JPS6036046B2 - Manufacturing method of enameled electric wire using both electrodeposition coating and powder coating - Google Patents

Manufacturing method of enameled electric wire using both electrodeposition coating and powder coating

Info

Publication number
JPS6036046B2
JPS6036046B2 JP14742378A JP14742378A JPS6036046B2 JP S6036046 B2 JPS6036046 B2 JP S6036046B2 JP 14742378 A JP14742378 A JP 14742378A JP 14742378 A JP14742378 A JP 14742378A JP S6036046 B2 JPS6036046 B2 JP S6036046B2
Authority
JP
Japan
Prior art keywords
coating
electric wire
powder
powder coating
electrodeposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14742378A
Other languages
Japanese (ja)
Other versions
JPS5574011A (en
Inventor
文彦 佐藤
英毅 地大
明信 玉置
隆 高濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14742378A priority Critical patent/JPS6036046B2/en
Publication of JPS5574011A publication Critical patent/JPS5574011A/en
Publication of JPS6036046B2 publication Critical patent/JPS6036046B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】 本発明は雷着塗装と粉体塗装とを併用、あるし、は電着
塗装と粉体塗装の一種である静電流動浸債塗装とを併用
したエナメル電線の製造方法に関するものである。
[Detailed Description of the Invention] The present invention produces an enameled electric wire using a combination of lightning coating and powder coating, or a combination of electrodeposition coating and electrostatic dynamic bond coating, which is a type of powder coating. It is about the method.

ェポキシ樹脂、ポリエステルィミド樹脂などの耐熱性樹
脂が粉体塗装として開発されたことにより、粉体塗装も
防食、装飾用の分野から電気絶縁用の分野へ進出を可能
にし、例えば配電盤の絶縁母線、大型直流機の電機子お
よび整流子部、小型回転機のコイルエンド部、電子部品
封止への応用などが図られ実用化されているのは周知の
通りである。
The development of heat-resistant resins such as epoxy resins and polyesterimide resins as powder coatings has enabled powder coatings to move from anti-corrosion and decorative applications to electrical insulation applications, such as insulated busbars for switchboards. As is well known, it has been put to practical use in applications such as armatures and commutators of large DC machines, coil end parts of small rotating machines, and sealing of electronic components.

昨今ではさらにエナメル電線の絶縁皮膜への適用が試み
られているが、今だに実用化されていない。その主要因
は粉体塗装によって得られた絶縁皮膜の絶縁耐力が高々
20〜3小/仏mで、通常の浸債塗装によるエナメル電
線の絶縁皮膜の絶縁耐力と比較して1/5〜1/8の値
しか得られないことによる。そもそも粉体塗装の絶縁皮
膜は加熱による粉体粒子の相互融着によって得られるが
、加熱によるのみでは粉体粒子の熔融、流動作用が十分
でなく、一見欠点のない皮膜が形成されるが微視的には
微細な空隙の多い絶縁皮膜が形成されている。従って薄
膜で高い絶縁耐力を要するエナメル電線の皮膜には不適
確で粉体塗装を用いたエナメル電線は実用化されていな
いのが実状である。一方電着塗装を用いたエナメル電線
は市販されてから約5年を経過しているが、エナメル皮
膜厚が50〜60りm以下のものに限られている。皮膜
厚が限定される理由として、露着塗装を用いたエナメル
電線の製造法が、従釆の浸債塗装の多数回塗布・多数回
焼付によるものと異なり、一回塗布一回焼付によって得
られることが挙げられる。即ち既存の露着エナメル電線
の製法は、水分散型ワニスを用いたものであって、特公
昭45一31555号公報に示される如く霞着後の焼付
工程の前に有機溶剤を施与する後処理工程が必須条件と
なっている。エナメル皮膜となる雷着析出層が厚くなる
と、雷着析出層内の水分あるいは後処理工程に用いた有
機溶剤が、焼付時に飛散し‘こくくなり、通常の薄肉皮
膜の焼付条件では発泡、ピンホールなどの皮膜の欠陥が
生じてくる。この現象は皮膜の厚さが厚くなると極端と
なり、通常の線引条件は電着エナメル皮膜の厚さは自ず
と50〜60仏mに限定される。本発明は露着塗装法お
よび粉体塗装法によって得られる絶縁皮膜の欠点を相補
するものであって、詳しくは雷着塗装を行なった後に粉
体塗装あるいは粉体塗装の一種である静電流動浸漬塗装
(以下静電流浸塗装)を行ないエナメル電線皮膜を形成
させることによって露着塗装法では得られ難い60仏m
以上の、しかも粉体塗装法では到底得られない100〜
20小/wmの絶縁耐力を有するエナメル電線皮覆の方
法を提供するものである。
Recently, attempts have been made to apply this to insulation coatings on enamelled wires, but this has not yet been put to practical use. The main reason for this is that the dielectric strength of the insulating film obtained by powder coating is at most 20 to 3 F/m, which is 1/5 to 1/5 of the dielectric strength of the insulating film of enamelled wires coated with ordinary bond coating. This is because only a value of /8 can be obtained. In the first place, the insulating film of powder coating is obtained by the mutual fusion of powder particles by heating, but heating alone does not have enough melting and fluidizing effects of the powder particles, and although a film with no defects is formed at first glance, there are slight defects. Visually, an insulating film with many fine voids is formed. Therefore, it is not suitable for coating enameled wires which require a thin film and high dielectric strength, and in reality, enameled wires using powder coating have not been put into practical use. On the other hand, enameled electric wires using electrodeposition coating have been on the market for about five years, but they are limited to those with an enamel coating thickness of 50 to 60 mm or less. The reason why the film thickness is limited is that the manufacturing method of enamelled wires using open coating is different from the conventional bond coating, which requires multiple coatings and multiple baking, and the method of manufacturing enamelled wires is that it is obtained by one coating and one baking. This can be mentioned. In other words, the existing manufacturing method for exposed enamel electric wires uses a water-dispersed varnish, and as shown in Japanese Patent Publication No. 45-31555, an organic solvent is applied before the baking process after fogging. A processing step is an essential condition. When the lightning deposit layer that becomes the enamel film becomes thicker, the moisture in the lightning deposit layer or the organic solvent used in the post-processing process scatters during baking, making it difficult to form foams and pins under normal baking conditions for thin films. Film defects such as holes occur. This phenomenon becomes extreme as the thickness of the film increases, and under normal drawing conditions, the thickness of the electrodeposited enamel film is naturally limited to 50 to 60 mm. The present invention compensates for the drawbacks of insulating coatings obtained by dew coating and powder coating. Specifically, after lightning coating is applied, powder coating or electrostatic coating, which is a type of powder coating, is applied. By applying dipping coating (hereinafter referred to as electrostatic current dipping coating) to form an enamel wire coating, it is possible to obtain a coating of 60mm, which is difficult to obtain with the open coating method.
100~, which is impossible to obtain with powder coating method.
A method of coating an enameled electric wire with a dielectric strength of 20 μm/wm is provided.

即ち後処理工程後の加熱に粉体塗装または静電流浸塗装
により粉体塗料を塗布することにより、後処理工程で施
与する有機溶剤が粉体塗料粒子を膨濁せしめ、内部に残
存する空気を外部に押しやる−方、粉体塗料の溶融を促
進せしめ、粉体塗装の最低皮膜形成温度を降下させ、皮
膜形成を容易にさせるだけでなく、微視的にも微細な空
隙部が全く存在しない完全なエナメル電線皮膜が形成さ
れる。以下、本発明を添付図面の第1図及び第2図に基
づいて説明する。第1図は粉体塗装法を利用した本発明
の方法を実施するのに使用した横型線引機の主要構成要
素を示したもので、走行する導線1は水分散型ワニス2
の入った露着槽3内で雷着塗装され、次いで有機溶剤で
ある皮膜形成助剤4の入った後処理槽5内で導線1上に
露着析出された水分散型ワニス粒子が膨潤融着する。
In other words, by applying powder coating by powder coating or electrostatic immersion coating during heating after the post-treatment process, the organic solvent applied in the post-treatment process causes the powder coating particles to swell, and the air remaining inside By forcing the powder to the outside, it not only accelerates the melting of the powder coating, lowers the minimum film formation temperature of powder coating, and facilitates film formation, but also allows microscopically minute voids to be completely present. A complete enameled wire coating is formed. Hereinafter, the present invention will be explained based on FIGS. 1 and 2 of the accompanying drawings. Figure 1 shows the main components of a horizontal wire drawing machine used to carry out the method of the present invention using powder coating.
The water-dispersed varnish particles deposited on the conductive wire 1 swell and melt in the post-treatment tank 5 containing a film forming aid 4, which is an organic solvent. wear it.

予備加熱炉6は霞着析出層のフィルム化を促進させると
同時に被粉体塗装物である導体1の子熱を兼ねるもので
ある。子熱された導線1は粉体塗料7の入った揺動塗装
槽8内で、粉体塗装され、電着析出層上に塗布された粉
体塗料の粒子は、露着析出層内に残存する皮膜形成助剤
によって膨潤し、粉体塗装だけによって得られる粉体塗
膜と異なり、ピンホ−ルなどの欠点のない滑らかな粉体
塗膜が形成される。なお、予備加熱炉に通す工程を省略
てもよい。その後加熱炉9で、電着析出層および粉体塗
膜が加熱硬化され完全なエナメル電線が得られる。第2
図は静電流浸塗装法を利用した本発明の方法を実施する
のに使用した堅形線引機の主要構成要素を示したもので
走行する導線11は水分散型ワニス12の入った露着槽
13内で電着塗装される。
The preheating furnace 6 serves to promote the formation of a film from the haze deposited layer and at the same time to generate heat from the conductor 1, which is the object to be powder coated. The heated conducting wire 1 is powder-coated in a swinging coating tank 8 containing a powder coating 7, and particles of the powder coating coated on the electrodeposited layer remain in the dew-deposited layer. The coating is swollen by the film-forming aid used to form a smooth powder coating without defects such as pinholes, unlike powder coatings obtained only by powder coating. Note that the step of passing it through a preheating furnace may be omitted. Thereafter, the electrodeposited layer and the powder coating film are heated and hardened in a heating furnace 9 to obtain a complete enameled electric wire. Second
The figure shows the main components of a rigid wire drawing machine used to carry out the method of the present invention using the electrostatic dipping method. Electrodeposition is performed in the tank 13.

対向電極14は竜着槽13内にあり直流電源15から電
流を供給される。次いで導線11は有機溶剤である皮膜
形成助剤16の入った後処理装置17内で導線11上に
露着析出された水分散型ワニス粒子が膨潤葛虫着する。
該皮膜形成助剤16は後処理装置17の入口71から供
給され出口72から取り出され循環されるようになって
いる。皮膜形成助剤を施された導線11は荷電した粉体
塗料の入った静電流浸塗装槽19内で塗装される。粉体
塗料18は、空気取入口91、多孔性のセラミック板2
0、荷電電極21を通して送り込まれイオン化した空気
によって揺動されると共に負に帯電させられる。荷電粒
子は雷着析出層上で放電して一様に塗布され霞着析出層
内に残留する皮膜形成肋剤によって膨潤し、引き続き予
備加熱炉23で、露着析出層上の粉体粒子は一様な皮膜
となり、静電流浸塗装だけによって得られる塗膜と異な
り、ピンホールなどの欠点のない滑らかな塗膜が形成さ
れる。その後焼付加熱炉24で、雷着析出層および粉体
塗膜が加熱硬化され完全なエナメル電線が得られる。こ
こで用いられる水分散型ワニスは通常のエナメル電線用
の電着塗料が支障なく適用しうる。
The counter electrode 14 is located inside the mounting tank 13 and is supplied with current from a DC power source 15 . Next, the conductive wire 11 is placed in a post-treatment device 17 containing a film-forming aid 16, which is an organic solvent, so that the water-dispersed varnish particles deposited on the conductive wire 11 swell and adhere thereto.
The film forming aid 16 is supplied from an inlet 71 of the after-treatment device 17, taken out from an outlet 72, and circulated. The conductor 11 coated with the film-forming agent is coated in an electrostatic dipping bath 19 containing charged powder coating. The powder coating 18 has an air intake port 91 and a porous ceramic plate 2.
0, it is oscillated by ionized air sent through the charging electrode 21 and is negatively charged. The charged particles are discharged onto the lightning deposited layer, uniformly coated, and swollen by the film-forming agent remaining in the haze deposited layer. Subsequently, in the preheating furnace 23, the powder particles on the open deposition layer are heated. The coating is uniform, and unlike coatings obtained by electrostatic immersion alone, a smooth coating is formed without defects such as pinholes. Thereafter, the lightning deposition layer and the powder coating film are heated and hardened in a baking furnace 24 to obtain a complete enameled electric wire. As the water-dispersed varnish used here, ordinary electrodeposition paint for enameled electric wires can be applied without any problem.

例えばアクリルーェポキシ系、ポリエステル系、ェボキ
シェステル系、ポリエステルイミド系、ポリエステルア
ミドイミド系およびポリィミド系などの水分散型ワニス
が挙げられる。また皮膜形成勤剤としては、使用する蚕
着塗料、粉体塗料によって適宜選ばれ、親水性あるいは
一部水性の有機溶媒、たとえばエチルセロソルブ、プチ
ルセロソルブ、ジメチルアミド、ジメチルアセトアミド
、N,Nジメチルホルムアミド(以下DM『と略す)お
よびNーメチル−2−ピロリドンなどが適宜用いられる
。粉体塗料としては、電気絶縁用の塗料でも就中ェポキ
シ樹脂とポリエステルィミド樹脂などの粉体塗料が好適
に用いられる。
Examples include water-dispersible varnishes such as acrylic-epoxy, polyester, eboxyester, polyesterimide, polyesteramideimide, and polyimide. The film-forming agent is selected as appropriate depending on the serigraphy paint or powder paint used, and includes hydrophilic or partially aqueous organic solvents, such as ethyl cellosolve, butyl cellosolve, dimethylamide, dimethylacetamide, N,N dimethylformamide. (hereinafter abbreviated as DM) and N-methyl-2-pyrrolidone are used as appropriate. As the powder coating, powder coatings such as epoxy resin and polyesterimide resin are preferably used for electrical insulation.

以下比較例、実施例を挙げながら詳細に説明する。A detailed explanation will be given below with reference to comparative examples and examples.

比較例 1 電着エナメル電線用ワニスとして代表的なアクリルーェ
ポキシ系水分散型ワニスV−550−21(菱電化成製
)中に毎分耳hで走行する裸銅線(20)と、これに対
向する電極を浸潰し、裸銅線を陽極として直流電圧15
Vを2秒間印加して電着析出層(仕上り膜厚75ムm)
を形成させ、ついで長さ50伽程度の後処理槽内のDM
Fに6秒浸潰させた後、炉内最高温度が250℃程度の
子熱用加熱炉と炉内最高温度が36000の焼付加熱炉
内を3視診で送行させて電着塗装を施しただけのエナメ
ル電線を製作した。
Comparative Example 1 A bare copper wire (20) running at a speed of h per minute in acrylic-epoxy water-dispersed varnish V-550-21 (manufactured by Ryoden Kasei), which is a typical varnish for electrodeposited enameled electric wires, The electrode facing this was immersed, and the bare copper wire was used as an anode, and a DC voltage of 15
Electrodeposited layer by applying V for 2 seconds (finished film thickness 75 mm)
DM in a post-treatment tank with a length of about 50 mm.
After being immersed in F for 6 seconds, it was transported through a subheating furnace with a maximum internal temperature of about 250°C and an additional heating furnace with a maximum internal temperature of 36,000°C for 3 inspections, and electrodeposition coating was applied. produced enamel electric wire.

その特性を表1に示す。比較例 2 露着エナメル電線用ワニスとして代表的なアクリルーヱ
ポキシ系水分散型ワニスV−550一21(菱電化成製
)中に毎分5mで走行する裸銅線(20)と、これに対
向する電極を浸潰し、裸銅線を陽極として直流電圧15
Vを2秒間印加して露着析出層(仕上り皮膜厚75〃m
)を形成させ、ついで50肌程度の後処理装置内のDM
F蒸気に6秒暴露させた後、炉内温度が230〜280
00程度の子熱用加熱炉内と炉内温度が320〜390
o0の焼付加熱炉内を3町砂で走行させて露着塗装を施
しただけのエナメル電線を製作した。
Its characteristics are shown in Table 1. Comparative Example 2 A bare copper wire (20) running at 5 m/min in acrylic-epoxy water-dispersed varnish V-550-21 (manufactured by Ryoden Kasei), which is a typical varnish for exposed enameled electric wires, and this The electrode facing the electrode is immersed, and a DC voltage of 15
V was applied for 2 seconds to form an exposed deposited layer (finished film thickness 75〃m).
), and then DM in a post-processing device for about 50 skins.
After 6 seconds of exposure to F steam, the furnace temperature was between 230 and 280℃.
The temperature inside the heating furnace for child heat is about 00 and the temperature inside the furnace is 320 to 390.
An enameled electric wire was produced by running it with 3-machi sand in an o0 sintering heating furnace and applying an open coating.

その特性を表1に示す。比較例 3予熱炉によって15
0qo程度に熱せられた裸銅線を毎分弧で走行させなが
ら揺動塗装槽内で粉体塗料(菱電化成社製VEP46−
7)を該裸銅線上に塗着させた後、34000の焼付加
熱炉内に約30秒通して粉体塗装を施しただけのエナメ
ル電線を製作した。
Its characteristics are shown in Table 1. Comparative example 3 15 by preheating furnace
Powder paint (VEP46- manufactured by Ryoden Kasei Co., Ltd.
7) was applied onto the bare copper wire, and then passed through a 34,000 sintering furnace for about 30 seconds to produce an enameled electric wire.

その特性は表1に示された通りである。比較例 4脱脂
された裸銅線を毎分5mで走行させながらDC4びVの
高電圧の発生電圧の静電流浸塗装装置で荷電されたェポ
キシ系粉体塗料(菱電化成社製VEP46一7)を該銅
線上に塗着させた後36000の焼付加熱炉内に約3硯
段・通して絶縁皮膜80仏mの静電流浸塗装を施しただ
けのエナメル電線を製作した。
Its characteristics are shown in Table 1. Comparative Example 4 Epoxy-based powder paint (VEP46-7 manufactured by Ryoden Kasei Co., Ltd.) was charged with an electrostatic dipping device that generates a high voltage of DC4 and V while running a degreased bare copper wire at a speed of 5 m/min. ) was coated on the copper wire, passed through a 36,000 mm sintering furnace for about 3 inkstone steps, and then electrostatically immersed to form an insulating coating of 80 mm to produce an enameled electric wire.

その特性は表1に示された通りである。実施例 1露着
エナメル電線用ワニスとして代表的なアクリルーェポキ
シ系水分散型ワニスV−550−21(菱電化成製)に
毎分5mで走行する裸銅線(20)と、これに対向する
電極を浸潰し、裸銅線を陽極として直流電圧6VI秒間
印加して雷着析出層を形成させ、ついで長さ50肌程度
の後処理槽内のエチルセロソルブに6秒浸潰させた後、
炉内最高温度が25000程度の子熱用加熱炉内で15
秒問電着被覆銅線を子熱し、該銅線が冷えきらない内に
揺動塗装法によって粉体塗料(菱電化成社製VEP46
一7)を雷着被覆上に比較例3にならって塗装する。
Its characteristics are shown in Table 1. Example 1 A bare copper wire (20) running at 5 m/min was coated with acrylic-epoxy water-dispersed varnish V-550-21 (manufactured by Ryoden Kasei), which is a typical varnish for dew-applied enamel electric wires. The opposing electrodes were immersed, a bare copper wire was used as an anode, and a direct current voltage of 6 VI seconds was applied to form a lightning deposit layer, and then immersed for 6 seconds in ethyl cellosolve in a post-treatment tank with a length of about 50 skins. ,
15 in a heating furnace for child heat whose maximum temperature inside the furnace is about 25,000 ℃.
Electrodeposition coated copper wire is heated for a few seconds, and before the copper wire has completely cooled down, powder coating (VEP46 manufactured by Ryoden Kasei Co., Ltd.) is applied using the rocking coating method.
17) was applied on the lightning coating according to Comparative Example 3.

その後焼付加熱炉内に約3晩少通して絶縁皮膜73山m
のエナメル電線を作製した。その特性は表1の通りであ
る。実施例 2 比較例1にならって裸銅線(2め)を陽極にして直流電
圧6VI秒印加して電着析出層を形成させ、ついて長さ
25cm程度の後処理槽内のDMFに3秒浸潰させた後
炉内最高温度が25000程度の子熱用加熱内で19段
・間電着被覆銅線を子熱し、該銅線が冷えきらない内に
揺動塗装法によって無水トリメット酸、ジアメノジフェ
ニルメタソ、ポリエチレンテレフタレート、グリセリン
からなるポリエステルィミド粉体塗料を雷着被覆上に比
較例3にならって塗装し、その後400〜43000の
競付炉内に約3現砂・通して絶縁皮膜71山mのェナミ
ル電線を製作した。
After that, it was passed through a heating furnace for about 3 nights to form an insulating film of 73 mounds.
Enamelled electric wire was produced. Its characteristics are shown in Table 1. Example 2 Following Comparative Example 1, a bare copper wire (second wire) was used as an anode and a DC voltage of 6VI seconds was applied to form an electrodeposited layer, and then placed in DMF in a post-treatment tank with a length of about 25 cm for 3 seconds. After being immersed, the electrodeposited copper wire is heated in a heating chamber with a maximum internal temperature of about 25,000 ℃ for 19 stages, and before the copper wire has completely cooled down, it is coated with trimethic anhydride, A polyesterimide powder coating consisting of diamenodiphenyl meth, polyethylene terephthalate, and glycerin was applied on the lightning coating in accordance with Comparative Example 3, and then passed through a 400 to 43,000 furnace with approximately 300 kg of actual sand. An enamil electric wire with an insulation coating of 71 m thick was manufactured.

その特性は表1の通りである。実施例 3 比較例2にならって、裸銅線(20)を陽極として直流
電圧6VI秒間印加して電着析出層を形成させ、ついで
長さ50肌程度の後処理装置内のエチルセロソルブに6
秒暴露させた後、比較例4にならってェポキシ系粉体塗
料((菱電化成社製VEP46−7)を用いて静電流浸
塗装を施し、炉内温度が230〜28000の子熱用加
熱炉内と、炉内温度が320〜39000の焼付加熱炉
内を3硯砂で走行させて絶縁皮膜72仏mのエナメル電
線を製作した。
Its characteristics are shown in Table 1. Example 3 Following Comparative Example 2, a bare copper wire (20) was used as an anode and a direct current voltage of 6VI seconds was applied to form an electrodeposited layer, and then an electrodeposited layer was formed using ethyl cellosolve in a post-processing device with a length of approximately 50 cm.
After exposure for seconds, electrostatic dipping was applied using an epoxy powder coating (VEP46-7 manufactured by Ryoden Kasei Co., Ltd.) according to Comparative Example 4, and heating for child heating was performed at a furnace temperature of 230 to 28,000. An enameled electric wire with an insulating coating of 72 meters was manufactured by running three pieces of inkstone sand inside the furnace and inside the sintering heating furnace where the temperature inside the furnace was 320 to 39,000.

その特性は表1の通りである。実施例 4 比較例2にならって、裸銅線(2少)を陽極にして、直
流電圧6VI秒間印加して露着析出層を形成させ、つい
で長さ50肌程度の後処理装置内のDMFに6秒暴露さ
せた後、比較例4にならって無水トリメリット酸、ジァ
ミノジフェニルメタン、ポリエチレンテレフタレート、
B−ヒドロキシエチルイソシアヌレートからなるポリエ
ステルィミド粉体を用いて静電流浸塗装を施し、炉内温
度230〜28000の予熱用加熱炉内と炉内温度40
0〜430qoの競付炉内を3現砂、走行させて絶縁皮
膜70仏mのエナメル電線を製作した。
Its characteristics are shown in Table 1. Example 4 Following Comparative Example 2, a bare copper wire (2 or so) was used as an anode, a direct current voltage was applied for 6VI seconds to form an exposed deposited layer, and then a DMF in a post-processing device with a length of about 50 cm was applied. After exposure for 6 seconds to Comparative Example 4, trimellitic anhydride, diaminodiphenylmethane, polyethylene terephthalate,
Electrostatic galvanic coating was applied using polyesterimide powder consisting of B-hydroxyethyl isocyanurate, and the temperature inside the furnace was 230 to 28,000 for preheating, and the inside of the furnace was at a temperature of 40,000 yen.
Enamel electric wires with an insulation coating of 70 qo were manufactured by running three pieces of sand in a grading furnace of 0 to 430 qo.

その特性は表1の通りである。表 1 本発明により表1に示すごとく竜着塗装後粉体塗装また
は静電流浸塗装を行なることによって、太線用(平角線
を含む)の厚膜エナメル電線が工業的に製造することが
可能となった。
Its characteristics are shown in Table 1. Table 1 According to the present invention, thick-film enameled electric wires for thick wires (including flat wires) can be manufactured industrially by performing powder coating or electrostatic immersion coating after coating as shown in Table 1. It became.

また本発明は平角線に適することによって、より一層利
点が生ずる。
Moreover, the present invention is more advantageous because it is suitable for rectangular wires.

即ち霞着塗装法ではコーナ部およびエッジ部に電界が集
中することから平坦部より厚肉となり一様な厚さが得ら
れ難い。これに反して粉体塗装法ではコーナ部のカバリ
ングが悪く、平坦部よりかなり薄肉となりやすい。本発
明のごとく霞着塗装法と粉体塗装法または静電流浸塗装
法とを併用することによりコーナ部およびエッジ部のカ
バリングについては双方の欠点を相補することになり、
平角線のエナメル絶縁皮膜として望ましい状態になる。
霞着塗膜と粉体塗膜の比は使用目的に応じて決定される
べきもので薄肉で単位厚さ当りの絶縁破壊強度が高く要
求される場合は、可能なかぎり電着塗膜を厚く、絶縁塗
膜全体が厚く要求される場合は粉体塗膜を主に形成した
方が好都合となる。
That is, in the mist coating method, the electric field is concentrated at the corner portions and edge portions, resulting in a thicker wall than the flat portion, making it difficult to obtain a uniform thickness. On the other hand, powder coating provides poor coverage at corners and tends to be much thinner than flat areas. By using a haze coating method and a powder coating method or an electrostatic dipping method in combination as in the present invention, the drawbacks of both methods can be compensated for in covering corners and edges.
This results in a desirable state as an enamel insulation coating for flat wires.
The ratio of the haze-deposited coating to the powder coating should be determined depending on the purpose of use. If the wall is thin and high dielectric breakdown strength per unit thickness is required, the electrodeposited coating should be as thick as possible. If the entire insulating coating is required to be thick, it is more convenient to mainly form the powder coating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の方法を実施するのに使用す
る装置の概略図である。 1,11・・・・・・導線、2,12・・・・・・電着
液、3,13……霞着槽、4,16……皮膜形成助剤、
5,17・・・・・・後処理槽、6,23・・・・・・
子熱用加熱炉、7・・・・・・粉体塗料、8…・・・揺
動塗装槽、9,24・・・・・・加熱炉、14・・…・
電極、15・・…・直流電源、18・・・・・・帯電粉
体塗料、19・・・・・・静電流浸塗装槽、20・・・
・・・多孔性セラミック板、21……荷電電極、22・
・・・・・高電圧電源。 溝l図 紫2図
1 and 2 are schematic illustrations of the apparatus used to carry out the method of the invention. 1, 11... Conductor wire, 2, 12... Electrodeposition liquid, 3, 13... Haze deposition tank, 4, 16... Film forming aid,
5, 17... Post-treatment tank, 6, 23...
Heating furnace for child heating, 7... Powder coating, 8... Rocking coating tank, 9, 24... Heating furnace, 14...
Electrode, 15... DC power supply, 18... Charged powder coating, 19... Electrostatic current immersion coating tank, 20...
... Porous ceramic plate, 21 ... Charged electrode, 22.
...High voltage power supply. groove l diagram purple 2 diagram

Claims (1)

【特許請求の範囲】 1 電着塗装した後に粉体塗装を施すことによつて電着
塗装の後処理工程に用いる皮膜形成助剤が粉体塗装に作
用し、太線、厚肉用の絶縁皮膜形を容易にさせることを
特徴とした電着塗装および粉体塗装を併用したエナメル
電線の製造方法。 2 粉体塗装が静電流動浸漬塗装である特許請求の範囲
第1項記載のエナメル電線の製造方法。 3 電着塗装に用いる電着液がアクリルエポキシ系水分
散型ワニスである特許請求の範囲第1項または第2項記
載のエナメル電線の製造方法。 4 電着塗装の後処理工程に用いる皮膜形成助剤がエチ
ルセロソルブである特許請求の範囲第1項または第2項
記載のエナメル電線の製造方法。 5 電着塗装の後処理工程に用いる皮膜形成助剤がN,
N′ジメチルホルムアミドである特許請求の範囲第1項
または第2項記載のエナメル電線の製造方法。 6 粉体塗装としてエポキシ樹脂粉未を用いる特許請求
の範囲第1項または第2項記載のエナメル電線の製造方
法。 7 粉体塗装ととしてポリエステルイミド樹脂粉未を用
いる特許請求の範囲第1項または第2項記載のエナメル
電線の製造方法。
[Claims] 1. By applying powder coating after electrodeposition coating, the film forming aid used in the post-treatment process of electrodeposition acts on the powder coating, creating an insulating coating for thick wires and thick walls. A method for manufacturing an enameled electric wire using both electrodeposition coating and powder coating, which is characterized by making it easy to shape. 2. The method for manufacturing an enameled electric wire according to claim 1, wherein the powder coating is electrostatic dynamic dipping coating. 3. The method for producing an enameled electric wire according to claim 1 or 2, wherein the electrodeposition liquid used in the electrodeposition coating is an acrylic epoxy water-dispersed varnish. 4. The method for producing an enameled electric wire according to claim 1 or 2, wherein the film forming aid used in the post-treatment step of electrodeposition coating is ethyl cellosolve. 5 The film forming aid used in the post-treatment process of electrodeposition coating is N,
The method for producing an enameled electric wire according to claim 1 or 2, wherein N' dimethylformamide is used. 6. The method for producing an enameled electric wire according to claim 1 or 2, using epoxy resin powder as the powder coating. 7. The method for manufacturing an enameled electric wire according to claim 1 or 2, using polyesterimide resin powder as the powder coating.
JP14742378A 1978-11-28 1978-11-28 Manufacturing method of enameled electric wire using both electrodeposition coating and powder coating Expired JPS6036046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14742378A JPS6036046B2 (en) 1978-11-28 1978-11-28 Manufacturing method of enameled electric wire using both electrodeposition coating and powder coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14742378A JPS6036046B2 (en) 1978-11-28 1978-11-28 Manufacturing method of enameled electric wire using both electrodeposition coating and powder coating

Publications (2)

Publication Number Publication Date
JPS5574011A JPS5574011A (en) 1980-06-04
JPS6036046B2 true JPS6036046B2 (en) 1985-08-17

Family

ID=15429969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14742378A Expired JPS6036046B2 (en) 1978-11-28 1978-11-28 Manufacturing method of enameled electric wire using both electrodeposition coating and powder coating

Country Status (1)

Country Link
JP (1) JPS6036046B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208707A (en) * 1985-03-13 1986-09-17 古河電気工業株式会社 Manufacture of insulated wire

Also Published As

Publication number Publication date
JPS5574011A (en) 1980-06-04

Similar Documents

Publication Publication Date Title
US4724345A (en) Electrodepositing mica on coil connections
US4622116A (en) Process for electrodepositing mica on coil or bar connections and resulting products
US4615778A (en) Process for electrodepositing mica on coil or bar connections and resulting products
US4723083A (en) Electrodeposited mica on coil bar connections and resulting products
CN109801745A (en) A kind of new-energy automobile driving motor electromagnetic wire and preparation method thereof
US3702813A (en) Process of insulating wire by electrophoresis plus non-electrophoresis coating steps
US2211584A (en) Coaxial electrical conductor
JPS6036046B2 (en) Manufacturing method of enameled electric wire using both electrodeposition coating and powder coating
US3291638A (en) Heat resistant coating compositions and method
JP3648320B2 (en) Method for coating an electrically insulating coating on the surface of a laminated motor core
JPS60144375A (en) Mica electrodeposition composition
HU182784B (en) Process for the electrostatic coating of pieces consisting - totally or partially - of isolating material
JP2649979B2 (en) Manufacturing method of rectangular insulated wire
JPS5852040B2 (en) Electrodeposition coating method
RU2526988C2 (en) Method of applying electroinsulating coating on metal base
JP2013206783A (en) Method of producing rectangular insulated wire
JP2003264951A (en) Motor core
JPS6036047B2 (en) Manufacturing method of self-fused electric wire
JPH0412406A (en) Flat superthin film insulated wire
SU387438A1 (en) METHOD OF MAKING ELECTRICAL INSULATING COATINGS ON METAL PRODUCTS OF COMPLEX
JPH07118238B2 (en) Method for forming electrically insulating coating
JPS6034207B2 (en) Manufacturing method of insulated wire
US3598705A (en) Method of treating the surface of aluminum and aluminum alloys,and insulation coated conductors obtained thereby
JPS62177812A (en) Manufacture of rectangular insulated wire
JPH09161575A (en) Manufacture of flat type insulated wire