バーナ5を、更にその上方に燃焼促進体6を配し、昇温バーナ5より燃焼促進体6入口側空間Aの酸素濃度を、燃焼促進体6出口側の酸素濃度より低く設定することによりNO、NOの発生量がいずれも低減する。
【0018】
図6はかかる図4、図5に基づいて、NOとNOそれぞれがRUN3(促進体+バーナ)において、低減されている状態を示す。
従って本実施例によれば、昇温バーナ5による燃焼温度の上昇によりNOが低減され、又、流動層部〜燃焼促進体入口側空間Aの空気比を出口側のフリーボード域Bより低く設定することにより、FuelNOxが低減され、結果としてNOもNOも低減されるためである。昇温バーナ5により、燃焼温度は上昇したものの、サーマルNOxも増加することなく、又炭酸ガス濃度、ダイオキシン濃度、アンモニア濃度のいずれもが本実施例のRUN3は、従来技術のRUN1より大幅に低減していることが確認された。
【0019】
尚、図3は図1の輻射変換体20の代わりに、に燃焼バーナ(第2の昇温バーナ25)を用いた他の実施例で、二次空気導入ノズル12と対面する炉壁位置に第2の昇温バーナ25を配し、二次空気導入ノズル12と燃焼バーナ25の組み合わせで燃焼促進体を構成している。
かかる実施例も前記実施例と同様な効果を得ることが出来る。
【0020】
【発明の効果】
以上記載のごとく本発明によれば、燃焼効率や脱硫効率の低下を招くことなく、NOとNOの両者を同時に低減できる廃棄物流動層式焼却炉を提供出来る。
【図面の簡単な説明】
【図1】 本発明の第1実施形態にかかる流動層式燃焼装置を示す概略図である。
【図2】 多数のAl2O3等のセラミック管の集合体からなる輻射変換体を示す正面図と平面図である。
【図3】 本発明の第2実施形態にかかる流動層式燃焼装置を示す概略図である。
【図4】 流動層上面と燃焼体入口温度の平均値とNOとNOの濃度の関係を示すグラフ図である。
【図5】 流動層上面から燃焼促進体入口部での空気比とNOとNOの関系についての試験結果をまとめたグラフ図である。
【図6】 NOとNOそれぞれが本実施例において、低減されている状態を示すグラフ図である。
【符号の説明】
1 流動層式燃焼炉
2 押し込みファン
3 エアヒータ
4 下水汚泥投入ポンプ
5 昇温バーナ
6 燃焼促進体
11 流動層
12 二次空気導入ノズル
25 第2の昇温バーナ(燃焼バーナ)
A 昇温バーナより燃焼促進体入口側の空間
b フリーボード域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waste fluidized bed incinerator, and more particularly to a fluidized bed incinerator used for sewage sludge incineration.
[0002]
[Prior art]
Conventionally, stoker type incinerators and fluidized bed type incinerators have been mainly used as waste incinerators, but in sewage sludge incinerators, fluidized bed type incinerators with a large heat load capacity are advantageous.
On the other hand, sewage sludge has a high nitrogen content in the waste, and even if a fluidized bed incinerator is used, the water content in the waste is high and the combustion temperature is low. As a result, nitrous oxide (N 2 O) tends to increase.
However, nitrous oxide has a greenhouse effect coefficient that is 310 times that of carbon dioxide (CO 2 ), and is extremely affected by global warming.
[0003]
Thus it is to change the sub conversion rate as the technique of reducing nitrogen oxide (N 2 O) from the HCN and NH 3 as the N 2 O of the deadline to N 2 O and NO in the fluidized bed (selectivity), Methods such as raising the combustion temperature, lowering the oxygen concentration (air ratio), and promoting mixing with contact particles are effective.
[0004]
[Problems to be solved by the invention]
However, even if such a method is adopted, the total concentration (2N 2 O + NO) of the exhaust concentration as a whole of the nitrogen oxide is almost constant just by changing the conversion ratio to N 2 O and NO.
That is, NO increases when trying to reduce N 2 O, while N 2 O increases when trying to reduce NO. NO is a substance that is extremely problematic in terms of air pollution.
For this reason, the two-stage combustion method is effective as a substance that can reduce both at the same time, but the two-stage combustion method causes a reduction in combustion efficiency and desulfurization efficiency.
In view of such problems, the present invention has an object to provide a waste fluidized bed incineration capable of simultaneously reducing both N 2 O and NO without causing a decrease in combustion efficiency and desulfurization efficiency.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a waste product in which a free board area in which a combustion gas product or the like is recombusted is provided above a fluidized bed into which the waste product is charged . In the fluidized bed incinerator, a temperature rising burner is disposed above the fluidized bed, and a second temperature rising burner is disposed above the fluidized bed in a furnace wall position facing the secondary air introducing nozzle. And the second temperature raising burner are combined to form a combustion promoting body, areas having different air ratios are formed across the combustion promoting body, and the air ratio on the combustion promoting body inlet side from the temperature raising burner is changed to the combustion promoting body. It is characterized by being set lower than the air ratio on the outlet side.
A combination of the secondary air introduction nozzle and the second temperature raising burner constitutes a combustion accelerator, and the air ratio on the combustion accelerator inlet side is set lower than the air ratio on the combustion accelerator outlet side, thereby reducing NO. And the amount of N 2 O generated can be reduced.
[0006]
The invention of claim 2, wherein the above the fluidized bed waste is turned on, the waste fluidized bed type incinerator combustion gas product or the like is provided with a freeboard zone being re-combustion, the flow A temperature rising burner is disposed above the bed, and a second temperature rising burner is further disposed above the layer at the furnace wall facing the secondary air introduction nozzle. The secondary air introduction nozzle and the second temperature increase burner configure the combustion promotion body in combination, an oxygen concentration in the combustion promotion body inlet side of the heated burner, characterized by being set lower than the oxygen concentration of the combustion promotion body outlet.
A combination of the secondary air introduction nozzle and the second temperature raising burner constitutes a combustion accelerator, and the oxygen concentration on the combustion accelerator inlet side is set lower than the oxygen concentration on the combustion accelerator outlet side, thereby reducing NO. And the amount of N 2 O generated can be reduced.
[0007]
[0008]
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention.
FIG. 1 shows a fluidized bed combustion apparatus according to a first embodiment of the present invention, in which 1 is a fluidized bed combustion furnace, 2 is a pushing fan, 3 is an air heater, and the air heated by the air heater 3 flows as primary air. It is introduced into the fluidized bed 11 from the bottom of the layer 11. A part of the heated air is introduced as secondary air from the secondary air introduction nozzle 12.
[0010]
Reference numeral 4 denotes a sewage sludge charging pump, which is charged with sludge into the heated fluidized bed 11.
Reference numeral 5 denotes a temperature rising burner. A combustion flame generated by a combustible gas such as LPG or LNG heats the space on the inlet side of the combustion promoting body 6 from the temperature rising burner 5 positioned above the fluidized bed 11 and air in the space A The ratio is reduced, in other words, the oxygen concentration is reduced.
Above the combustion promoting body 6, a free board region B is formed in which combustion gas products (pyrolysis gas) are reburned by secondary air.
[0011]
The exhaust gas discharged from the fluidized bed combustion furnace 1 is discharged to the atmosphere through the induction fan 9 and the chimney 10 after removing fly ash and air pollutants through the gas cooler 7, the cyclone 8 and the like. This point is well known.
[0012]
FIG. 2 shows a radiation converter 20 composed of an assembly of a large number of ceramic tubes 21 such as Al2O3, which comprises the ceramic tube 21 and a frame plate 22 for fixing the ceramic tube 21, and the adjacent space 23 between the ceramic tubes 21 is heated. When the combustion gas product or the like (pyrolysis gas) passes, the ceramic tube 21 can be heated to form a radiation converter having a radiation rate of about 80%.
Such a radiation converter 20 is used as the combustion accelerator 6.
[0013]
Next, the operation based on the embodiment will be described.
In the generation of N 2 O and NO, intermediate products such as HCN and NH 3 produced from waste nitrogen content play a major role. N 2 O is produced mainly by HCN, and is produced by the reaction (1) of NCO formed by oxidizing HCN with NO.
Looking at the relationship with temperature, the N 2 O emission temperature strongly depends on the combustion temperature, and shows a maximum value at 730 to 830 ° C. In this higher temperatures field (2), (3) for the conversion reaction to NO in the NCO is faster than the conversion reaction to N 2 O of (1) a, N 2 O decreases with increasing temperature. In addition, in a high temperature field of 1230 ° C. or higher, the N 2 O generation suppression reaction of (4) and the decomposition reactions of (5) and (6) by H and OH radicals exceed the generation reaction, and N 2 O generation is further suppressed. However, on the other hand, thermal NOx significantly increases.
[0014]
NCO + NO → N 2 O + CO (1)
NCO + O → NO + CO (2)
NCO + OH → NO + CO + H (3)
NCO + H → NH + CO (4)
N 2 O + H → N 2 + OH (5)
N 2 O + OH → N 2 + HO 2 (6)
[0015]
Further, when the relationship between the combustion temperature and NO and N 2 O is summarized, as shown in FIG. 4, both tend to decrease as the combustion temperature rises.
In the prior art, it is said that the NO generation amount increases and the N 2 O generation amount decreases as the combustion temperature increases, but in this test result, the NO generation amount increases as the combustion temperature increases. The trend was the opposite of the previous finding that it was reduced.
[0016]
That is, RUN1 in FIG. 4 burns in a state where neither the temperature raising burner nor the combustion promoting body 6 (radiation converter 20) is provided, and RUN2 burns in the state in which only the combustion promoting body 6 (radiation converter 20) is provided. RUN3 is an embodiment of the present invention, and shows a combustion in a state where a temperature raising burner and a combustion accelerator (radiation converter) are provided, and FIG. 4 shows an average value of the upper surface of the fluidized bed and the inlet temperature of the combustor. it is a graph showing the relationship between the concentration of NO and N 2 O and.
As is apparent from this figure, RUN3 has a combustion average temperature of 880 ° C. to 970 ° C. that is 100 ° C. or more higher than RUN1, and both NO and N 2 O are reduced in proportion to this.
[0017]
On the other hand, the air ratio from the upper surface of the fluidized bed to the inlet of the combustion promoting body and the test results on the relationship between NO and N2O are summarized in FIG.
As is apparent from this figure, RUN3 is RUN1 or air ratio is reduced from 1.3-1.4 to 1.0-1.1 from RUN2, proportional both of NO and N 2 O by reduction to is doing.
In addition, the free board area B on the outlet side of the combustion promoting body 5 has a high air ratio due to the introduction of secondary air, whereby the air ratio of the space A on the inlet side of the combustion promoting body 6 from the temperature raising burner 5 is changed to the combustion promoting body 6. It is set lower than the air ratio of the free board area B on the outlet side, in other words, the temperature rising burner 5 is disposed above the fluidized bed 11 and the combustion promoting body 6 is further disposed above the fluidized bed 11. By setting the oxygen concentration in the body A inlet side space A to be lower than the oxygen concentration on the outlet side of the combustion promoting body 6, both NO and N 2 O generation amounts are reduced.
[0018]
FIG. 6 shows a state in which NO and N 2 O are reduced in RUN 3 (promoter + burner) based on FIGS. 4 and 5.
Therefore, according to the present embodiment, N 2 O is reduced by the increase in the combustion temperature by the temperature raising burner 5, and the air ratio of the fluidized bed portion to the combustion promoting body inlet side space A is set from the free board area B on the outlet side. by setting a low, FuelNOx is reduced, because the NO be N 2 O is reduced as a result. Although the combustion temperature is increased by the temperature raising burner 5, the thermal NOx does not increase, and the carbon dioxide concentration, the dioxin concentration, and the ammonia concentration are all significantly lower than the RUN1 of the prior art in the RUN3 of this embodiment. It was confirmed that
[0019]
3 shows another embodiment in which a combustion burner (second temperature raising burner 25) is used instead of the radiation converter 20 shown in FIG. 1, and the furnace wall position facing the secondary air introduction nozzle 12 is shown. A second temperature raising burner 25 is arranged, and a combination of the secondary air introduction nozzle 12 and the combustion burner 25 constitutes a combustion accelerator.
This embodiment can also obtain the same effect as the above embodiment.
[0020]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a waste fluidized bed incinerator capable of simultaneously reducing both N 2 O and NO without causing a decrease in combustion efficiency and desulfurization efficiency.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a fluidized bed combustion apparatus according to a first embodiment of the present invention.
FIGS. 2A and 2B are a front view and a plan view showing a radiation converter made of an assembly of a large number of ceramic tubes such as Al 2 O 3.
FIG. 3 is a schematic view showing a fluidized bed combustion apparatus according to a second embodiment of the present invention.
FIG. 4 is a graph showing the relationship between the average value of the upper surface of the fluidized bed, the combustion body inlet temperature, and the concentrations of NO and N 2 O.
FIG. 5 is a graph summarizing test results on the relationship between the air ratio and NO and N 2 O from the upper surface of the fluidized bed to the combustion promoting body inlet.
FIG. 6 is a graph showing a state in which NO and N 2 O are reduced in this example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fluidized bed type combustion furnace 2 Push-in fan 3 Air heater 4 Sewage sludge injection pump 5 Temperature rising burner 6 Combustion promoting body 11 Fluidized bed 12 Secondary air introduction nozzle 25 Second temperature rising burner (combustion burner)
A Space from the temperature rising burner to the combustion accelerator inlet side b Free board area

Claims (2)

廃棄物が投入される流動層の上方に、燃焼ガス生成物等が再燃焼されるフリーボード域を設けてなる廃棄物流動層式焼却炉において、
前記流動層の上方に昇温バーナを、更にその上方に二次空気導入ノズルと対面する炉壁位置に第2の昇温バーナを配し、前記二次空気導入ノズルと前記第2の昇温バーナの組み合わせで燃焼促進体を構成し、燃焼促進体を挟んで空気比が異なる区域を形成し、昇温バーナより燃焼促進体入口側の空気比を、燃焼促進体出口側の空気比より低く設定したことを特徴とする廃棄物流動層式焼却炉。
In a waste fluidized bed type incinerator having a freeboard area where combustion gas products etc. are reburned above a fluidized bed into which waste is charged,
A temperature raising burner is disposed above the fluidized bed, and a second temperature raising burner is disposed above the fluidized bed at a furnace wall position facing the secondary air introduction nozzle. The secondary air introduction nozzle and the second temperature rise Combustion accelerators are composed of a combination of burners, areas with different air ratios are formed across the combustion accelerators, and the air ratio on the combustion accelerator inlet side of the temperature rising burner is lower than the air ratio on the combustion accelerator outlet side A waste fluidized bed incinerator characterized by having been set up.
廃棄物が投入される流動層の上方に、燃焼ガス生成物等が再燃焼されるフリーボード域を設けてなる廃棄物流動層式焼却炉において、
前記流動層の上方に昇温バーナを、更にその上方に二次空気導入ノズルと対面する炉壁位置に第2の昇温バーナを配し、前記二次空気導入ノズルと前記第2の昇温バーナの組み合わせで燃焼促進体を構成し、昇温バーナより燃焼促進体入口側の酸素濃度を、燃焼促進体出口側の酸素濃度より低く設定したことを特徴とする廃棄物流動層式焼却炉。
In a waste fluidized bed type incinerator having a freeboard area where combustion gas products etc. are reburned above a fluidized bed into which waste is charged,
A temperature raising burner is disposed above the fluidized bed, and a second temperature raising burner is disposed above the fluidized bed at a furnace wall position facing the secondary air introduction nozzle. The secondary air introduction nozzle and the second temperature rise configure the combustion promotion body in combination burner, waste fluidized bed incinerator, characterized in that the oxygen concentration in the combustion promotion body inlet side of the heated burner, is set lower than the oxygen concentration of the combustion promotion body outlet.
JP2000020754A 2000-01-28 2000-01-28 Waste fluidized bed incinerator Expired - Fee Related JP3835966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000020754A JP3835966B2 (en) 2000-01-28 2000-01-28 Waste fluidized bed incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000020754A JP3835966B2 (en) 2000-01-28 2000-01-28 Waste fluidized bed incinerator

Publications (2)

Publication Number Publication Date
JP2001208319A JP2001208319A (en) 2001-08-03
JP3835966B2 true JP3835966B2 (en) 2006-10-18

Family

ID=18547267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000020754A Expired - Fee Related JP3835966B2 (en) 2000-01-28 2000-01-28 Waste fluidized bed incinerator

Country Status (1)

Country Link
JP (1) JP3835966B2 (en)

Also Published As

Publication number Publication date
JP2001208319A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
RU2299758C2 (en) Device and the method of control over nitrogen dioxide ejections from the boilers burning the carbonic fuels without usage of the external reactant
KR100705204B1 (en) Method of controlling combustion of waste incinerator and waste incinerator
JPH0762524B2 (en) Waste combustion method and equipment
US5205227A (en) Process and apparatus for emissions reduction from waste incineration
JP2006023076A (en) Method and system for operating combustion system
US6258336B1 (en) Method and apparatus for NOx reduction in flue gases
US5307746A (en) Process and apparatus for emissions reduction from waste incineration
KR101797731B1 (en) Combustion Device with energy efficiency and its operating method for abatement of nondegradable hazardous gas
JP5435973B2 (en) Fluidized incinerator
KR102043956B1 (en) Combustor capable of reducing nitrogen oxide contained in boiler combustion gas and increasing energy efficiency
JP3835966B2 (en) Waste fluidized bed incinerator
KR100886190B1 (en) The burner for making deoxidizing atmosphere of exhaust gas in engine cogeneration plant with denox process
KR19990008321A (en) Nitrogen oxide control method in circulating fluidized-bed steam generator
JP2002522734A (en) Method and apparatus for reducing exhaust emissions utilizing partial oxidation of combustible materials
JP3059995B2 (en) Fluidized bed combustion method for simultaneous reduction of nitrous oxide and nitrogen oxides
JP2870675B2 (en) How to operate the pyrolytic combustion zone
JPH05340509A (en) N2 and nox reducing method in fluidized bed combustion
JP2773831B2 (en) Low NOx boiler
JP3489966B2 (en) Incinerator
JP3771791B2 (en) Waste incinerator with high water content and high volatility such as sewage sludge
JPH0549892B2 (en)
JP2667607B2 (en) Structure of low NOx boiler
CN114151816B (en) Combustion method and system for realizing energy conservation and low nitrogen emission of gas industrial boiler
CN212390382U (en) Waste gas back flame burning purifier
KR100382310B1 (en) A Furnace and method for burning a un-burned gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051111

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees