JP5435973B2 - Fluidized incinerator - Google Patents

Fluidized incinerator Download PDF

Info

Publication number
JP5435973B2
JP5435973B2 JP2009019032A JP2009019032A JP5435973B2 JP 5435973 B2 JP5435973 B2 JP 5435973B2 JP 2009019032 A JP2009019032 A JP 2009019032A JP 2009019032 A JP2009019032 A JP 2009019032A JP 5435973 B2 JP5435973 B2 JP 5435973B2
Authority
JP
Japan
Prior art keywords
air
zone
combustion
temperature
air ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009019032A
Other languages
Japanese (ja)
Other versions
JP2010175157A (en
Inventor
昌幸 山本
知志 竹下
幸資 神谷
修策 服部
清人 久野
紀親 越智
祐毅 境野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Metawater Co Ltd
Original Assignee
Tokyo Metropolitan Government
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government, Metawater Co Ltd filed Critical Tokyo Metropolitan Government
Priority to JP2009019032A priority Critical patent/JP5435973B2/en
Publication of JP2010175157A publication Critical patent/JP2010175157A/en
Application granted granted Critical
Publication of JP5435973B2 publication Critical patent/JP5435973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、温暖化ガスであるNOの発生を抑制しながらN分を含む汚泥を焼却することができる大型の流動焼却炉に関するものである。 The present invention relates to a large fluidized incinerator capable of incinerating sludge containing N while suppressing generation of N 2 O, which is a warming gas.

下水汚泥に代表される汚泥中には蛋白質に由来する多量のN分が含有されているので、焼却により各種の窒素酸化物が生成され、大気中に放出されている。これらの窒素酸化物の中でも特に、NO(亜酸化窒素)はCOに比べて310倍の温暖化効果を示すガスであるため、その削減が特に強く求められている。 Since sludge represented by sewage sludge contains a large amount of N derived from protein, various nitrogen oxides are generated by incineration and released into the atmosphere. Among these nitrogen oxides, N 2 O (nitrous oxide) is a gas that exhibits a warming effect 310 times that of CO 2, and therefore its reduction is particularly strongly demanded.

従来から汚泥の焼却にはダイオキシンを発生させにくい流動焼却炉が広く使用されており、一般的に約800℃で焼却が行われてきた。しかし焼却温度を850℃まで高めるとNOの発生量が約三分の一にまで減少することが分り、これを「高温焼却法」と呼んでNOの抑制に有効な方法と評価されている。 Conventionally, fluid incinerators that do not easily generate dioxins have been widely used for sludge incineration, and incineration has generally been performed at about 800 ° C. But know that reduced until the incineration temperature to increase the N 2 O in the generation amount of about one third to 850 ° C., evaluation and effective way to call it N 2 O suppression to as "high temperature incineration method" Has been.

ところが、焼却温度を850℃にまで高めるためには補助燃料の使用量を従来の1.4〜1.6倍にまで増加させる必要があり、省エネルギの観点から好ましくない。また燃料コストが上昇している昨今の状況から、ランニングコストの大幅な増加を招くという問題を生ずる。このように「高温焼却法」はNOの抑制には有効であるが、実用上の問題が残されている。 However, in order to increase the incineration temperature to 850 ° C., it is necessary to increase the amount of auxiliary fuel used to 1.4 to 1.6 times that of the prior art, which is not preferable from the viewpoint of energy saving. In addition, the recent situation in which the fuel cost is rising causes a problem that the running cost is significantly increased. As described above, the “high-temperature incineration method” is effective in suppressing N 2 O, but a practical problem remains.

このようなNOの抑制という課題は、都市廃棄物を燃料とする流動層燃焼ボイラにおいても発生している。そこで特許文献1には、流動層の空気比を0.9〜1.0としてNO及びNOの発生量を抑制し、その上段で付加燃料とその燃焼用空気を供給して高温燃焼させることによって高温でNOを分解させ、さらに最上段で十分な量の空気を吹き込んで完全燃焼させるという流動層燃焼ボイラの多段燃焼方法が提案されている。 Such a problem of N 2 O suppression also occurs in a fluidized bed combustion boiler using municipal waste as fuel. Therefore, in Patent Document 1, the generation ratio of N 2 O and NO X is suppressed by setting the air ratio of the fluidized bed to 0.9 to 1.0, and additional fuel and combustion air are supplied at the upper stage to perform high-temperature combustion. Thus, a multi-stage combustion method for a fluidized bed combustion boiler has been proposed in which N 2 O is decomposed at a high temperature, and a sufficient amount of air is blown into the uppermost stage for complete combustion.

しかしこの特許文献1の多段燃焼方法は、流動層の上段に付加燃料とその燃焼用空気を供給し、NOを分解することができる高温場を形成するために多量の補助燃料を必要としている。もっとも特許文献1の多段燃焼方法はボイラに関するものであるから、補助燃料の熱量を回収することができ、補助燃料の使用量はさほど大きな問題ではない。しかしこれをそのまま汚泥焼却炉に適用した場合には、補助燃料の使用量が問題となり、省エネルギの観点から満足できない点があった。 However, the multistage combustion method of Patent Document 1 requires a large amount of auxiliary fuel in order to form a high-temperature field in which additional fuel and combustion air are supplied to the upper stage of the fluidized bed and N 2 O can be decomposed. Yes. However, since the multistage combustion method of Patent Document 1 relates to a boiler, the amount of heat of auxiliary fuel can be recovered, and the amount of auxiliary fuel used is not a significant problem. However, when this is applied as it is to a sludge incinerator, the amount of auxiliary fuel used becomes a problem, which is not satisfactory from the viewpoint of energy saving.

また、大都市部の下水処理場においては処理能力が250〜350トン/日の大型の流動焼却炉が用いられているが、その直径は7m以上に達する。このような大型炉においては炉内への空気供給を適切に行わないと炉内での供給空気による混合・拡散が十分に行われず、NOを十分に分解させることが容易ではないという問題もあった。 Moreover, in a large city sewage treatment plant, a large fluidized incinerator having a treatment capacity of 250 to 350 tons / day is used, and its diameter reaches 7 m or more. In such a large furnace, if air supply to the furnace is not appropriately performed, mixing and diffusion by the supply air in the furnace is not sufficiently performed, and it is not easy to sufficiently decompose N 2 O. There was also.

特許第3059995号公報Japanese Patent No. 3059995

本発明は上記した従来の問題点を解決し、N分を含む汚泥を焼却する際のNOの発生量を「高温焼却法」と同等レベルまで抑制することができ、しかも補助燃料の使用量を「高温焼却法」に比べて大幅に低下させることができ、しかも炉体内径が7m以上の大型炉とした場合にもNOを十分に分解できる流動焼却炉を提供することを目的とするものである。 The present invention solves the above-mentioned conventional problems, can suppress the amount of N 2 O generated when incinerating sludge containing N to the same level as the “high temperature incineration method”, and uses auxiliary fuel. The purpose is to provide a fluidized incinerator that can significantly reduce the amount of N 2 O even when it is a large-sized furnace having a furnace body inner diameter of 7 m or more, in which the amount can be significantly reduced as compared with the “high temperature incineration method”. It is what.

上記の課題を解決するためになされた本発明の汚泥の流動焼却炉は、汚泥を流動焼却する炉体内径が7m以上の大型の流動焼却炉であって、炉体の下方部分を空気比が1.1以下の流動用空気を燃料とともに供給して汚泥を流動させつつ熱分解する熱分解ゾーンとし、その直上部分を空気比が0.1〜0.3の二次燃焼用空気のみを供給することにより局所高温場を形成してNOを分解する層上燃焼ゾーンとし、炉体の最上部を未燃分を完全燃焼させる完全燃焼ゾーンとするとともに、前記層上燃焼ゾーンにおける二次燃焼用空気の供給位置を上下2段に分割し、その供給速度を70m/s以上の高速としたことを特徴とするものである。 The fluidized sludge incinerator of the present invention made to solve the above problems is a large fluidized incinerator having a furnace body inner diameter of 7 m or more for fluidly incinerating sludge, and the lower portion of the furnace body has an air ratio. 1.1 or less is used as a pyrolysis zone where pyrolysis is performed by supplying slurging fluid while supplying air for flow with fuel, and only the secondary combustion air with an air ratio of 0.1 to 0.3 is supplied immediately above the zone. And forming a local high temperature field to decompose the N 2 O into an upper combustion zone, and the uppermost portion of the furnace body to be a complete combustion zone for completely burning the unburned portion, and the secondary combustion zone in the upper combustion zone The supply position of the combustion air is divided into upper and lower stages, and the supply speed is set to a high speed of 70 m / s or more.

なお請求項2のように、熱分解ゾーンの空気比を0.7〜1.1、温度を550〜750℃、層上燃焼ゾーンの温度を850〜920℃とすることが好ましい。また請求項3のように、流動空気として供給される一次空気と層状燃焼ゾーンに供給される二次燃焼用空気の合計の空気比を1.0〜1.3とすることが好ましい。また請求項4のように、完全燃焼ゾーンに供給される空気の空気比を0.1〜0.3とし、全体での空気比を1.5以下とすることが好ましい。   As in claim 2, it is preferable to set the air ratio of the pyrolysis zone to 0.7 to 1.1, the temperature to 550 to 750 ° C, and the temperature of the upper combustion zone to 850 to 920 ° C. As in claim 3, it is preferable that the total air ratio of primary air supplied as fluidized air and secondary combustion air supplied to the stratified combustion zone be 1.0 to 1.3. Further, as in claim 4, it is preferable that the air ratio of the air supplied to the complete combustion zone is 0.1 to 0.3 and the overall air ratio is 1.5 or less.

また請求項5のように、二次燃焼用空気の下段の供給高さを、静止砂層の上面から600〜1000mmとすることが好ましく、さらに請求項7のように、上下2段に二次燃焼用空気を供給することにより、その間にNOの分解温度以上、サーマルNOの発生温度未満の層上燃焼ゾーンを形成することが好ましい。 Further, as in claim 5, the lower supply height of the secondary combustion air is preferably set to 600 to 1000 mm from the upper surface of the static sand layer, and the secondary combustion in the upper and lower stages as in claim 7. By supplying the working air, it is preferable to form an on-layer combustion zone having a temperature equal to or higher than the decomposition temperature of N 2 O and lower than the generation temperature of thermal NO x therebetween.

本発明によれば、汚泥を流動炉に投入し、空気比が1.1以下の流動用空気が燃料とともに供給される熱分解ゾーンで流動させつつ熱分解する。この熱分解ゾーンでは空気比が1.1以下であって酸素が少ないので、N分の酸化が進みにくくNO、NOの生成が抑制される。それにもかかわらず汚泥は550〜750℃の温度場で流動媒体によって激しく撹拌され、汚泥中の可燃分は十分に熱分解される。 According to the present invention, sludge is put into a fluidized furnace and pyrolyzed while flowing in a pyrolysis zone in which air for flow having an air ratio of 1.1 or less is supplied together with fuel. In this pyrolysis zone, the air ratio is 1.1 or less and the amount of oxygen is small, so that the oxidation of N hardly proceeds, and the generation of N 2 O and NO x is suppressed. Nevertheless, the sludge is vigorously stirred by the fluid medium in the temperature field of 550 to 750 ° C., and the combustible component in the sludge is sufficiently pyrolyzed.

また本発明では、その直上位置で熱分解ガスに空気比が0.1〜0.3の燃焼用空気を上下2段に分割して吹き込んでその間に所定高さにわたり850〜920℃の局所高温場を形成し、熱分解ガス中のNOを分解するが、酸素濃度の低い部分に空気のみを吹き込んで熱分解ガスを局所燃焼させるので、層上燃焼ゾーンでは補助燃料を全く必要としない。なお、NOの生成は主として砂層直上部で行われるが、本発明ではこのNOの生成領域に高温場を形成するため、砂層直上部(砂層〜炉高の1/3まで)に二次燃焼用空気が供給される。さらに砂層直上部に二次燃焼用空気を投入することによって放熱が妨げられ、より局所高温場を形成し易くなる。 Further, in the present invention, combustion air having an air ratio of 0.1 to 0.3 is blown into the pyrolysis gas at a position immediately above it, divided into two upper and lower stages, and a local high temperature of 850 to 920 ° C. over a predetermined height therebetween. A field is formed and N 2 O in the pyrolysis gas is decomposed, but only air is blown into a portion having a low oxygen concentration to locally burn the pyrolysis gas, so no auxiliary fuel is required in the upper combustion zone . N 2 O is produced mainly directly above the sand layer. In the present invention, a high-temperature field is formed in this N 2 O production region, so that the N 2 O is formed immediately above the sand layer (from the sand layer to 1/3 of the furnace height). Secondary combustion air is supplied. Further, by introducing secondary combustion air directly above the sand layer, heat dissipation is hindered, and a local high temperature field is more easily formed.

また本発明では、空気比が0.1〜0.3の二次燃焼用空気を上下2段に分割し、ノズル口径を小さくして供給速度を70m/s以上の高速としたため、炉体の内径が7m以上の大型炉においても炉の断面全体に二次燃焼用空気が供給される。従って処理能力が250〜350トン/日の大型の流動焼却炉においても炉内での供給空気による混合・拡散が十分に行われ、NOを十分に分解させることができる。 In the present invention, the secondary combustion air having an air ratio of 0.1 to 0.3 is divided into upper and lower two stages, the nozzle diameter is reduced, and the supply speed is set to a high speed of 70 m / s or more. Even in a large furnace having an inner diameter of 7 m or more, secondary combustion air is supplied to the entire cross section of the furnace. Therefore, even in a large fluidized incinerator having a processing capacity of 250 to 350 tons / day, mixing and diffusion by the supply air in the furnace are sufficiently performed, and N 2 O can be sufficiently decomposed.

このように本発明によれば、熱分解ゾーンから排出される熱分解ガス量が通常燃焼における燃焼排ガスよりも少量であり加温のための必要熱量が空気のみであることや高温場が局所的であること、さらには流動層部の温度が低いことから、補助燃料の使用量を「高温焼却法」に比べて大幅に低下させることができる。そしてさらに最上部で空気を吹き込んで未燃分を完全燃焼させるので、排ガス中に有害成分は含まれない。   As described above, according to the present invention, the amount of pyrolysis gas discharged from the pyrolysis zone is smaller than the combustion exhaust gas in normal combustion, and the amount of heat required for heating is only air, or the high-temperature field is localized. In addition, since the temperature of the fluidized bed is low, the amount of auxiliary fuel used can be greatly reduced as compared with the “high temperature incineration method”. Further, since air is blown at the uppermost part to completely burn the unburned matter, no harmful components are contained in the exhaust gas.

なお熱分解ゾーンは空気比を1.1以下として運転されるが、空気比を下げて行くと次第に砂層の温度維持が難しくなるという問題が発生し、汚泥直投による通常の流動式熱分解炉では空気比を0.8よりも下げることは困難である。しかし請求項5のように二次燃焼用空気の下段の供給高さを、静止砂層の上面から600〜1000mmとすると、流動砂層の直上位置で局所高温場を形成することができ、その輻射熱によって砂層の温度維持を図り易くなり、熱分解ゾーンの空気比を0.7程度まで下げることが可能となる。またこれに伴って、流動炉の全体の空気比も下げることが可能となる。ただし熱分解ゾーンの空気比を下げすぎると流動不良となり、シアンや一酸化炭素などの有毒ガスが生成されるおそれがあるので、0.7程度が下限である。   The pyrolysis zone is operated at an air ratio of 1.1 or less, but as the air ratio is lowered, there is a problem that the temperature of the sand layer becomes gradually difficult to maintain. Therefore, it is difficult to lower the air ratio below 0.8. However, if the supply height of the lower stage of the secondary combustion air is 600 to 1000 mm from the upper surface of the stationary sand layer as in claim 5, a local high temperature field can be formed at a position immediately above the fluidized sand layer. It becomes easy to maintain the temperature of the sand layer, and the air ratio in the pyrolysis zone can be lowered to about 0.7. Along with this, the overall air ratio of the fluidized furnace can be lowered. However, if the air ratio in the pyrolysis zone is too low, the flow is poor and toxic gases such as cyan and carbon monoxide may be generated, so about 0.7 is the lower limit.

また請求項6のように、上下2段に二次燃焼用空気を供給することにより、その間にNOの分解温度以上、サーマルNOの発生温度未満の層上燃焼ゾーンを形成すれば、NOの生成がより確実に抑制される。 Further, as in claim 6, by supplying the secondary combustion air to the upper and lower two stages, if an upper combustion zone between the decomposition temperature of N 2 O and less than the generation temperature of thermal NO x is formed therebetween, The production of N 2 O is more reliably suppressed.

本発明の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows embodiment of this invention. 本発明の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of this invention. 本発明の変形例を示す水平断面図である。It is a horizontal sectional view showing a modification of the present invention. 炉内温度の模式図である。It is a schematic diagram of the furnace temperature.

以下に本発明の好ましい実施形態を示す。
図1は本発明の実施形態を示す縦断面図であり、1は流動焼却炉の炉体、2は炉体1の側壁に形成された汚泥の投入口であり、汚泥はこの投入口2から直接炉体1内に投入される。汚泥は下水脱水汚泥である。本発明の対象となるのは炉体内径が7m以上の大型の流動焼却炉であり、最大径は10m程度である。炉体1の内部は高さ方向に3つのゾーンに分割される。炉体1の下方から順に、熱分解ゾーン3、層上燃焼ゾーン4、完全燃焼ゾーン5である。
Preferred embodiments of the present invention are shown below.
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, in which 1 is a furnace body of a fluidized incinerator, 2 is a sludge inlet formed on the side wall of the furnace body 1, and sludge is discharged from this inlet 2. Directly charged into the furnace body 1. Sludge is sewage dewatered sludge. The object of the present invention is a large fluidized incinerator having a furnace body inner diameter of 7 m or more, and the maximum diameter is about 10 m. The interior of the furnace body 1 is divided into three zones in the height direction. In order from the bottom of the furnace body 1, there are a pyrolysis zone 3, an upper combustion zone 4 and a complete combustion zone 5.

熱分解ゾーン3は炉体1の最も下方部分に形成されるゾーンであり、流動用空気供給管6と燃料供給管7とを備えている。流動用空気供給管6からは一次空気である流動用空気が供給され、公知の流動媒体とともに汚泥を流動させている。また燃料供給管7からは補助燃料が供給され、流動用空気により燃焼されて熱分解ゾーン3の温度を550〜750℃に維持している。投入された汚泥は流動用空気により激しく撹拌されながら加熱される。補助燃料としては都市ガスやプロパンガスのようなガス燃料やA重油のような液体燃料が使用される。   The pyrolysis zone 3 is a zone formed at the lowermost portion of the furnace body 1 and includes a flow air supply pipe 6 and a fuel supply pipe 7. From the air supply pipe 6 for flow, the air for flow which is primary air is supplied, and sludge is made to flow with a well-known fluid medium. Auxiliary fuel is supplied from the fuel supply pipe 7 and is combusted by flowing air to maintain the temperature of the thermal decomposition zone 3 at 550 to 750 ° C. The introduced sludge is heated while being vigorously stirred by the flowing air. As the auxiliary fuel, a gas fuel such as city gas or propane gas or a liquid fuel such as heavy fuel oil A is used.

本発明では、流動用空気供給管6からの一次空気(流動用空気)の供給量は、補助燃料及び汚泥を燃焼させるために必要な理論空気量を基準として、空気比が1.1以下、好ましくは0.7〜1.1となるように設定されている。このため汚泥は熱分解されるが、空気比が低く酸素量が不十分であるので、通常の流動燃焼を行わせる場合に比較してNOの発生量を抑制することができる。次に説明するように、本発明では熱分解ゾーン3の直上位置に局所高温場を形成するため、その輻射熱によって砂層の温度維持を図り易くなり、熱分解ゾーンの空気比を0.7程度まで下げることが可能となる。なお空気比が0.7未満であると流動層部での部分燃焼による発熱量が、汚泥水分蒸発熱や熱分解熱、放熱などの出熱量よりも少なくなり、流動層部の温度維持が困難となるうえ、シアンや一酸化炭素などの有毒ガスが生成されるおそれがあるので、0.7以上1.1以下とすることが好ましい。 In the present invention, the supply amount of primary air (flowing air) from the flowing air supply pipe 6 is based on the theoretical air amount necessary for burning auxiliary fuel and sludge, and the air ratio is 1.1 or less. Preferably, it is set to be 0.7 to 1.1. For this reason, although sludge is thermally decomposed, since the air ratio is low and the amount of oxygen is insufficient, the amount of N 2 O generated can be suppressed as compared with the case where normal fluid combustion is performed. As will be described below, in the present invention, a local high temperature field is formed immediately above the pyrolysis zone 3, so that it is easy to maintain the temperature of the sand layer by the radiant heat, and the air ratio of the pyrolysis zone is reduced to about 0.7. Can be lowered. If the air ratio is less than 0.7, the amount of heat generated by partial combustion in the fluidized bed will be less than the amount of heat output from sludge moisture evaporative heat, heat of thermal decomposition, heat release, etc., making it difficult to maintain the temperature of the fluidized bed. In addition, since there is a possibility that toxic gases such as cyan and carbon monoxide are generated, it is preferable to set the ratio to 0.7 or more and 1.1 or less.

熱分解ゾーン3の直上位置には、層上燃焼ゾーン4が形成されている。この層上燃焼ゾーン4は、燃焼用空気供給管8、9から空気比が0.1〜0.3となる量の二次燃焼用空気のみを供給するゾーンである。熱分解ゾーン3から上昇して来る熱分解ガスはこの二次燃焼用空気と接触して燃焼され、温度が850〜920℃の局所高温場を形成する。このため熱分解ガス中に含まれるNOはこの局所高温場において分解され減少する。 An upper combustion zone 4 is formed immediately above the pyrolysis zone 3. The upper-layer combustion zone 4 is a zone for supplying only secondary combustion air in an amount such that the air ratio is 0.1 to 0.3 from the combustion air supply pipes 8 and 9. The pyrolysis gas rising from the pyrolysis zone 3 is combusted in contact with the secondary combustion air to form a local high temperature field having a temperature of 850 to 920 ° C. Therefore, N 2 O contained in the pyrolysis gas is decomposed and reduced in this local high temperature field.

なお流動用空気供給管6からの一次空気と、燃焼用空気供給管8から供給される空気を合計した空気比が1.1未満では850〜920℃の局所高温場を形成することができず、1.3を越えると燃焼に関与しない余剰空気量が増加し850〜920℃の局所高温場を形成するには補助燃料の供給が必要となるので、一次空気と二次燃焼用空気の合計空気比は1.1〜1.3とすることが必要である。このように本発明では還元雰囲気中に少量の空気のみを吹き込んで局所高温場を形成し、NOを分解する点に一つの特徴があり、熱分解ゾーンの温度維持に必要な量以上の補助燃料を使用する必要がない利点がある。 If the total air ratio of the primary air from the flow air supply pipe 6 and the air supplied from the combustion air supply pipe 8 is less than 1.1, a local high temperature field of 850 to 920 ° C. cannot be formed. If it exceeds 1.3, the amount of surplus air not involved in combustion increases, and it is necessary to supply auxiliary fuel to form a local high temperature field of 850 to 920 ° C. Therefore, the total of primary air and secondary combustion air The air ratio needs to be 1.1 to 1.3. As described above, in the present invention, only a small amount of air is blown into the reducing atmosphere to form a local high-temperature field, and N 2 O is decomposed. This is a feature that exceeds the amount necessary for maintaining the temperature of the thermal decomposition zone. There is an advantage that it is not necessary to use auxiliary fuel.

また本発明では、図1に示すように二次燃焼用空気の供給位置を上下2段に分割するとともに、燃焼用空気供給管8、9からの二次燃焼用空気の供給速度を70m/s以上、100m以下の高速とした。このような供給速度を確保することによって、炉の内径が7〜8mの大型炉においても炉の断面全体に二次燃焼用空気をほぼ均一に供給することができる。供給速度がこれよりも低下すると、炉体内径が7m以上の大型の流動焼却炉においては炉内における空気の混合・拡散が十分に行われにくくなり、NOを十分に分解させることができなくなるおそれがある。また、100m/s以上とすると配管内圧力損失が増大するため、空気供給用のブロワ動力を増大させなければならなくなる。 In the present invention, as shown in FIG. 1, the supply position of the secondary combustion air is divided into two upper and lower stages, and the supply speed of the secondary combustion air from the combustion air supply pipes 8 and 9 is set to 70 m / s. As described above, the speed is 100 m or less. By ensuring such a supply speed, the secondary combustion air can be supplied substantially uniformly to the entire cross section of the furnace even in a large furnace having an inner diameter of 7 to 8 m. When the supply speed is lower than this, in a large fluidized incinerator having a furnace inner diameter of 7 m or more, it becomes difficult to sufficiently mix and diffuse air in the furnace, and N 2 O can be sufficiently decomposed. There is a risk of disappearing. Further, if the pressure is 100 m / s or more, the pressure loss in the pipe increases, so the blower power for supplying air must be increased.

なお、図2に示すように下段の燃焼用空気供給管8のみを斜め下向きにし、熱分解ゾーン3から上昇してくる熱分解ガスとの混合・撹拌効率を高めるようにしてもよい。また図3に示すように上下の燃焼用空気供給管8、9をそれぞれ炉体1の接線方向に配置するとともに、その方向を互いに逆向きにしたり、上段の燃焼用空気供給管9の取り付け方向を炉体1の中心方向とするようにしてもよい。   As shown in FIG. 2, only the lower combustion air supply pipe 8 may be inclined obliquely downward to increase the efficiency of mixing and stirring with the pyrolysis gas rising from the pyrolysis zone 3. Further, as shown in FIG. 3, the upper and lower combustion air supply pipes 8 and 9 are arranged in the tangential direction of the furnace body 1 and the directions thereof are opposite to each other, or the upper combustion air supply pipe 9 is attached in the direction of attachment. May be the center direction of the furnace body 1.

このように二次燃焼用空気の供給位置を上下2段に分割したことによって、それらの間に所定高さの層上燃焼ゾーン4が形成される。もし二次燃焼用空気を一段で吹き込んだ場合には、図4のグラフに示すように吹き込み位置において局所的な過昇温による温度ピークが形成される。その温度はNOの分解温度である850〜900℃を越えることは勿論であるが、サーマルNOの発生温度である920℃を越え、NOは分解されてもサーマルNOが発生する危険性がある。これに対して本願発明のように二次燃焼用空気の供給位置を上下2段に分割すれば局所的な過昇温を抑制し、NOの分解温度以上、サーマルNOの発生温度未満の層上燃焼ゾーンを形成し、サーマルNOを発生させることなくNOを分解することが可能となる。 Thus, by dividing the supply position of the secondary combustion air into two upper and lower stages, an upper combustion zone 4 having a predetermined height is formed between them. If the secondary combustion air is blown in one stage, a temperature peak due to local excessive temperature rise is formed at the blowing position as shown in the graph of FIG. Its the temperature can of course exceed 850 to 900 ° C. is a decomposition temperature of N 2 O, exceed 920 ° C. is a generation temperature of the thermal NO x, N 2 O is thermal NO x is generated be decomposed There is a risk of doing. On the other hand, if the supply position of the secondary combustion air is divided into two upper and lower stages as in the present invention, local overheating is suppressed, and the temperature is higher than the decomposition temperature of N 2 O and lower than the generation temperature of thermal NO x. Thus, it is possible to decompose N 2 O without generating thermal NO x .

なお上下の燃焼用空気供給管8、9の間隔は、200〜600mm程度としておくことが好ましい。これよりも接近させると上記した2段に分割した意味が薄くなり、逆に離れすぎても安定した層上燃焼ゾーンを形成しにくくなるからである。また下段の燃焼用空気供給管8の高さは、静止砂層(流動停止状態における砂層)の上面から600〜1000mmとしておくことが好ましい。このような位置とすれば運転中は流動層の上面付近に位置することとなり、高温の層上燃焼ゾーン4からの輻射熱によって砂層の温度低下を防止できる効果がある。   The interval between the upper and lower combustion air supply pipes 8 and 9 is preferably about 200 to 600 mm. This is because if it is closer than this, the meaning of the above-described two-stage division becomes thin, and conversely, if it is too far away, it becomes difficult to form a stable upper combustion zone. The height of the lower combustion air supply pipe 8 is preferably set to 600 to 1000 mm from the upper surface of the stationary sand layer (the sand layer in the flow stop state). If it is such a position, it will be located in the vicinity of the upper surface of the fluidized bed during operation, and there is an effect that it is possible to prevent the temperature of the sand layer from being lowered by the radiant heat from the hot upper layer combustion zone 4.

炉体1の最上部は、未燃分を完全燃焼させる完全燃焼ゾーン5である。この完全燃焼ゾーン5には三次空気供給管10が配置され、空気を供給する。その供給量は空気比が0.1〜0.3となる量とする。この完全燃焼ゾーン5の温度は800〜850℃であり、層上燃焼ゾーン4において分解されなかったNOはさらに分解されるとともに、COはCOに酸化され、炉外に排出されて通常の排ガス処理が行われる。 The uppermost part of the furnace body 1 is a complete combustion zone 5 in which unburned components are completely burned. A tertiary air supply pipe 10 is disposed in the complete combustion zone 5 to supply air. The supply amount is such that the air ratio is 0.1 to 0.3. The temperature of the complete combustion zone 5 is 800 to 850 ° C., and N 2 O that was not decomposed in the upper combustion zone 4 is further decomposed, and CO is oxidized to CO 2 and discharged outside the furnace. Exhaust gas treatment is performed.

なお、上記した流動用空気供給管6と二次燃焼用空気供給管8、9と三次空気供給管10とから供給される空気量の合計は、トータル空気比が1.5以下、好ましくは1.3以下となるように設定する。このように空気比を絞り、かつ補助燃料を熱分解ゾーン3の燃料供給管7のみから供給するようにした結果、補助燃料の使用量をほぼ従来の通常焼却レベルとしながら、NOの発生量を従来よりも大幅(実施例では1/4)に削減することができた。なお本発明によるNOの抑制効果は「高温焼却法」と同様あるいはそれ以上であるが、「高温焼却法」では補助燃料の使用量が従来レベルの1.4〜1.6倍となる。このように本発明によれば、NOの発生量を「高温焼却法」と同等レベル以下まで抑制することができ、しかも補助燃料の使用量を「高温焼却法」に比べて大幅に低下させることが可能となる。 The total amount of air supplied from the flow air supply pipe 6, the secondary combustion air supply pipes 8 and 9, and the tertiary air supply pipe 10 is 1.5 or less, preferably 1 Set to be 3 or less. As a result of reducing the air ratio and supplying the auxiliary fuel only from the fuel supply pipe 7 of the pyrolysis zone 3, the generation of N 2 O is achieved while the amount of auxiliary fuel used is almost the same as the conventional incineration level. The amount could be reduced significantly (in the example, 1/4) compared to the conventional method. In addition, although the suppression effect of N 2 O according to the present invention is the same as or higher than that of the “high temperature incineration method”, the amount of auxiliary fuel used is 1.4 to 1.6 times the conventional level in the “high temperature incineration method”. . As described above, according to the present invention, the amount of N 2 O generated can be suppressed to a level equal to or lower than that of the “high temperature incineration method”, and the amount of auxiliary fuel used can be significantly reduced compared to the “high temperature incineration method”. It becomes possible to make it.

炉体内径が7m以上の大型の流動焼却炉を模擬した実験用の流動炉を使用して、条件を変更しながら汚泥の焼却実験を行った。汚泥の投入量は全て80kg/hであり、補助燃料としてはA重油を使用した。実験は従来から行われている通常焼却、焼却温度を高めた高温焼却、本発明の図1に示した方法、本発明の図1に示した方法であるが二次燃焼用空気供給を1段とした方法(比較例)の4種類である。それぞれの焼却方法について、補助燃料使用量(汚泥1kg当たりの補助燃料の発熱量で表示)、フリーボード部最高温度、炉出口温度、NOを含む排ガス成分の濃度、トータル空気比、一次空気比を測定し、表1に示した。 A sludge incineration experiment was performed while changing the conditions using an experimental fluid furnace simulating a large fluid incinerator having an inner diameter of 7 m or more. The input amount of sludge was 80 kg / h, and A heavy oil was used as auxiliary fuel. Experiments are conventional incineration, high temperature incineration with increased incineration temperature, the method shown in FIG. 1 of the present invention, and the method shown in FIG. 1 of the present invention. There are four types of methods (comparative examples). For each incineration method, the amount of auxiliary fuel used (indicated by the calorific value of auxiliary fuel per kg of sludge), freeboard maximum temperature, furnace outlet temperature, concentration of exhaust gas components including N 2 O, total air ratio, primary air The ratio was measured and shown in Table 1.

Figure 0005435973
Figure 0005435973

上記のデータから明らかなように、本発明によれば補助燃料の使用量を従来の焼却方法と同等以下に維持しつつ、汚泥焼却時に発生するNOの量を高温焼却よりも大幅に削減することができる利点がある。 As is clear from the above data, according to the present invention, the amount of N 2 O generated during sludge incineration is significantly reduced compared to high-temperature incineration while maintaining the amount of auxiliary fuel used at or below the level of conventional incineration methods. There are advantages that can be done.

次に、二次空気の吹き込み段数と流速を表2に示すように変化させて、NOを含む排ガス成分の濃度を測定した。なお、トータル空気比は1.3の一定値とし、一次空気比は1.0の一定値とした。 Next, the concentration of exhaust gas components containing N 2 O was measured by changing the number of secondary air blowing stages and the flow velocity as shown in Table 2. The total air ratio was a constant value of 1.3, and the primary air ratio was a constant value of 1.0.

Figure 0005435973
Figure 0005435973

上記のデータから明らかなように、二次燃焼用空気の供給位置を上下2段とし、その供給速度を70m/s以上とすることにより、CO濃度、NO濃度、NO濃度を低下させることができる。特に二次燃焼用空気の供給位置を上下2段としたことによるCO濃度、NO濃度の低下は顕著であり、また供給速度を高速化したことによるCO濃度の低下が明らかである。 As is apparent from the above data, the CO combustion concentration, N 2 O concentration, and NO X concentration are lowered by setting the supply position of the secondary combustion air to the upper and lower stages and the supply speed to 70 m / s or more. be able to. In particular the CO concentration due to the fact that the supply position of the secondary combustion air and the upper and lower stages, reduction of the NO X concentration is remarkable, also decrease in CO concentration due to the faster feed rate is evident.

次に、二次燃焼用空気の供給位置を上下2段とし、その間の距離がCO濃度、NO濃度、NO濃度に与える影響を評価した。その結果を表3に示す。なお二次空気流速は70m/sの一定とした。 Next, the supply position of the secondary combustion air was set in two upper and lower stages, and the influence of the distance between them on the CO concentration, N 2 O concentration, and NO X concentration was evaluated. The results are shown in Table 3. The secondary air flow rate was constant at 70 m / s.

Figure 0005435973
Figure 0005435973

上記のデータから明らかなように、二次燃焼用空気の供給位置を上下2段とし、その間の距離を200〜600mmとした場合に、最も優れた効果が得られることを確認した。   As is clear from the above data, it was confirmed that the most excellent effect was obtained when the supply position of the secondary combustion air was set at the upper and lower stages and the distance between them was 200 to 600 mm.

1 炉体
2 汚泥の投入口
3 熱分解ゾーン
4 層上燃焼ゾーン
5 完全燃焼ゾーン
6 流動用空気供給管
7 燃料供給管
8 燃焼用空気供給管(下段)
9 燃焼用空気供給管(下段)
10 三次空気供給管
DESCRIPTION OF SYMBOLS 1 Furnace 2 Sludge inlet 3 Pyrolysis zone 4 Upper combustion zone 5 Complete combustion zone 6 Air supply pipe for flow 7 Fuel supply pipe 8 Air supply pipe for combustion (lower stage)
9 Combustion air supply pipe (lower)
10 Tertiary air supply pipe

Claims (6)

汚泥を流動焼却する炉体内径が7m以上の大型の流動焼却炉であって、炉体の下方部分を空気比が1.1以下の流動用空気を燃料とともに供給して汚泥を流動させつつ熱分解する熱分解ゾーンとし、その直上部分を空気比が0.1〜0.3の二次燃焼用空気のみを供給することにより局所高温場を形成してNOを分解する層上燃焼ゾーンとし、炉体の最上部を未燃分を完全燃焼させる完全燃焼ゾーンとするとともに、前記層上燃焼ゾーンにおける二次燃焼用空気の供給位置を上下2段に分割し、その供給速度を70m/s以上の高速としたことを特徴とする流動焼却炉。 A large fluidized incinerator with an inner diameter of 7m or more that fluidizes and incinerates sludge. The lower part of the furnace body is heated while supplying sludge by supplying air for fuel with an air ratio of 1.1 or less together with fuel. An overlying combustion zone that decomposes N 2 O by forming a local high temperature field by supplying only secondary combustion air with an air ratio of 0.1 to 0.3 as a thermal decomposition zone that decomposes The uppermost part of the furnace body is a complete combustion zone for completely burning the unburned portion, and the supply position of the secondary combustion air in the upper combustion zone is divided into two upper and lower stages, and the supply speed is 70 m / A fluid incinerator characterized by a high speed of s or more. 熱分解ゾーンの空気比を0.7〜1.1、温度を550〜750℃、層上燃焼ゾーンの温度を850〜920℃としたことを特徴とする請求項1記載の流動焼却炉。   The fluidized incinerator according to claim 1, wherein the air ratio of the pyrolysis zone is 0.7 to 1.1, the temperature is 550 to 750 ° C, and the temperature of the upper combustion zone is 850 to 920 ° C. 流動空気として供給される一次空気と層上燃焼ゾーンに供給される二次燃焼用空気の合計の空気比を1.0〜1.3としたことを特徴とする請求項1記載の流動焼却炉。   The fluidized incinerator according to claim 1, wherein a total air ratio of primary air supplied as fluidized air and secondary combustion air supplied to the upper combustion zone is set to 1.0 to 1.3. . 完全燃焼ゾーンに供給される空気の空気比を0.1〜0.3とし、全体での空気比を1.5以下としたことを特徴とする請求項1記載の流動焼却炉。   2. The fluidized incinerator according to claim 1, wherein an air ratio of air supplied to the complete combustion zone is 0.1 to 0.3, and an overall air ratio is 1.5 or less. 二次燃焼用空気の下段の供給高さを、静止砂層の上面から600〜1000mmとしたことを特徴とする請求項1記載の流動焼却炉。   The fluidized incinerator according to claim 1, wherein the supply height of the lower stage of the secondary combustion air is 600 to 1000 mm from the upper surface of the stationary sand layer. 上下2段に二次燃焼用空気を供給することにより、その間にNOの分解温度以上、サーマルNOの発生温度未満の層上燃焼ゾーンを形成したことを特徴とする請求項1記載の流動焼却炉。 The upper combustion stage is supplied to the upper and lower two stages to form an upper combustion zone between the decomposition temperature of N 2 O and lower than the generation temperature of thermal NO x therebetween. Fluid incinerator.
JP2009019032A 2009-01-30 2009-01-30 Fluidized incinerator Active JP5435973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019032A JP5435973B2 (en) 2009-01-30 2009-01-30 Fluidized incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019032A JP5435973B2 (en) 2009-01-30 2009-01-30 Fluidized incinerator

Publications (2)

Publication Number Publication Date
JP2010175157A JP2010175157A (en) 2010-08-12
JP5435973B2 true JP5435973B2 (en) 2014-03-05

Family

ID=42706306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019032A Active JP5435973B2 (en) 2009-01-30 2009-01-30 Fluidized incinerator

Country Status (1)

Country Link
JP (1) JP5435973B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999883B2 (en) * 2011-09-30 2016-09-28 株式会社御池鐵工所 Combustion furnace
JP6207279B2 (en) * 2013-07-29 2017-10-04 株式会社御池鐵工所 Heat exchanger integrated combustion furnace
JP7075574B2 (en) * 2017-05-29 2022-05-26 国立研究開発法人産業技術総合研究所 Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace
CN110763018A (en) * 2019-09-20 2020-02-07 沈忠东 Decomposing furnace with local directional combustion supporting function
JP7460096B1 (en) 2023-01-18 2024-04-02 株式会社プランテック Vertical waste incinerator and combustion method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3095499B2 (en) * 1991-12-27 2000-10-03 三菱重工業株式会社 Fluidized bed combustion boiler
US5325796A (en) * 1992-05-22 1994-07-05 Foster Wheeler Energy Corporation Process for decreasing N2 O emissions from a fluidized bed reactor
JP2889049B2 (en) * 1992-06-09 1999-05-10 株式会社神戸製鋼所 Method for reducing N2O and NOx in fluidized bed combustion
JP2714530B2 (en) * 1993-12-22 1998-02-16 株式会社神戸製鋼所 Incinerator and incineration method
JP3059995B2 (en) * 1994-06-03 2000-07-04 工業技術院長 Fluidized bed combustion method for simultaneous reduction of nitrous oxide and nitrogen oxides
JP3112619B2 (en) * 1994-07-22 2000-11-27 住友重機械工業株式会社 Fluid bed incinerator
JPH10103641A (en) * 1996-10-01 1998-04-21 Takuma Co Ltd Method for supplying combustion air for fluidized bed combustion equipment
JPH10185158A (en) * 1996-12-26 1998-07-14 Nikko Kinzoku Kk Spray nozzle for injecting waste liquid, and incinerator for industrial waste provided it
DE69717240D1 (en) * 1996-12-30 2003-01-02 Alstom Power Inc Process for the control of nitrogen oxides in a steam generator with a circulating fluidized bed
JP3030016B2 (en) * 1998-06-16 2000-04-10 三菱重工業株式会社 Operating method of fluidized bed incinerator and its incinerator
JP3030017B2 (en) * 1998-06-26 2000-04-10 三菱重工業株式会社 Fluidized bed incinerator
JP2000314515A (en) * 1999-04-28 2000-11-14 Kobe Steel Ltd Combustion operation method for waste disposing equipment
JP2001004117A (en) * 1999-06-23 2001-01-12 Kobe Steel Ltd Method and apparatus for controlling combustion in fluidized bed incinerator
JP2003329214A (en) * 2002-05-08 2003-11-19 Mitsubishi Heavy Ind Ltd Fluidized bed combustion device
JP2004301448A (en) * 2003-03-31 2004-10-28 Kobelco Eco-Solutions Co Ltd Fluid bed incinerator and its operating method
JP3946170B2 (en) * 2003-06-30 2007-07-18 株式会社タクマ Combustion control device and combustion control method for sludge incinerator
JP2006308226A (en) * 2005-04-28 2006-11-09 Dowa Mining Co Ltd Fluidized bed furnace and incineration method of fluidized bed furnace

Also Published As

Publication number Publication date
JP2010175157A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP4413275B2 (en) Fluid incinerator and fluid incineration method of sludge using the same
JP4817459B2 (en) Sludge incineration apparatus and sludge incineration method using the same
JP5435973B2 (en) Fluidized incinerator
JP2006300501A5 (en)
JP4295286B2 (en) Boiler structure with swirl melting furnace
JP2007127355A (en) Rubbish incinerating/melting method and device therefor
JP5525138B2 (en) Fluidized incinerator
JP2010127525A (en) Diffusion combustion device
JP4933134B2 (en) Vertical waste incinerator for industrial waste incineration
JP2008039365A (en) Incinerator
JP2006097918A (en) Combustion furnace and waste treatment facility
JP3771791B2 (en) Waste incinerator with high water content and high volatility such as sewage sludge
JP2005308372A (en) Fluidized bed furnace
JP7075574B2 (en) Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace
JP7460096B1 (en) Vertical waste incinerator and combustion method thereof
JP2007093156A (en) Exhaust gas treatment method
JP2006097915A (en) Incineration facility
JP2005121342A (en) Operation method of circulating fluidized bed furnace
JP4921009B2 (en) Circulating fluid furnace
TWI320085B (en) Method and system of material combustion
JP4055560B2 (en) Oxygenated gas supply device and supply method for high temperature oxidation furnace
JP2006038259A (en) Incineration method of chromium-containing waste material
KR100382310B1 (en) A Furnace and method for burning a un-burned gas
JP2006097916A (en) Combustion control method of incinerator
JP2003294217A (en) Equipment and method for incineration treatment of treating object containing organic substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5435973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250