JP3648320B2 - Method for coating an electrically insulating coating on the surface of a laminated motor core - Google Patents
Method for coating an electrically insulating coating on the surface of a laminated motor core Download PDFInfo
- Publication number
- JP3648320B2 JP3648320B2 JP05841996A JP5841996A JP3648320B2 JP 3648320 B2 JP3648320 B2 JP 3648320B2 JP 05841996 A JP05841996 A JP 05841996A JP 5841996 A JP5841996 A JP 5841996A JP 3648320 B2 JP3648320 B2 JP 3648320B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- motor core
- coating
- resin
- laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
- C09D5/088—Autophoretic paints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/14—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
- B05D7/142—Auto-deposited coatings, i.e. autophoretic coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/14—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
- B05D7/142—Auto-deposited coatings, i.e. autophoretic coatings
- B05D7/144—After-treatment of auto-deposited coatings
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Manufacture Of Motors, Generators (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
- Paints Or Removers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、積層モーターコア表面に電気絶縁被膜を被覆する方法に関する。さらに詳しくは、本発明は、鋼板を積層して作成されたモーターコアの表面に自己析出型水性被覆組成物を接触させることにより、該表面に電気絶縁特性の優れた絶縁被膜を形成させることができる積層モーターコア表面に電気絶縁被膜を被覆する方法に関する。
【0002】
【従来の技術】
小型モーター等に使用されるモーターコアは、従来プレス加工によって金属板を積層し所定形状に成形されている。積層モーターコアとしては、例えば図1に示すようなモータのコアAが挙げられる。図1のコアAは複数の突極bを有し、各突極bの先端部は円弧状の部位となっており、各突極bに巻線cが巻かれている。このようなコアはモーターの回転子として用いられるが、コアAの突極bと巻線cとの間が絶縁されていないような場合には、各巻線c同士はコアAを通じて短絡されてモーター自身が機能しなくなるので、コアAと巻線cとの間は絶縁する必要がある。このため、コアAのような積層鋼板表面はあらかじめ絶縁処理がなされているのが通常である。
【0003】
このような絶縁処理としては、従来、電着塗料、溶剤スプレー、粉体塗料等によりモーターコア表面に絶縁層を形成させる方法が採用されている。しかしながら上記塗料で絶縁層を被覆する場合、モーターコアのエッジ部は絶縁層が剥離し易く、その結果絶縁層の絶縁特性を低下させるという問題が生じていた。そのため、絶縁層の膜厚を厚くせざるを得ない状況下にあった。
近年、モーターの小型化、薄型化が要求され、さらには高性能(高耐電圧)が要求されており、絶縁層の薄膜化が要求されるている。
絶縁層の薄膜化技術の一つとして、特開平5−300681号公報には、モーターコアの表面に、プライマーとしてエポキシ樹脂を塗装し、上塗りにセラミック塗料を塗装した2層からなる絶縁層を絶縁層全体の膜厚で50〜80μm形成させることにより、エッジ部の被覆性が良好で絶縁特性に優れた絶縁層を形成できることが開示されている。また、絶縁層は多層になっておればよく、2層に限らず3層、4層のごとく層数を増加させてもよいことが開示されている。しかしながら、絶縁層を形成するにあたっては塗装工程が少なくとも2工程以上必要であり、作業性が劣るという欠点がある。
【0004】
【発明が解決しようとする課題】
本発明の目的は、モーターコア表面に電気絶縁層を形成するにあたり、絶縁処理工程を短縮するとともに、電気絶縁層の膜厚を従来よりもさらに薄膜化し、かつ電気絶縁特性の優れた被膜を有し、特にコアのエッジ部において優れた電気絶縁被膜が形成できるモーターコア表面を得ることができる、積層モーターコア表面に電気絶縁被膜を被覆する方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記従来の抱える課題を解決すべく鋭意検討した結果、積層モーターコア表面に被膜形成用樹脂エマルション、酸、酸化剤、金属イオン、水を含有する自己析出型水性被覆組成物を接触させ、ついで加熱乾燥させることにより、従来より薄膜で絶縁特性に優れた被膜を形成でき、さらに絶縁処理工程を短縮できることを見い出し、本発明を完成させた。
【0006】
すなわち、本発明は、積層モーターコアの表面に、被膜形成用樹脂エマルション、酸、酸化剤、金属イオン及び水を含有する自己析出型水性被覆組成物を接触させて、該モーターコアの表面に未硬化の樹脂被膜を析出形成させ、次いで該未硬化の樹脂被膜を加熱乾燥させることにより、該モーターコア表面上に電気絶縁性被膜を形成させることを特徴とする積層モーターコア表面に電気絶縁被膜を被覆する方法を提供する。
【0007】
また、さらに本発明は、積層モーターコアの表面に、被膜形成用樹脂エマルション、酸、酸化剤、金属イオン及び水を含有する自己析出型水性被覆組成物を接触させて、該モーターコアの表面に未硬化の樹脂被膜を析出形成させ、次いで該未硬化の樹脂被膜をクロムを含む水溶液と接触させた後、加熱乾燥させることにより、該モーターコア表面上に電気絶縁性被膜を形成させることを特徴とする積層モーターコア表面に電気絶縁被膜を被覆する方法を提供する。
【0008】
以下、本発明の構成を詳述する。
本発明で対象とするモーターコアは複数枚の金属板を積層して作成される。使用される金属は特に限定されないが、通常鋼板が使用される。鋼板を積層する方法は特に限定されないが、プレス加工等が行われる。
【0009】
本発明で使用される自己析出型水性被覆組成物は、被膜形成用樹脂エマルション、酸、酸化剤、金属イオン、水を含有し、さらにその他の任意成分を含有してもよい。
【0010】
本発明で使用する被膜形成用樹脂エマルション中の樹脂としては、アクリル系樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂等も使用できる。特にアクリル系樹脂が好ましく例えば、メチルアクリレート、エチルアクリレート、n−ブチルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、2−エチルヘキシルアクリレート、メチルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート、グリシジルアクリレート、グリシジルメタクリレート等の(メタ)アクリル酸エステルモノマーはもとより、アクリルアミド、メタクリルアミド、アクリロニトリル、アクリル酸、メタクリル酸も包含する(メタ)アクリル酸系モノマー、スチレン、エチレン等の単独重合体、またはこれらの2種以上からなる共重合体が挙げられる。
【0011】
本発明で使用する樹脂は上記のごとき樹脂の任意の混合物であってもよい。
上記アクリル樹脂の分子量については、特に制限はさいが、例えば、ポリスチレンまたはポリアクリル酸エステルを標準物質として用いる、テトラヒドロフラン中でのゲルパーミュエーションクロマトグラフィーにより、5〜100万、好ましくは10〜100万の分子量のものが使用される。
【0012】
本発明で使用する被膜形成用樹脂エマルションは、通常乳化重合によって得られる樹脂エマルションそのものであることが多いが、種々の重合法によって得た樹脂を水に乳化分散させた樹脂エマルションであってもよい。
乳化重合により樹脂エマルションを得る場合の重合条件も特に制限されず、常法に従えばよいが、一例として、少なくとも水、アニオン性界面活性剤及び/またはノニオン性界面活性剤、上記樹脂成分モノマー、及び重合開始剤よりなる混合物を重合反応に付すことにより、被膜形成用樹脂エマルションを得ることができる。
【0013】
本発明で使用する酸としては、例えばジルコンフッ化水素酸、チアタンフッ化水素酸、ケイフッ化水素酸、ホウフッ化水素酸、リン酸、硝酸等から選ばれる少なくとも1種を使用できるが、フッ化水素酸が好ましい。
【0014】
本発明で使用する酸化剤としては、過酸化水素、過マンガン酸カリウム、亜硝酸ナトリウム等を用いることができるが、過酸化水素が好ましい。
本発明で使用する金属イオンを供給し得る化合物としては、該被覆組成物中で安定であれば特に限定はなく、例えばフッ化第二鉄、硝酸第二鉄、リン酸第一鉄、硝酸第一コバルト等が挙げられるが、フッ化第二鉄が好ましい。
【0015】
本発明で使用する自己析出型水性被覆組成物中における樹脂含有量は樹脂固形分濃度として5〜550g/Lが好ましく、さらに好ましくは30〜100g/Lである。
酸の濃度は0.1〜5.0g/Lが好ましく、さらに好ましくは0.5〜3.0g/Lである。
酸化剤の濃度は0.01〜3.0g/Lが好ましい。
金属イオンを供給し得る化合物の濃度は、0.1〜50g/Lが好ましい。
【0016】
本発明で使用する自己析出型水性被覆組成物は、任意成分としてはさらに、最低造膜温度を下げて、析出した樹脂粒子の融着をしやすくするための、造膜助剤、例えばトリアルキルペンタンジオールイソブチレート、アルキルカルビトール等、を含有し、さらに顔料、例えばカーボンブラック、フタロシアニンブルー、フタロシアニングリーン、キナフリドンレッド、ハンザイエロー、ベンジンイエロー等を含有していてもよい。
【0017】
本発明で使用する自己析出型水性被覆組成物を、積層モーターコア表面に接触する方法としては、浸漬法、スプレー法等が採用できるが、浸漬法がより好ましい。また、処理温度、処理時間についても特に制限はないが、浸漬処理の場合、常温、例えば18〜25℃の該組成物に、30〜300秒、好ましくは60〜180秒浸漬するのが適当である。
【0018】
該被覆組成物の積層モーターコア表面への樹脂膜付着量は特に制限はないが、乾燥後の膜厚として、10〜40μmが好ましい。
なお、通常、該被覆組成物の適用に先立ち、モーターコア表面を脱脂、水洗し、表面を清浄にしておく。モーターコア表面へ樹脂を析出させた後、通常水洗を行う。この水洗は、流水にさらすことによって行うこともできるが、通常常温水に10〜120秒浸漬することにより行う。
加熱乾燥は、特に制限されないが、熱風循環炉の雰囲気温度で80〜180℃で、5〜60分、特に10〜20分行うのが適当である。
【0019】
本発明で使用するクロムを含む水溶液に使用されるクロムとしては、一般的なクロム化合物、例えば重クロム酸、重クロム酸アンモニウム等が挙げられる。クロム水溶液に含有されるクロム濃度としては六価クロムとして0.1〜20g/Lが好ましい。クロム水溶液に三価クロムが含有されていても性能上は問題ない。 未硬化の樹脂被膜をクロムを含む水溶液と接触させる条件としては、常温又は加温された液に30〜180秒浸漬するのが適当である。その後、該未硬化の樹脂被膜を水洗することなしに上記条件により加熱乾燥し、電気絶縁被膜を得る。 本発明の方法にて被膜形成させた後、必要に応じて、さらに粉体塗装あるいは一般の塗料を塗装することもできる。
【0020】
本発明の被覆方法によれば、被膜形成は電着のごとく外部からの電気を使用することなく、被塗金属表面上の自己析出型被覆組成物の化学作用(エッチングにより金属表面から溶出した金属イオンが被覆組成物中の樹脂粒子に作用して該樹脂粒子が金属表面上に析出する)により達成されるため、積層鋼板表面に未硬化の樹脂被膜が形成される際、該自己析出型被覆組成物が該鋼板表面に接した個所は、ほとんど均一に被膜が形成される。また、該鋼板表面のエッジ部の被覆性は該未硬化の樹脂被膜を加熱乾燥した後も優れているため、絶縁特性の優れた絶縁被膜を形成させることができる。
【0021】
【実施例】
以下実施例及び比較例により、本発明をさらに具体的に説明する。
以下に各種性能試験方法を述べる。
〔膜厚〕
図1に示す試験材をBの部分で切り出し、平面部及びエッヂ部の断面を顕微鏡観察し、図2に示す被覆層の膜厚を測定した。即ち、Aはコアで、Zは絶縁層を示し、絶縁層の内で平面部の絶縁層厚さX及びエッジ部の絶縁層厚さYを測定した。
【0022】
〔外観〕
試験材を塗装後、目視にて被覆膨れ、ワレ、塗膜のすけの不良個数を測定した。
○:異常なし
△:膨れ、ワレ、すけ不良5ケ未満有り
×:膨れ、ワレ、すけ不良5ケ以上有り
【0023】
〔絶縁特性試験〕
図1に示すモーターコア巻線部となるエッジ部(d)を評価した。このエッジ部は試験材は48ケ所ある。塗装した試験材の中心部分の被膜を剥離し、試験針の負極を接続する。モーターコア巻線部について試験針の正極を走査し、電流がリーク(漏れ)するエッジ部の数(a)を調査し、不良率=a/48にて評価した。
測定機器:絶縁抵抗計FI−901[(株)日本テクナート社製]
印加電圧:500V
【0024】
【0025】
〔被膜形成用樹脂エマルションの調整〕
メタクリル酸2部(重量部、以下同様)、メタクリル酸メチル28部、アクリロニトリル30部、アクリル酸エチル20部及びアクリル酸ブチル20部よりなる単量体混合物に、アクリル酸エステル系反応性界面活性剤1.0部(前5者の単量体合計重量に対して1.0重量%)、過硫酸アンモニウム0.3部及び水399.6部を混合して、75℃で4時間通常の方法により乳化重合し、樹脂固形分20%の樹脂を製造した。ついで該樹脂を40℃に冷却し、25%アンモニア水でpHを5〜8に調整して、被膜形成用樹脂エマルションを調整した。
【0026】
〔供試自己析出型水性被覆組成物(I)の調整〕
成分 配合量(g/L)
上記被膜形成用樹脂エマルション 280.00
造膜助剤A 4.00
フッ化水素酸 0.70
フッ化第二鉄 3.00
過酸化水素 0.10
脱イオン水 (全量1Lになる量)
造膜助剤Aはトリアルキルペンタンジオールイソブチレートであり、これの添加により、最低造膜温度が20℃付近となる。
【0027】
実施例1
上記の配合量にて調整した自己析出型水性被覆組成物の浴温を20〜22℃に保ち、これに試験材としての、予め清浄にした図1に示す磁性材料からなる鋼板をプレス加工し複数枚積層した得られたモーターコアを60秒間浸漬して塗装し、脱イオン水に60秒浸漬することにより水洗し、熱風オーブン中180℃で20分乾燥し、各被覆性能試験に供した。試験結果を表1に示す。
【0028】
実施例2
実施例1で用いた自己析出型水性被覆組成物の浴温を20〜22℃に保ち、これに実施例1と同様予め清浄にした試験材を120秒間浸漬して塗装し、脱イオン水に60秒浸漬することにより水洗し、熱風オーブン中180℃で20分乾燥し、ついで各被覆性能試験に供した。試験結果を表1に示す。
【0029】
実施例3
実施例1で用いた自己析出型水性被覆組成物の浴温を20〜22℃に保ち、これに実施例1と同様予め清浄にした試験材を180秒間浸漬して塗装し、脱イオン水に60秒浸漬することにより水洗し、熱風オーブン中180℃で20分乾燥し、ついで各被覆性能試験に供した。試験結果を表1に示す。
【0030】
実施例4
実施例1で用いた自己析出型水性被覆組成物の浴温を20〜22℃に保ち、これに実施例1と同様予め清浄にした試験材を60秒間浸漬して塗装し、脱イオン水に60秒浸漬することにより水洗した後、六価クロムを4g/L含有する水溶液に60秒浸漬した後、該被膜を水洗することなく、熱風オーブン中180℃で20分乾燥し、ついでの各被膜性能試験に供した。試験結果を表2に示す。
【0031】
実施例5
実施例1で用いた自己析出型水性被覆組成物の浴温を20〜22℃に保ち、これに実施例2と同様、予め清浄にした試験材を90秒間浸漬して塗装し、脱イオン水に60秒浸漬することにより水洗した後、六価クロムを4g/L含有する水溶液に60秒浸漬した後、該被膜を水洗することなく、熱風オーブン中180℃で20分乾燥し、ついでの各被膜性能試験に供した。試験結果を表2に示す。
【0032】
実施例6
実施例1で用いた自己析出型水性被覆組成物の浴温を20〜22℃に保ち、これに実施例3と同様、予め清浄にした試験材を180秒間浸漬して塗装し、脱イオン水に60秒浸漬することにより水洗した後、六価クロムを4g/L含有する水溶液に60秒浸漬した後、該被膜を水洗することなく、熱風オーブン中180℃で20分乾燥し、ついでの各被膜性能試験に供した。試験結果を表2に示す。
【0033】
比較例1
予め清浄された試験材表面に、エポキシ樹脂を主成分としたプライマー(II)を平面部で約20μmになるように塗装し、熱風オーブン中200℃で20分乾燥し、ついで各被膜性能試験に供した。試験結果を表1に示す。
【0034】
比較例2
予め清浄された試験材表面に、エポキシ樹脂を主成分としたプライマー(II)を平面部で約20μmになるように塗装し、熱風オーブン中200℃で20分乾燥した。オーブンから取り出した後、ついでプライマーの上に珪酸塩変性ポリエーテル樹脂から成るセラミック塗料(III)を約40μmになるように塗装し、熱風オーブン中220℃で20分乾燥しついで各被膜性能試験に供した。試験結果を表1に示す。
【0035】
実施例7
アクリル系樹脂エマルションタイプと塩化ビニリデン系樹脂エマルションタイプの絶縁性を比較するためつぎの試験を行った。
下記の配合に調製した自己析出型水性被覆組成物A、またはBの浴温を20〜22℃に保ち、これに、予め清浄にした冷延鋼板(SPCC、70×100×0.8mm)の試験板を浸漬して塗装し、脱イオン水に60秒浸漬することにより水洗し、熱風オーブン中で乾燥し、ついで後述の体積抵抗率(Ω・cm)を測定した。試験結果を表3に示す。
【0036】
実施例1〜7及び比較例1〜2から次のことが言える。
(1)本発明の被覆方法を用いた実施例1〜3では、平面部の塗膜厚が少なくても、エッジ部の塗膜厚が確保でき、少ない塗膜厚でも絶縁特性に優れている。
(2)これに対して従来の方法で塗装した比較例1では絶縁特性が劣り、十分な絶縁特性を得るには比較例2の被膜の膜厚を厚くする必要がある。
【0037】
(3)実施例4〜6から明らかなように、本発明による樹脂被膜にさらにクロムを付着させることによって、塗膜の付着性も向上させることができ、薄膜でも十分な絶縁特性を確保することができる。
(4)実施例7の表3の結果から明らかなように、本発明の被覆方法を用いたアクリル系樹脂エマルションタイプと塩化ビニリデン系樹脂エマルションタイプの絶縁性を比較すると、耐電圧500Vでの体積抵抗率は、アクリルタイプは1.6〜4.8×1016Ω・cmに対し、塩化ビニリデンタイプは3.0〜4.0×1015Ω・cmとアクリルタイプの方が優れている。
【0038】
【発明の効果】
本発明の積層モーターコア表面の被覆方法を用いることにより、絶縁特性に優れるとともに、絶縁層を形成するにあたり、従来の絶縁処理工程に比べ、処理工程を短縮することができる。また、被塗物の平面部の絶縁層の膜厚を厚くすることなくエッジ部の均一に被覆することができるため、被塗物表面全体の絶縁層の膜厚を薄膜化でき、かつ絶縁特性の優れた絶縁被膜を形成させることができる。
このことによりモーターの小型化、薄型化の要求に応えることができる。
【0039】
【表1】
【0040】
【表2】
【0041】
【表3】
【図面の簡単な説明】
【図1】モーターコア(積層鋼板)の例を示す平面図である。
【符号の説明】
A コア
b 突極
c 巻線
d エッジ部
【図2】モーターコア(積層鋼板)に絶縁被膜を形成させた状態を説明するための部分断面図である。
【符号の説明】
A コア
X 平面部の絶縁層厚さ
Y エッジ部の絶縁層厚さ
Z 絶縁層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for coating an electrically insulating coating on the surface of a laminated motor core. More specifically, the present invention can form an insulating coating with excellent electrical insulation characteristics on a surface of a motor core formed by laminating steel sheets by bringing the self-deposition type aqueous coating composition into contact therewith. The present invention relates to a method for coating an electrically insulating coating on the surface of a laminated motor core.
[0002]
[Prior art]
A motor core used for a small motor or the like is conventionally formed by laminating metal plates into a predetermined shape by press working. An example of the laminated motor core is a motor core A as shown in FIG. The core A in FIG. 1 has a plurality of salient poles b, the tip of each salient pole b is an arcuate portion, and a winding c is wound around each salient pole b. Such a core is used as a rotor of the motor. However, when the salient pole b of the core A and the winding c are not insulated, the windings c are short-circuited through the core A and the motor. Since the device itself does not function, it is necessary to insulate between the core A and the winding c. For this reason, it is normal that the laminated steel plate surface like the core A is insulated beforehand.
[0003]
As such an insulation treatment, a method of forming an insulating layer on the surface of the motor core with an electrodeposition paint, a solvent spray, a powder paint or the like has been conventionally employed. However, when the insulating layer is coated with the paint, the insulating layer easily peels off at the edge portion of the motor core, resulting in a problem that the insulating properties of the insulating layer are deteriorated. For this reason, the thickness of the insulating layer has to be increased.
In recent years, miniaturization and thinning of motors are required, and further, high performance (high withstand voltage) is required, and thinning of an insulating layer is required.
As one of the techniques for thinning an insulating layer, Japanese Patent Laid-Open No. 5-300681 discloses an insulating layer consisting of two layers in which an epoxy resin is applied to the surface of a motor core as a primer and a ceramic paint is applied to the top coat. It is disclosed that an insulating layer having good edge coverage and excellent insulating properties can be formed by forming the entire layer in a thickness of 50 to 80 μm. Further, it is disclosed that the number of insulating layers is not limited to two, but the number of layers may be increased to three, four, etc., not limited to two. However, in forming the insulating layer, at least two coating steps are required, and there is a disadvantage that workability is inferior.
[0004]
[Problems to be solved by the invention]
The object of the present invention is to shorten the insulation treatment process when forming the electrical insulation layer on the surface of the motor core, to further reduce the thickness of the electrical insulation layer, and to have a coating with excellent electrical insulation characteristics. Another object of the present invention is to provide a method for coating a laminated motor core surface with an electric insulating film, which can obtain a motor core surface on which an excellent electric insulating film can be formed particularly at the edge portion of the core.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned conventional problems, the present inventors have found that a self-precipitation type aqueous coating composition containing a resin emulsion for film formation on the surface of a laminated motor core, an acid, an oxidizing agent, metal ions, and water. And then drying by heating, it was found that it was possible to form a thin film with better insulating properties than before, and that the insulation process could be shortened, thus completing the present invention.
[0006]
That is, the present invention is such that a self-precipitation type aqueous coating composition containing a resin emulsion for film formation, an acid, an oxidizing agent, metal ions and water is brought into contact with the surface of the laminated motor core, and the surface of the motor core is not yet contacted. An electrical insulating coating is formed on the surface of the laminated motor core, wherein an electrical insulating coating is formed on the surface of the motor core by depositing and forming a cured resin coating and then heating and drying the uncured resin coating. A method of coating is provided.
[0007]
Furthermore, the present invention further comprises contacting a self-precipitation type aqueous coating composition containing a resin emulsion for film formation, an acid, an oxidant, metal ions and water with the surface of the laminated motor core, An uncured resin film is formed by deposition, and then the uncured resin film is contacted with an aqueous solution containing chromium, followed by heating and drying to form an electrically insulating film on the surface of the motor core. A method for coating the surface of the laminated motor core with an electrically insulating coating is provided.
[0008]
Hereinafter, the configuration of the present invention will be described in detail.
The motor core targeted by the present invention is formed by laminating a plurality of metal plates. Although the metal used is not specifically limited, a steel plate is usually used. Although the method of laminating steel plates is not particularly limited, press working or the like is performed.
[0009]
The self-depositing aqueous coating composition used in the present invention contains a resin emulsion for film formation, an acid, an oxidizing agent, metal ions, and water, and may further contain other optional components.
[0010]
As the resin in the film-forming resin emulsion used in the present invention, acrylic resins, vinyl chloride resins, vinylidene chloride resins, urethane resins, epoxy resins, polyester resins, and the like can also be used. Acrylic resins are particularly preferable. For example, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-hydroxy (Meth) acrylic acid monomers such as ethyl methacrylate, 2-hydroxypropyl methacrylate, glycidyl acrylate, glycidyl methacrylate, methacrylic acid monomers, acrylamide, methacrylamide, acrylonitrile, acrylic acid, methacrylic acid, styrene , Homopolymers such as ethylene, or copolymers composed of two or more of these.
[0011]
The resin used in the present invention may be any mixture of resins as described above.
The molecular weight of the acrylic resin is not particularly limited, but is, for example, 5 to 1,000,000, preferably 10 to 100 by gel permeation chromatography in tetrahydrofuran using polystyrene or polyacrylate as a standard substance. A molecular weight of 10,000 is used.
[0012]
The resin emulsion for film formation used in the present invention is usually a resin emulsion itself usually obtained by emulsion polymerization, but may be a resin emulsion obtained by emulsifying and dispersing a resin obtained by various polymerization methods in water. .
The polymerization conditions for obtaining a resin emulsion by emulsion polymerization are not particularly limited, and may be in accordance with a conventional method. As an example, at least water, an anionic surfactant and / or a nonionic surfactant, the above resin component monomer, A film-forming resin emulsion can be obtained by subjecting a mixture comprising the polymerization initiator to a polymerization reaction.
[0013]
Examples of the acid used in the present invention include at least one selected from zircon hydrofluoric acid, thiatan hydrofluoric acid, silicohydrofluoric acid, borohydrofluoric acid, phosphoric acid, nitric acid, and the like. Is preferred.
[0014]
As the oxidizing agent used in the present invention, hydrogen peroxide, potassium permanganate, sodium nitrite and the like can be used, and hydrogen peroxide is preferable.
The compound capable of supplying the metal ion used in the present invention is not particularly limited as long as it is stable in the coating composition. For example, ferric fluoride, ferric nitrate, ferrous phosphate, ferrous nitrate Examples include cobalt and the like, and ferric fluoride is preferable.
[0015]
The resin content in the autodeposition-type aqueous coating composition used in the present invention is preferably 5 to 550 g / L, more preferably 30 to 100 g / L as the resin solid content concentration.
The acid concentration is preferably from 0.1 to 5.0 g / L, more preferably from 0.5 to 3.0 g / L.
The concentration of the oxidizing agent is preferably 0.01 to 3.0 g / L.
The concentration of the compound capable of supplying metal ions is preferably 0.1 to 50 g / L.
[0016]
As an optional component, the autodeposition-type aqueous coating composition used in the present invention further comprises a film-forming aid, such as a trialkyl, for lowering the minimum film-forming temperature and facilitating the fusion of the precipitated resin particles. It contains pentanediol isobutyrate, alkyl carbitol and the like, and may further contain pigments such as carbon black, phthalocyanine blue, phthalocyanine green, quinafridon red, Hansa yellow, benzine yellow and the like.
[0017]
As a method for bringing the self-precipitation type aqueous coating composition used in the present invention into contact with the surface of the laminated motor core, a dipping method, a spray method or the like can be adopted, but a dipping method is more preferable. The treatment temperature and treatment time are not particularly limited, but in the case of immersion treatment, it is appropriate to immerse in the composition at room temperature, for example, 18 to 25 ° C. for 30 to 300 seconds, preferably 60 to 180 seconds. is there.
[0018]
The amount of the resin film attached to the surface of the laminated motor core of the coating composition is not particularly limited, but the film thickness after drying is preferably 10 to 40 μm.
In general, prior to application of the coating composition, the surface of the motor core is degreased and washed with water to clean the surface. After the resin is deposited on the surface of the motor core, it is usually washed with water. Although this water washing can be performed by exposing to running water, it is usually performed by immersing in normal temperature water for 10 to 120 seconds.
The drying by heating is not particularly limited, but it is appropriate to perform the drying at an atmospheric temperature of a hot air circulating furnace at 80 to 180 ° C. for 5 to 60 minutes, particularly 10 to 20 minutes.
[0019]
Examples of chromium used in the aqueous solution containing chromium used in the present invention include general chromium compounds such as dichromic acid and ammonium dichromate. The chromium concentration contained in the chromium aqueous solution is preferably 0.1 to 20 g / L as hexavalent chromium. There is no problem in performance even if trivalent chromium is contained in the chromium aqueous solution. As a condition for bringing the uncured resin film into contact with an aqueous solution containing chromium, it is appropriate to immerse in an ordinary temperature or a heated liquid for 30 to 180 seconds. Thereafter, the uncured resin coating is heat-dried under the above conditions without washing with water to obtain an electrical insulating coating. After the film is formed by the method of the present invention, powder coating or general paint can be further applied as necessary.
[0020]
According to the coating method of the present invention, the formation of a film does not use external electricity as in electrodeposition, but the chemical action of the self-deposited coating composition on the surface of the metal to be coated (metal eluted from the metal surface by etching). When the uncured resin film is formed on the surface of the laminated steel sheet, the self-deposition coating is performed by ions acting on the resin particles in the coating composition and the resin particles are deposited on the metal surface. A film is formed almost uniformly at the position where the composition is in contact with the surface of the steel sheet. Moreover, since the coverage of the edge part on the surface of the steel sheet is excellent even after the uncured resin film is dried by heating, an insulating film having excellent insulating properties can be formed.
[0021]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
Various performance test methods are described below.
[Film thickness]
The test material shown in FIG. 1 was cut out at a portion B, the cross sections of the flat portion and the edge portion were observed with a microscope, and the film thickness of the coating layer shown in FIG. 2 was measured. That is, A represents a core, Z represents an insulating layer, and the insulating layer thickness X of the flat portion and the insulating layer thickness Y of the edge portion were measured in the insulating layer.
[0022]
〔appearance〕
After coating the test material, the number of defective coating blisters, cracks, and paint film defects was measured.
○: No abnormality △: There are less than 5 blisters, cracks, and scratch defects ×: There are more than 5 blisters, cracks, and scratch defects [0023]
[Insulation characteristics test]
The edge part (d) used as the motor core winding part shown in FIG. 1 was evaluated. This edge has 48 test materials. The coating at the center of the painted test material is peeled off and the negative electrode of the test needle is connected. The motor core winding portion was scanned with the positive electrode of the test needle, the number of edge portions (a) at which current leaked (leakage) was investigated, and the failure rate was evaluated as a / 48.
Measuring instrument: Insulation resistance meter FI-901 [Nippon Technate Co., Ltd.]
Applied voltage: 500V
[0024]
[0025]
[Adjustment of resin emulsion for film formation]
Acrylic ester-based reactive surfactant in a monomer mixture composed of 2 parts of methacrylic acid (parts by weight, the same applies hereinafter), 28 parts of methyl methacrylate, 30 parts of acrylonitrile, 20 parts of ethyl acrylate and 20 parts of butyl acrylate 1.0 part (1.0% by weight based on the total weight of the former five monomers), 0.3 part of ammonium persulfate and 399.6 parts of water were mixed, and the mixture was mixed at 75 ° C. for 4 hours by a usual method. Emulsion polymerization was performed to produce a resin with a resin solid content of 20%. Subsequently, the resin was cooled to 40 ° C., and the pH was adjusted to 5 to 8 with 25% aqueous ammonia to prepare a resin emulsion for film formation.
[0026]
[Preparation of test self-depositing aqueous coating composition (I)]
Component content (g / L)
Resin emulsion for film formation 280.00
Film-forming aid A 4.00
Hydrofluoric acid 0.70
Ferric fluoride 3.00
Hydrogen peroxide 0.10
Deionized water (Amount to be 1L in total)
The film-forming auxiliary A is trialkylpentanediol isobutyrate, and the addition of this makes the minimum film-forming temperature around 20 ° C.
[0027]
Example 1
The bath temperature of the self-precipitation type aqueous coating composition adjusted with the above blending amount is kept at 20 to 22 ° C., and a steel plate made of the magnetic material shown in FIG. The obtained motor cores obtained by laminating a plurality of sheets were dipped and coated for 60 seconds, washed by immersing in deionized water for 60 seconds, dried in a hot air oven at 180 ° C. for 20 minutes, and subjected to each coating performance test. The test results are shown in Table 1.
[0028]
Example 2
The bath temperature of the self-precipitation type aqueous coating composition used in Example 1 was kept at 20 to 22 ° C., and a test material cleaned in advance as in Example 1 was dipped for 120 seconds and applied to deionized water. It was washed with water by dipping for 60 seconds, dried in a hot air oven at 180 ° C. for 20 minutes, and then subjected to each coating performance test. The test results are shown in Table 1.
[0029]
Example 3
The bath temperature of the self-precipitation type aqueous coating composition used in Example 1 was kept at 20 to 22 ° C., and the test material cleaned in advance as in Example 1 was dipped for 180 seconds and applied to deionized water. It was washed with water by dipping for 60 seconds, dried in a hot air oven at 180 ° C. for 20 minutes, and then subjected to each coating performance test. The test results are shown in Table 1.
[0030]
Example 4
The bath temperature of the self-precipitation type aqueous coating composition used in Example 1 was kept at 20 to 22 ° C., and a test material cleaned in advance as in Example 1 was dipped and coated for 60 seconds in deionized water. After rinsing for 60 seconds, the film was immersed in an aqueous solution containing 4 g / L of hexavalent chromium for 60 seconds, and then the film was dried in a hot air oven at 180 ° C. for 20 minutes without being washed with water. It used for the performance test. The test results are shown in Table 2.
[0031]
Example 5
The bath temperature of the self-precipitation type aqueous coating composition used in Example 1 was kept at 20 to 22 ° C., and in the same manner as in Example 2, the preliminarily cleaned test material was dipped for 90 seconds and coated, and deionized water was used. Then, after immersing in an aqueous solution containing 4 g / L of hexavalent chromium for 60 seconds, the film is dried in a hot air oven at 180 ° C. for 20 minutes without being washed with water. It used for the film performance test. The test results are shown in Table 2.
[0032]
Example 6
The bath temperature of the self-precipitation type aqueous coating composition used in Example 1 was kept at 20 to 22 ° C., and in the same manner as in Example 3, the preliminarily cleaned test material was immersed and coated for 180 seconds, and deionized water was applied. Then, after immersing in an aqueous solution containing 4 g / L of hexavalent chromium for 60 seconds, the film is dried in a hot air oven at 180 ° C. for 20 minutes without being washed with water. It used for the film performance test. The test results are shown in Table 2.
[0033]
Comparative Example 1
Primer (II) mainly composed of epoxy resin is applied to the surface of the test material that has been cleaned in advance so that the surface area is about 20 μm, dried in a hot air oven at 200 ° C. for 20 minutes, and then subjected to each coating performance test. Provided. The test results are shown in Table 1.
[0034]
Comparative Example 2
Primer (II) mainly composed of epoxy resin was applied to the surface of the test material that had been cleaned in advance so as to have a flat portion of about 20 μm, and dried in a hot air oven at 200 ° C. for 20 minutes. After removing from the oven, a ceramic paint (III) composed of a silicate-modified polyether resin was then applied on the primer to a thickness of about 40 μm, dried in a hot air oven at 220 ° C. for 20 minutes, and then subjected to each coating performance test. Provided. The test results are shown in Table 1.
[0035]
Example 7
The following test was conducted to compare the insulation properties of the acrylic resin emulsion type and the vinylidene chloride resin emulsion type.
The bath temperature of the self-precipitation type aqueous coating composition A or B prepared in the following composition was kept at 20 to 22 ° C., and pre-cleaned cold rolled steel sheet (SPCC, 70 × 100 × 0.8 mm) The test plate was dipped and coated, washed by immersing in deionized water for 60 seconds, dried in a hot air oven, and then the volume resistivity (Ω · cm) described later was measured. The test results are shown in Table 3.
[0036]
The following can be said from Examples 1 to 7 and Comparative Examples 1 and 2.
(1) In Examples 1 to 3 using the coating method of the present invention, the coating thickness of the edge portion can be ensured even if the coating thickness of the flat portion is small, and the insulation characteristics are excellent even with a small coating thickness. .
(2) On the other hand, the comparative example 1 coated by the conventional method is inferior in insulation characteristics, and it is necessary to increase the film thickness of the film of comparative example 2 in order to obtain sufficient insulation characteristics.
[0037]
(3) As is clear from Examples 4 to 6, the adhesion of the coating can be improved by further attaching chromium to the resin coating according to the present invention, and sufficient insulating properties can be ensured even with a thin film. Can do.
(4) As is apparent from the results in Table 3 of Example 7, when the insulating properties of the acrylic resin emulsion type and the vinylidene chloride resin emulsion type using the coating method of the present invention are compared, the volume at a withstand voltage of 500 V is shown. With respect to the resistivity, acrylic type is 1.6 to 4.8 × 10 16 Ω · cm, while vinylidene chloride type is 3.0 to 4.0 × 10 15 Ω · cm, and the acrylic type is more excellent.
[0038]
【The invention's effect】
By using the method for coating the surface of the laminated motor core according to the present invention, it is possible to shorten the treatment process as compared with the conventional insulation treatment process when forming the insulation layer while having excellent insulation characteristics. In addition, since the edge portion can be uniformly coated without increasing the thickness of the insulating layer on the planar portion of the object to be coated, the thickness of the insulating layer on the entire surface of the object to be coated can be reduced, and the insulation characteristics can be reduced. Can be formed.
This makes it possible to meet the demand for smaller and thinner motors.
[0039]
[Table 1]
[0040]
[Table 2]
[0041]
[Table 3]
[Brief description of the drawings]
FIG. 1 is a plan view showing an example of a motor core (laminated steel sheet).
[Explanation of symbols]
A core b salient pole c winding d edge part FIG. 2 is a partial cross-sectional view for explaining a state in which an insulating coating is formed on a motor core (laminated steel sheet).
[Explanation of symbols]
A Core X Insulating layer thickness Y of plane part Insulating layer thickness Z of edge part Insulating layer
Claims (4)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05841996A JP3648320B2 (en) | 1996-02-21 | 1996-02-21 | Method for coating an electrically insulating coating on the surface of a laminated motor core |
PCT/US1997/002667 WO1997030794A1 (en) | 1996-02-21 | 1997-02-21 | Electrically insulated metallic surfaces with interior corners |
US09/125,847 US6211283B1 (en) | 1996-02-21 | 1997-02-21 | Electrically insulated metallic surfaces with interior corners and methods and compositions therefor |
CA 2247507 CA2247507A1 (en) | 1996-02-21 | 1997-02-21 | Electrically insulated metallic surfaces with interior corners |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05841996A JP3648320B2 (en) | 1996-02-21 | 1996-02-21 | Method for coating an electrically insulating coating on the surface of a laminated motor core |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09233780A JPH09233780A (en) | 1997-09-05 |
JP3648320B2 true JP3648320B2 (en) | 2005-05-18 |
Family
ID=13083870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05841996A Expired - Fee Related JP3648320B2 (en) | 1996-02-21 | 1996-02-21 | Method for coating an electrically insulating coating on the surface of a laminated motor core |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3648320B2 (en) |
CA (1) | CA2247507A1 (en) |
WO (1) | WO1997030794A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10553343B2 (en) | 2014-07-25 | 2020-02-04 | Murata Manufacturing Co., Ltd. | Electronic component and method for manufacturing the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW565983B (en) * | 2001-06-18 | 2003-12-11 | Nihon Parkerizing | Auto-decomposed surface coating method of micro-machine or its elements |
EP1420507B1 (en) * | 2002-11-16 | 2008-01-09 | Minebea Co., Ltd. | Miniature motor with permanent magnetic rotor |
CN102477235A (en) * | 2010-11-29 | 2012-05-30 | 攀钢集团钢铁钒钛股份有限公司 | Chromium-free insulating coating, electrical steel material and preparation method thereof |
JP2023154457A (en) * | 2022-04-07 | 2023-10-20 | 日本パーカライジング株式会社 | Electronic component |
CN115106271A (en) * | 2022-07-26 | 2022-09-27 | 四川华川基业建设集团有限公司 | Biomass boiler heating surface water-based paint coating process |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5352726A (en) * | 1983-07-25 | 1994-10-04 | Henkel Corporation | Autodepositing composition containing vinylidene chloride based resin |
US5232815A (en) * | 1989-12-15 | 1993-08-03 | W. R. Grace & Co.-Conn. | Autodeposition emulsion and methods of using thereof to selectively protect metallic surfaces |
US5385758A (en) * | 1992-12-30 | 1995-01-31 | Henkel Corporation | Method for applying autodeposition coating |
-
1996
- 1996-02-21 JP JP05841996A patent/JP3648320B2/en not_active Expired - Fee Related
-
1997
- 1997-02-21 CA CA 2247507 patent/CA2247507A1/en not_active Abandoned
- 1997-02-21 WO PCT/US1997/002667 patent/WO1997030794A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10553343B2 (en) | 2014-07-25 | 2020-02-04 | Murata Manufacturing Co., Ltd. | Electronic component and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
WO1997030794A1 (en) | 1997-08-28 |
CA2247507A1 (en) | 1997-08-28 |
JPH09233780A (en) | 1997-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4724345A (en) | Electrodepositing mica on coil connections | |
US4622116A (en) | Process for electrodepositing mica on coil or bar connections and resulting products | |
Lin et al. | Effect of plasma polymer deposition methods on copper corrosion protection | |
GB2150153A (en) | Electrodeposition of mica on coil or bar connections | |
JP5809351B2 (en) | Surface treatment agent for autodeposition type copper and method for producing copper-containing substrate with resin film | |
JP3648320B2 (en) | Method for coating an electrically insulating coating on the surface of a laminated motor core | |
He et al. | In Situ Surface Film Formed by Solid‐State Anodic Oxidation for Stable Lithium Metal Anodes | |
JPH03241609A (en) | Flat-type superthin film insulated wire | |
CN117210904A (en) | Aluminum alloy anodic oxide film sealing liquid, sealing method and application of aluminum alloy anodic oxide film | |
Reddy et al. | Improved Corrosion Protection of Aluminum Alloys by System Approach Interface Engineering: Part 1—Alclad 2024-T3 | |
CN113089050A (en) | Method for preparing red and green coating on surface of titanium alloy | |
US6211283B1 (en) | Electrically insulated metallic surfaces with interior corners and methods and compositions therefor | |
WO1998012002A1 (en) | Surface-treated steel plate having low contact resistance and connection terminal member made of the steel plate | |
CN114032547B (en) | Alloy surface composite coating and preparation method thereof | |
CN112176286A (en) | Coating, metal magnet with coating and preparation method of coating | |
JP2008011648A (en) | Method for applying insulating coating on surface of laminated motor core | |
JP2014067491A (en) | Method for forming protection film, member for cell connection, and cell for solid oxide fuel battery use | |
Ghanbari et al. | Corrosion behavior of zirconium treated mild steel with and without organic coating: a comparative study | |
JP2526173B2 (en) | Electrodeposition coated steel sheet excellent in sharpness of coating film and method for producing the same | |
JP3860693B2 (en) | Self-depositing type coating composition, method for coating metal surface, and coated metal material | |
JPH03159014A (en) | Manufacture of flat and square insulated cable | |
JPH07109558A (en) | Production of copper foil good in water wettability | |
Fisher et al. | The basic principles of electrophoretic paint deposition and its application to the development of coating systems for metal powders on metal substrates for subsequent diffusion treatment | |
JPS5852040B2 (en) | Electrodeposition coating method | |
CN118147638A (en) | High-oxidation-resistance ultrathin copper foil and method for improving oxidation resistance of ultrathin copper foil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040810 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041026 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041124 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20041222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050214 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090218 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090218 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100218 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110218 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110218 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120218 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120218 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130218 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |