JP2013206783A - Method of producing rectangular insulated wire - Google Patents

Method of producing rectangular insulated wire Download PDF

Info

Publication number
JP2013206783A
JP2013206783A JP2012075910A JP2012075910A JP2013206783A JP 2013206783 A JP2013206783 A JP 2013206783A JP 2012075910 A JP2012075910 A JP 2012075910A JP 2012075910 A JP2012075910 A JP 2012075910A JP 2013206783 A JP2013206783 A JP 2013206783A
Authority
JP
Japan
Prior art keywords
rectangular
insulated wire
flat
conductor
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012075910A
Other languages
Japanese (ja)
Inventor
Takeshi Ikeda
毅 池田
Toyokazu Nagato
豊和 長門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2012075910A priority Critical patent/JP2013206783A/en
Publication of JP2013206783A publication Critical patent/JP2013206783A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a compact rectangular insulated wire with high formation accuracy.SOLUTION: On the surface of a rectangular conductor 101, an insulation coat 102 is formed by electrodeposition coating (first step), a non-electrodeposition paint 23' adhering to the insulation coat 102 is removed (second step), and while abutting a water-repellent body 104 against both ends at least in the width direction of one pair of facing surfaces 101a of the rectangular conductor 101, the rectangular conductor 101 is moved relatively to the water-repellent body 104 and the one pair of facing surfaces 101a are flattened (third step), and thereafter the insulation coat 102 is hardened, thus forming a rectangular insulated wire 1 (fourth step).

Description

本発明は、低電圧用平角状絶縁電線の製造方法に関する。   The present invention relates to a method for producing a low voltage flat insulated wire.

ビデオテープレコーダやポータブルテープレコーダなどの小型・軽量の各種電気機器に内蔵されている偏平型ブラシレスモータなどの低電圧用小型モータには、コアレス偏平コイルが用いられることが多い。コアレス偏平コイルにおいて巻線として用いられる銅線には、平角状導体にワニスなどの絶縁被膜を形成した平角状絶縁電線が使用されることがある。絶縁被膜の形成方法としては、特許文献1に開示された方法がある。   Coreless flat coils are often used in small motors for low voltage such as flat brushless motors incorporated in various small and lightweight electric devices such as video tape recorders and portable tape recorders. As the copper wire used as the winding in the coreless flat coil, a rectangular insulated wire in which an insulating coating such as varnish is formed on a rectangular conductor may be used. As a method for forming the insulating coating, there is a method disclosed in Patent Document 1.

特許2649979号公報Japanese Patent No. 2649979

コアレス扁平コイルに使用される平角状絶縁電線は、通常は丸状導体を圧延して平角状導体に成形し、当該平角状導体の表面に絶縁被膜を設けることで形成されるが、当該絶縁被膜は通常は線材の塗装に用いられている浸漬塗装によって形成される。浸漬塗装は被塗装体を塗料(ワニスなど)の中に浸漬してから引上げた後に塗料を乾燥させる塗装法で、所定の絶縁被膜厚が得られるまで塗装が繰り返される。   A flat insulated wire used for a coreless flat coil is usually formed by rolling a round conductor into a flat conductor and providing an insulating coating on the surface of the flat conductor. Is usually formed by dip coating, which is used for coating wire. Immersion coating is a coating method in which the object to be coated is dipped in a paint (such as varnish) and then pulled up, and then the paint is dried. The coating is repeated until a predetermined insulating film thickness is obtained.

しかしながら、浸漬塗装では、平角状導体の特に角部に塗料が付着し難く、絶縁塗装むらが生じる。かかる浸漬塗装によって絶縁被膜が形成された極細の平角状導線が低電圧モータ用コイルとして巻線化されると、特に絶縁被膜の薄い角部同士が絶縁不良を起こし易い。   However, in the dip coating, it is difficult for the paint to adhere particularly to the corners of the flat rectangular conductor, resulting in uneven insulation coating. When an extremely fine flat conductor wire with an insulating coating formed by such dip coating is wound as a coil for a low-voltage motor, particularly thin corners of the insulating coating tend to cause poor insulation.

上記浸漬塗装の問題点を解決するために、電着塗装を採用する場合もある。電着塗装は、水性塗料中に電極を挿入して直流通電を行い、負電荷を有する塗料粒子を陽極の方に移動させることで、陽極に沈着させる塗装方法である。電着塗装では、一般には、被塗装体を陽極、塗料を入れた容器を陰極(容器が絶縁物の場合は、銅または白金などの金属を陰極として塗料中に挿入する)として通電することで、塗料を陽極の被塗装体表面に沈着させた後、これを取り出して焼付け塗装を完了する。   In order to solve the problems of the dip coating, electrodeposition coating may be employed. Electrodeposition coating is a coating method in which an electrode is inserted into a water-based paint, DC current is applied, and paint particles having a negative charge are moved toward the anode to deposit it on the anode. In electrodeposition coating, in general, the object to be coated is energized as an anode, and a container containing paint is applied as a cathode (if the container is an insulator, a metal such as copper or platinum is inserted into the paint as a cathode). Then, after depositing the paint on the surface of the object to be coated of the anode, it is taken out and the baking finish is completed.

しかしながら、電着塗装では、平角状導体の角部に電界集中が起こるため、図7に示すように、角部の絶縁被膜が厚くなり、その結果、角部の電線厚みh1が電線幅方向中央部の電線厚みh2より厚くなる(h1>h2)。かかる電線を重ね巻きすると、特に上下に相互に隣接する平角状絶縁電線200同士間、すなわち上下の平角状絶縁電線200,200が有する絶縁被膜201、201間に空隙αができ、コイルの導体のスペースファクタ(占積率:全導体体積/全コイル体積)が低下してしまう。一般的には平角状絶縁電線200のスペースファクタは大きい方が良好なわけで、かかる電着塗装の塗装むらは好ましくない。   However, in the electrodeposition coating, electric field concentration occurs at the corners of the flat rectangular conductor, so that the insulating coating at the corners becomes thick as shown in FIG. 7, and as a result, the wire thickness h1 at the corners becomes the center in the wire width direction. It becomes thicker than the wire thickness h2 of the part (h1> h2). When such electric wires are overwrapped, a gap α is formed between the insulating coatings 201 and 201 of the rectangular insulated wires 200 adjacent to each other in the vertical direction, that is, the upper and lower rectangular insulated wires 200 and 200, and the coil conductor The space factor (space factor: total conductor volume / total coil volume) decreases. In general, the larger the space factor of the rectangular insulated wire 200 is, the better, and the unevenness of the electrodeposition coating is not preferable.

そこで、例えば、特許文献1では、
(1)丸状導体を第一次圧延して平角状導体を形成する、
(2)平角状導体の表面に電着塗装によって絶縁被膜を形成し、絶縁被膜を半硬化させて準平角状線とする、
(3)準平角状線を第二次圧延して平角状線とする、
(4)平角状線の絶縁被膜を硬化させて平角状絶縁電線とする、
ことにより、スペースファクタを向上させている。
Therefore, for example, in Patent Document 1,
(1) Primary rolling a round conductor to form a flat conductor.
(2) An insulating coating is formed on the surface of the flat conductor by electrodeposition coating, and the insulating coating is semi-cured to form a quasi-flat rectangular wire.
(3) Secondary rolling the quasi-flat wire into a flat wire,
(4) A rectangular insulation wire is cured by curing the insulation film of the rectangular wire.
This improves the space factor.

しかしながら、小型化の要求が進むに伴い、被電着材である平角状導線の寸法(幅、厚さ)が小さくなって、それに伴って電着により形成される絶縁被膜の厚さも薄くなっており、特許文献1における製法の特徴である絶縁被膜の半硬化状態を得難くなってきている。そのため、準平角状線を第二次圧延して平角状線にする際に、絶縁被膜が圧延ロールに付着して準平角状線から剥がれてしまう。   However, as the demand for miniaturization progresses, the dimensions (width and thickness) of the rectangular conductor wire, which is the electrodeposited material, are reduced, and the thickness of the insulating coating formed by electrodeposition is accordingly reduced. Therefore, it is difficult to obtain a semi-cured state of the insulating coating, which is a feature of the manufacturing method in Patent Document 1. For this reason, when the quasi-flat wire is secondarily rolled into a flat wire, the insulating coating adheres to the rolling roll and is peeled off from the quasi-flat wire.

したがって本発明の目的は、以上の浸漬塗装及び電着塗装にみられる問題点を克服する新規な平角状絶縁電線の製法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a novel method for producing a rectangular insulated wire that overcomes the problems found in the above-described immersion coating and electrodeposition coating.

上記課題を解決するために、本発明の平角状絶縁電線の製造方法は、次の特徴を有する。すなわち、本発明は、
矩形状の横断面形状を有して平角状絶縁電線の電線心材となる平角状導体の表面に、電着塗装処理によって絶縁被膜を形成する第1の工程と、
前記絶縁被膜に付着している未電着塗料を除去する第2の工程と、
撥水体を、前記平角状導体の一方の対向面対の少なくとも幅方向両端に当接させた状態で、前記平角状導体を前記撥水体に対して相対移動させることで、前記一方の対向面対を平坦化する第3の工程と、
前記絶縁被膜を硬化させて前記平角状絶縁電線を形成する第4の工程と、
を含んでいる。
In order to solve the above problems, the method for producing a rectangular insulated wire of the present invention has the following characteristics. That is, the present invention
A first step of forming an insulating coating on the surface of a rectangular conductor having a rectangular cross-sectional shape and serving as a wire core of a rectangular insulating wire by an electrodeposition coating process;
A second step of removing the non-electrodeposition paint adhering to the insulating coating;
In a state where the water repellent body is in contact with at least both ends in the width direction of the one opposing surface pair of the flat rectangular conductor, the rectangular conductor is moved relative to the water repellent body, thereby the one opposing surface pair. A third step of flattening;
A fourth step of curing the insulating coating to form the rectangular insulated wire;
Is included.

上記構成によれば、電着塗装処理によって平角状導体の表面に形成される絶縁被膜は水溶性を有している。一方、撥水体は、水分を弾き水溶性の絶縁被膜に対する粘着性が極めて低い特性を有している。そのため、平角状導体を撥水体に対して相対移動させることで平角状導体(絶縁被膜)を平坦化しても、絶縁被膜が撥水体に張り付いて平角状導体から剥がれることはない。以上のことから、本発明の方法を実施すれば、電着塗装の一般特質である容易に均一な塗装を施せることと相まって、最終的に得られる平角状絶縁電線の絶縁被膜は平角状導体の一方の対向面対において精度高く均一厚さとなる。このように、本発明では、精度の高い平坦化処理を行うことができて前記従来の問題点が解決される。なお、本発明では、平角状絶縁電線の横断面形状を矩形状としているが、ここでいう矩形状とは、一般的にいうところの矩形状の他、他方の対向面対が曲面となったトラック状も含まれる。また、一方の対向面対が他方の対向面対より長い長方形形状や楕円形状を有する電線構成において本発明を実施すれば、その効果はさらに顕著なものとなる。   According to the said structure, the insulating film formed in the surface of a flat conductor by an electrodeposition coating process has water solubility. On the other hand, the water-repellent body has a property of repelling moisture and having extremely low adhesion to a water-soluble insulating film. Therefore, even if the flat rectangular conductor (insulating coating) is flattened by moving the flat rectangular conductor relative to the water repellent body, the insulating coating does not stick to the water repellent body and peel off from the flat rectangular conductor. From the above, when the method of the present invention is carried out, the insulation coating of the rectangular insulated wire finally obtained is coupled with the ability to easily apply uniform coating, which is a general characteristic of electrodeposition coating. One opposing surface pair has a uniform thickness with high accuracy. As described above, in the present invention, it is possible to perform the flattening process with high accuracy, and the conventional problems are solved. In addition, in this invention, although the cross-sectional shape of the flat insulated wire is made into the rectangular shape, the rectangular shape here is a rectangular shape in general, and the other opposing surface pair is a curved surface. A track shape is also included. In addition, if the present invention is implemented in an electric wire configuration in which one opposing surface pair has a longer rectangular shape or elliptical shape than the other opposing surface pair, the effect becomes even more remarkable.

なお、前記第3の工程では、前記撥水体を前記平角状絶縁電線の電線厚みに応じて設定される離間間隔を空けて対向配置させた状態で、未電着塗料除去済みの前記平角状導体を、前記一方の対向面対が前記撥水体に対向する向きにして前記撥水体の間を導体長手方向に沿って通過させることで、前記一方の対向面対を平坦化するのが好ましく、そうすれば、平坦化された所望厚みの平角状絶縁電線を精度高く作製することができる。   In addition, in the third step, the rectangular conductor from which the non-electrodeposition paint has been removed in a state where the water-repellent body is opposed to each other with a separation interval set according to the wire thickness of the rectangular insulating wire. It is preferable that the one opposing surface pair is flattened by passing between the water repellent bodies along the conductor longitudinal direction so that the one opposing surface pair faces the water repellent body. Then, a flattened rectangular insulated wire having a desired thickness can be produced with high accuracy.

さらには、前記第3の工程では、前記撥水体として、前記平角状導体の幅方向と平行となった軸心を有し少なくとも表面が撥水材料からなる撥水ローラを用いるのが好ましく、そうすれば、撥水体が回転体となって平角状導体に対して相対転動するので、絶縁被膜に対する撥水体の剥離性が向上して、絶縁被膜がさらに平角状導体から剥がれにくくなる。   Furthermore, in the third step, it is preferable to use, as the water repellent body, a water repellent roller having an axis that is parallel to the width direction of the rectangular conductor and having at least a surface made of a water repellent material. By doing so, the water repellent body becomes a rotating body and rolls relative to the flat conductor, so that the peelability of the water repellent body with respect to the insulating coating is improved, and the insulating coating is more difficult to peel off from the flat conductor.

さらには、前記第3の工程では、前記撥水ローラを、未電着塗料除去済みの前記平角状導体の搬送方向に沿う方向に回転駆動させながら、未電着塗料除去済みの前記平角状導体を前記撥水体の間を通過させ、かつ前記撥水ローラの回転速度を、未電着塗料除去済みの前記平角状導体の搬送速度と同等にするのが好ましく、そうすれば、絶縁被膜に対する撥水体の剥離性がさらに向上して、絶縁被膜がさらに平角状導体から剥がれにくくなる。   Furthermore, in the third step, the rectangular conductor from which the non-electrodeposition paint has been removed while rotating the water-repellent roller in a direction along the conveying direction of the flat conductor from which the non-electrodeposition paint has been removed is driven. It is preferable that the rotation speed of the water-repellent roller is made equal to the conveyance speed of the rectangular conductor from which the non-electrodeposition coating material has been removed. The peelability of the water body is further improved, and the insulating coating is more difficult to peel off from the flat conductor.

本発明の平角状絶縁電線の製法は、以上説明したように構成されているから、以下に記載される効果を奏する。   Since the manufacturing method of the flat insulated wire of this invention is comprised as demonstrated above, there exists an effect described below.

浸漬塗装にみられる平角状導体(特に角部)への絶縁被膜の付着不良を改善でき、平角状導体の表面において均一な絶縁被膜を形成することができる。   It is possible to improve the adhesion failure of the insulating film to the flat rectangular conductor (particularly the corner) seen in the dip coating, and a uniform insulating film can be formed on the surface of the flat rectangular conductor.

加えて、従来技術のように半硬化させる工程を必要としなくなったので、生産性が向上し、半硬化という状態を生じさせることが困難な小型化の進んだ平角状導体(幅、厚みが小さいものや、絶縁被膜の厚みが薄いもの)であっても、均一な絶縁被膜を形成できる。そのため、形成精度の高い平角状絶縁電線を寸法制約なく作製するころが可能となった。   In addition, since a semi-curing step as in the prior art is no longer required, productivity is improved and a flat rectangular conductor (width and thickness is small) that is difficult to produce a semi-cured state. Or a thin insulating film), a uniform insulating film can be formed. Therefore, it has become possible to produce a flat rectangular insulated wire with high formation accuracy without any dimensional constraints.

さらに、絶縁被膜を硬化させる前に撥水体を用いて絶縁被膜の一方の対向面対を平坦化するので、絶縁被膜に剥離や損傷を生じさせることなく外径寸法精度の高い平角状絶縁電線を製造することができる。   Furthermore, since one pair of opposing surfaces of the insulating coating is flattened using a water repellent body before the insulating coating is cured, a rectangular insulated wire with high outer diameter dimensional accuracy can be obtained without causing peeling or damage to the insulating coating. Can be manufactured.

従って、本発明の製法によって得られた平角状絶縁電線は、巻線化した場合にコイルの導体のスペースファクタが良好になり、コイルを小型化することができる。   Therefore, when the rectangular insulated wire obtained by the manufacturing method of the present invention is wound, the space factor of the coil conductor becomes good, and the coil can be miniaturized.

(a)は本発明の一実施形態の平角状絶縁電線の製造方法の工程(1)を示す図であり、(b)、(c)はその処理途中の電線形状を示す断面図であって、(b)は(a)のA−A線断面図であり、(c)は(a)のB−B線断面図である。(A) is a figure which shows process (1) of the manufacturing method of the flat insulated wire of one Embodiment of this invention, (b), (c) is sectional drawing which shows the electric wire shape in the middle of the process, (B) is the sectional view on the AA line of (a), (c) is the sectional view on the BB line of (a). (a)は本発明の一実施形態の平角状絶縁電線の製造方法の工程(2)を示す図であり、(b)、(c)はその処理途中の電線形状を示す断面図であって、(b)は(a)のC−C線断面図であり、(c)は(a)のD−D線断面図である。(A) is a figure which shows the process (2) of the manufacturing method of the flat insulated wire of one Embodiment of this invention, (b), (c) is sectional drawing which shows the electric wire shape in the middle of the process, (B) is the CC sectional view taken on the line of (a), (c) is the DD sectional view taken on the line of (a). (a)は本発明の一実施形態の平角状絶縁電線の製造方法の工程(3)を示す図であり、(b)、(c)はその処理途中の電線形状を示す断面図であって、(b)は(a)のE−E線断面図であり、(c)は(a)のF−F線断面図である。(A) is a figure which shows process (3) of the manufacturing method of the flat insulated wire of one Embodiment of this invention, (b), (c) is sectional drawing which shows the electric wire shape in the middle of the process, (B) is the EE sectional view taken on the line of (a), (c) is the FF sectional view taken on the line of (a). (a)は本発明の一実施形態の平角状絶縁電線の製造方法の工程(4)を示す図であり、(b)、(c)はその処理途中の電線形状を示す断面図であって、(b)は(a)のG−G線断面図であり、(c)は(a)のH−H線断面図である。(A) is a figure which shows the process (4) of the manufacturing method of the flat insulated wire of one Embodiment of this invention, (b), (c) is sectional drawing which shows the electric wire shape in the middle of the process, (B) is the GG sectional view taken on the line of (a), (c) is the HH sectional view taken on the line (a). (a)は本発明の一実施形態の平角状絶縁電線の製造方法の工程(5)を示す図であり、(b)、(c)はその処理途中の電線形状を示す断面図であって、(b)は(a)のI−I線断面図であり、(c)は(a)のJ−J線断面図である。(A) is a figure which shows process (5) of the manufacturing method of the flat insulated wire of one Embodiment of this invention, (b), (c) is sectional drawing which shows the electric wire shape in the middle of the process, (B) is the II sectional view taken on the line of (a), (c) is the JJ sectional view taken on the line (a). 本発明の平角状絶縁電線の製造方法の変形例を示す図である。It is a figure which shows the modification of the manufacturing method of the flat insulated wire of this invention. 従来例の課題の説明に供する断面図である。It is sectional drawing with which it uses for description of the subject of a prior art example.

次に、本発明の製法の各工程を図1〜図5に基づいて順に詳説する。製法を説明する前に本発明の製造方法で製造する平角状絶縁電線1について説明する。平角状絶縁電線1は、低電圧モータ用コイルなどに巻線化するなどして使用するものであり、従って、本発明において平角状絶縁電線1はその主な用途から、厚さ20〜500μm、幅100〜4000μm程度で、厚さ/幅の比率1:3〜1:50程度のものである。平角状絶縁電線1は図5(c)に示すように、平角状導体101の表面を絶縁被膜102で被覆した形状を有している。平角状導体101は一方の対向面対101aが他方の対向面対101bより長い矩形状の横断面形状を有しており、絶縁被膜102は電着塗装処理によって平角状導体101の表面に形成されている。なお、一方の対向面対101aと他方の対向面対101bとは同等の長さであってもよく、そのような電線構造においても本発明は同様に実施できる。   Next, each process of the manufacturing method of this invention is explained in full detail in order based on FIGS. Before explaining the manufacturing method, the rectangular insulated wire 1 manufactured by the manufacturing method of the present invention will be described. The rectangular insulated wire 1 is used by being wound around a coil for a low voltage motor or the like. Accordingly, in the present invention, the rectangular insulated wire 1 has a thickness of 20 to 500 μm, The width is about 100 to 4000 μm, and the thickness / width ratio is about 1: 3 to 1:50. As shown in FIG. 5C, the flat rectangular insulated wire 1 has a shape in which the surface of a flat rectangular conductor 101 is covered with an insulating coating 102. The rectangular conductor 101 has a rectangular cross-sectional shape in which one opposing surface pair 101a is longer than the other opposing surface pair 101b, and the insulating coating 102 is formed on the surface of the rectangular conductor 101 by an electrodeposition coating process. ing. One opposing surface pair 101a and the other opposing surface pair 101b may have the same length, and the present invention can be similarly implemented in such a wire structure.

以下、平角状絶縁電線1の製法の詳細を説明する。この製法は以下の工程(1)〜工程(5)を含んでいる。   Hereinafter, the detail of the manufacturing method of the flat insulated wire 1 is demonstrated. This manufacturing method includes the following steps (1) to (5).

工程(1):図1(a)〜(c)に示すように、銅、アルミ、銅クラッドアルミなどからなる直径50〜1500μm程度の丸状導体100を圧延ロール21などの常套手段により圧延することで、厚さ10〜500μm程度、幅100〜4000μm程度で、厚さ/幅の比率1:3〜1:50程度の平角状導体101を荒仕上げ形成する。   Step (1): As shown in FIGS. 1A to 1C, a round conductor 100 having a diameter of about 50 to 1500 μm made of copper, aluminum, copper clad aluminum, or the like is rolled by conventional means such as a rolling roll 21. Thus, the rectangular conductor 101 having a thickness of about 10 to 500 μm and a width of about 100 to 4000 μm and a thickness / width ratio of about 1: 3 to 1:50 is roughly finished.

工程(2):工程(1)で得られた平角状導体101を電着塗装槽22に浸漬して引き上げることで電着塗装を行い、平角状導体101に肉厚1〜30μm程度の絶縁被膜102を形成する。工程(2)は、本発明の第1の工程の一例である。   Step (2): The flat rectangular conductor 101 obtained in the step (1) is dipped in the electrodeposition coating tank 22 and pulled up to perform electrodeposition coating, and the flat rectangular conductor 101 has a thickness of about 1 to 30 μm. 102 is formed. Step (2) is an example of the first step of the present invention.

具体的には、図2(a)〜(c)に示すように、平角状導体101は、電着塗装槽22の下方に設置された図外の繰り出しローラから上方に向けて所定の走行速度にて導体長手方向に沿って送り出されている。また、平角状導体101は、プラス極となるように導体下方端が電源のプラス電極(図示省略)と接続されている。平角状導体101は、電着液23を貯えた電着塗装槽22の底壁部に設けられた導入孔24を介して、電着塗装槽22内に挿入されたうえで槽22内を下から上へ連続的に搬送されて電着塗装槽22から引き出される。   Specifically, as shown in FIGS. 2A to 2C, the rectangular conductor 101 has a predetermined traveling speed upward from an unillustrated feeding roller installed below the electrodeposition coating tank 22. Is sent out along the conductor longitudinal direction. The rectangular conductor 101 has a lower end connected to a positive electrode (not shown) of the power source so as to be a positive pole. The rectangular conductor 101 is inserted into the electrodeposition coating tank 22 through the introduction hole 24 provided in the bottom wall portion of the electrodeposition coating tank 22 in which the electrodeposition liquid 23 is stored, and then the interior of the tank 22 is lowered. Is continuously transported upward and drawn out from the electrodeposition coating tank 22.

電着塗装槽22は、電源のマイナス電極(図示省略)と接続されたマイナス電極25,25が差し込まれている。電着塗装槽22内の電着液23は、溶質として泳動中の樹脂微粒子(図示省略)を有している。電着塗装に用いる絶縁用塗料(電着液23)としては公知のもの(水分散性エポキシ・アクリル塗料等)を適用すれば良く、具体的には、水分散性のポリウレタン、エポキシ・アクリル、ポリエステルイミド、或いは水溶性のポリイミドなどが例示される。しかしながら、絶縁用塗料(電着液23)はこれらに限定されるものではない。   In the electrodeposition coating tank 22, negative electrodes 25 and 25 connected to a negative electrode (not shown) of a power source are inserted. The electrodeposition liquid 23 in the electrodeposition coating tank 22 has resin fine particles (not shown) during migration as a solute. As the insulating coating (electrodeposition liquid 23) used for electrodeposition coating, a known one (water-dispersible epoxy / acrylic paint, etc.) may be applied. Specifically, water-dispersible polyurethane, epoxy / acrylic, Examples include polyesterimide and water-soluble polyimide. However, the insulating paint (electrodeposition liquid 23) is not limited to these.

電着に際して電着液23内の樹脂微粒子は、上述のマイナス電極25、25によってマイナス電荷に帯電しているので、電気的な力によってプラス極である平角状導体101に引き寄せられる。そして樹脂微粒子は、平角状導体101の外面に付着して電着樹脂微粒子として平角状導体101の外面を覆う絶縁被膜102を形成する。ここで、電着塗装では、平角状導体101の角部に電界集中が起こるため、絶縁被膜102の四つの角部102aにおいて厚みが厚くなりやすく、その結果、幅方向両端の厚みが幅方向中央部より厚くなった非平坦な形状となる。以下、このような非平坦な形状をドッグボーン形状と称す。ドッグボーン形状の絶縁被膜102’を有する平角状導体101を、以下、平角状絶縁電線1Aと称する。平角状絶縁電線1Aには、未電着塗料(未着の電着液23’)が残存している。   During electrodeposition, the resin fine particles in the electrodeposition liquid 23 are negatively charged by the negative electrodes 25 and 25 described above, and therefore are attracted to the flat rectangular conductor 101 which is a positive pole by an electric force. The resin fine particles adhere to the outer surface of the rectangular conductor 101 and form an insulating coating 102 covering the outer surface of the rectangular conductor 101 as electrodeposited resin fine particles. Here, in the electrodeposition coating, since electric field concentration occurs at the corners of the flat rectangular conductor 101, the four corners 102a of the insulating coating 102 tend to be thick. As a result, the thickness at both ends in the width direction is the center in the width direction. The non-flat shape becomes thicker than the portion. Hereinafter, such a non-flat shape is referred to as a dogbone shape. The rectangular conductor 101 having the dog-bone-shaped insulating coating 102 ′ is hereinafter referred to as a rectangular insulating electric wire 1 </ b> A. In the flat rectangular insulated wire 1A, the non-electrodeposition paint (unattached electrodeposition liquid 23 ') remains.

工程(3):電着塗装槽22から引上げた平角状絶縁電線1Aにガスを吹き付けることで、絶縁被膜102’上に付着している未電着塗料(未着の電着液23’)を除去する。工程(3)は、本発明の第2の工程の一例である。   Step (3): By spraying gas onto the rectangular insulated wire 1A pulled up from the electrodeposition coating tank 22, the non-electrodeposition paint (unattached electrodeposition liquid 23 ') adhering to the insulating coating 102' is applied. Remove. Step (3) is an example of the second step of the present invention.

具体的には、図3(a)〜(c)に示すように、電着塗装槽22から引き上げられた平角状絶縁電線1Aに、その斜め上方から吹付ノズル103からガスを吹き付ける。ガスは空気、不活性ガス等からなる。不活性ガスとしては窒素ガスが好ましい。これにより絶縁被膜102’の表面に付着した未着の電着液23’が平角状絶縁電線1Aに沿って下方に落下し、それによって平角状導体101への絶縁被膜102の付着が均一化する。吹き付けるガスの温度は例えば5〜35℃である。ガス吹付量は例えば10〜80L/minである。工程(3)を経ても、絶縁被膜102’の角部102aの厚みは厚いままであり、したがって、平角状絶縁電線1Aはドッグボーン形状のままである。未着の電着液23’を除去した平角状絶縁電線1Aを、以下、平角状絶縁電線1Bと称する。なお、工程(3)は、ガス吹き付けの他、電着液除去ローラを平角状絶縁電線1Aに接触させることで、未着の電着液23’を平角状絶縁電線1Aから拭き取る構成としてもよい。   Specifically, as shown in FIGS. 3A to 3C, gas is sprayed from the spray nozzle 103 to the flat insulated wire 1 </ b> A pulled up from the electrodeposition coating tank 22 from obliquely above. The gas is air, inert gas, or the like. Nitrogen gas is preferred as the inert gas. As a result, the undeposited electrodeposition liquid 23 ′ adhering to the surface of the insulating coating 102 ′ drops downward along the flat rectangular insulated wire 1 </ b> A, thereby making the adhesion of the insulating coating 102 to the flat rectangular conductor 101 uniform. . The temperature of the blowing gas is, for example, 5 to 35 ° C. The gas spray amount is, for example, 10 to 80 L / min. Even after the step (3), the thickness of the corner portion 102a of the insulating coating 102 'remains thick, and thus the rectangular insulated wire 1A remains in a dogbone shape. Hereinafter, the rectangular insulated wire 1A from which the undeposited electrodeposition liquid 23 'has been removed will be referred to as a rectangular insulated wire 1B. The step (3) may be configured to wipe off the unattached electrodeposition liquid 23 ′ from the flat rectangular insulated wire 1 </ b> A by bringing the electrodeposition liquid removing roller into contact with the flat rectangular insulated wire 1 </ b> A in addition to gas spraying. .

工程(4):工程(3)において未着の電着液23’を除去した平角状絶縁電線1Bの絶縁被膜102を、図4(a)〜(c)に示すように、撥水体104によって平坦化する。以下、絶縁被膜102を平坦化して所定形状となった平角状絶縁電線1Bを平角状絶縁電線1Cと称する。工程(4)は、本発明の第3の工程の一例である。   Step (4): As shown in FIGS. 4A to 4C, the insulating coating 102 of the flat insulated wire 1B from which the electrodeposition liquid 23 ′ that has not been deposited in the step (3) is removed is formed by the water repellent body 104. Flatten. Hereinafter, the rectangular insulated wire 1B having a predetermined shape by flattening the insulating coating 102 is referred to as a rectangular insulated wire 1C. Step (4) is an example of the third step of the present invention.

撥水体104は一対設けられている。これら一対の撥水体104は、完成品である平角状絶縁電線1の電線厚みに応じて設定される離間間隔を空けて対向配置されている。撥水体104それぞれは、軸心104aを中心として回転自在な短軸長の円柱形状をした撥水ローラからなり、軸心104aを平角状導体101の幅方向(一方の対向面対101aの幅方向)と平行にして配置されている。撥水体104の軸長は、平角状絶縁電線1Bの幅寸法(一方の対向面対101aの幅方向寸法)と同等もしくは若干長寸に設定されている。撥水体104は、駆動モータ105に連動連結されており、駆動モータ105によって回転駆動される。図中左側の撥水体104は、駆動モータ105によって反時計回りに回転駆動され、図中右側の撥水体104は、駆動モータ105によって時計回りに回転駆動される。工程(4)を実施するに際して平角状絶縁電線1Bは、図示しない搬送機構によって図中下から上へと電線長手方向に沿って搬送されるのであるが、平角状絶縁電線1Bが挿通される撥水体104、104の回転方向は、上述したように、平角状絶縁電線1Bの搬送に追随する方向に設定されており、さらには、撥水体104、104の回転速度rは、平角状絶縁電線1Bの搬送速度vと同等に設定されている。ここでいう平角状絶縁電線1Bの搬送速度vと同等とは、平角状絶縁電線1Bの搬送速度v1より若干遅い速度を含む速度範囲(0.9v≦r≦v)である。なお、撥水体104は回転駆動するのが好ましいが、平角状絶縁電線1Bの搬送に追随して無駆動で回転するだけでもよい。   A pair of water repellent bodies 104 is provided. The pair of water-repellent bodies 104 are opposed to each other with a separation interval set according to the wire thickness of the flat rectangular insulated wire 1 that is a finished product. Each of the water-repellent bodies 104 is composed of a water-repellent roller having a short axial length that is rotatable about the shaft center 104a. ) In parallel with. The axial length of the water repellent body 104 is set to be equal to or slightly longer than the width dimension of the rectangular insulated wire 1B (the width direction dimension of the one opposed surface pair 101a). The water repellent body 104 is linked to the drive motor 105 and is driven to rotate by the drive motor 105. The water repellent body 104 on the left side in the figure is driven to rotate counterclockwise by the drive motor 105, and the water repellent body 104 on the right side in the figure is driven to rotate clockwise by the drive motor 105. When the step (4) is performed, the rectangular insulated wire 1B is conveyed along the longitudinal direction of the wire from the bottom to the top in the figure by a conveyance mechanism (not shown). As described above, the rotation direction of the water bodies 104 and 104 is set to follow the conveyance of the flat rectangular insulated wire 1B. Furthermore, the rotation speed r of the water repellent bodies 104 and 104 is set to the rectangular insulated wire 1B. Is set equal to the transport speed v. Here, the equivalent to the conveyance speed v of the rectangular insulated wire 1B is a speed range (0.9 v ≦ r ≦ v) including a speed slightly lower than the conveyance speed v1 of the rectangular insulated wire 1B. Although the water repellent body 104 is preferably driven to rotate, it may be rotated without being driven following the conveyance of the rectangular insulated wire 1B.

撥水体104は、平角状導体101に形成した絶縁被膜102を平角状導体101から剥離させないことが重要であり、そのために、撥水性の高いポリテトラフルオロエチレン(PTFE)等のフッ素樹脂から構成される。しかしながら、撥水性の高い材料であれば他の材料から構成してもよい。また、撥水体104は、その全体を撥水材料から構成してもよいのはもちろんであるが、少なくともその周面部位のみを撥水材料から構成すればよい。   It is important that the water repellent body 104 does not peel off the insulating coating 102 formed on the flat rectangular conductor 101 from the flat rectangular conductor 101. For this reason, the water repellent body 104 is made of a fluororesin such as polytetrafluoroethylene (PTFE) having high water repellency. The However, any material having high water repellency may be used. The entire water-repellent body 104 may be composed of a water-repellent material, but at least only the peripheral surface portion may be composed of a water-repellent material.

工程(4)では、工程(3)を経た平角状絶縁電線1Bを、その一方の対向面対(長辺)101aが撥水体104に対向する向きにし、その状態で平角状絶縁電線1Bを撥水体104の間に通過させることで、一方の対向面対101a側の絶縁被膜102の表面を平角状絶縁電線1の電線厚みに応じた厚みで平坦化処理する。これにより、絶縁被膜102の角部102aの厚肉部は均されて幅方向中央部と同等の厚みに平坦化される。   In the step (4), the rectangular insulated wire 1B that has undergone the step (3) is oriented so that one of the opposed surface pairs (long sides) 101a faces the water-repellent body 104, and in this state, the rectangular insulated wire 1B is repelled. By passing between the water bodies 104, the surface of the insulating coating 102 on the one opposing surface pair 101 a side is flattened with a thickness according to the thickness of the flat insulated wire 1. Thereby, the thick part of the corner | angular part 102a of the insulating film 102 is leveled, and is planarized by the thickness equivalent to the center part of the width direction.

なお、上述したように、撥水体104を回転可能に固定配置した状態で平角状絶縁電線1Bを、電線長手方向に沿って撥水体104の間に通過させる他、平角状絶縁電線1Bを固定配置したうえで、回転自在な撥水体104で平角状絶縁電線1’を挟持し、この状態で撥水体104を、平角状絶縁電線1Bの長手方向に沿って移動させるようにしてもよい。   As described above, the rectangular insulated wire 1B is passed between the water-repellent bodies 104 along the longitudinal direction of the wire while the water-repellent body 104 is fixedly arranged in a rotatable manner, and the rectangular insulated wire 1B is fixedly arranged. In addition, the rectangular insulated wire 1 ′ may be sandwiched by the rotatable water repellent body 104, and the water repellent body 104 may be moved along the longitudinal direction of the rectangular insulated wire 1 B in this state.

上述した平坦化処理では、撥水体104の周面が撥水材料から構成されているので、絶縁被膜102は撥水体104に貼着しにくくなっている。さらには、撥水体104は回転可能な円柱体形状をしており絶縁被膜102の表面を転動するので、絶縁被膜102は撥水体104にさらに貼着しにくくなっている。さらにまた、撥水体104自身を平角状絶縁電線1Bの搬送速度と同等の速度で回転駆動させるので、絶縁被膜102は撥水体104にさらに貼着しにくくなっている。以上のことから、絶縁被膜102の平坦化処理中に絶縁被膜102が平角状導体101から剥離することがほとんどない。なお、撥水体104は、平角状絶縁電線1Bを挟んで対向配置するほか、オフセット(段違い)で配置してもよい。   In the flattening process described above, the peripheral surface of the water repellent body 104 is made of a water repellent material, so that the insulating coating 102 is difficult to adhere to the water repellent body 104. Furthermore, the water-repellent body 104 has a rotatable cylindrical shape and rolls on the surface of the insulating coating 102, so that the insulating coating 102 is more difficult to adhere to the water-repellent body 104. Furthermore, since the water-repellent body 104 itself is driven to rotate at a speed equivalent to the conveying speed of the flat insulated wire 1B, the insulating coating 102 is more difficult to adhere to the water-repellent body 104. From the above, the insulating coating 102 hardly peels from the flat conductor 101 during the planarization treatment of the insulating coating 102. In addition, the water repellent body 104 may be arranged with an offset (step difference) in addition to the opposed arrangement with the rectangular insulated wire 1B interposed therebetween.

上述した平坦化処理(工程(4))では、平角状導体101の一方の対向面対101aに形成した絶縁被膜102に接触する撥水体104を新たに設けて処理を実施していたが、平角状絶縁電線1Bの搬送に用いる搬送ローラ(図示省略)の表面を撥水材料から構成したうえでその搬送ローラを対向配置することで撥水体としてもよい。   In the flattening process (step (4)) described above, the water repellent body 104 that is in contact with the insulating film 102 formed on the one opposing surface pair 101a of the flat conductor 101 is newly provided. The surface of a transport roller (not shown) used for transporting the insulated wire 1B may be made of a water-repellent material, and the transport roller may be disposed to face the water-repellent body.

また、平坦化処理を必要とするのは、厚みが他の部位より厚い絶縁被膜102の角部102aである。そのため、絶縁被膜102の角部102aに当接する部位だけに撥水体104を設けてもよい。   Further, it is the corner portion 102a of the insulating coating 102 whose thickness is thicker than that of the other portion that needs to be planarized. For this reason, the water repellent body 104 may be provided only in a portion that contacts the corner portion 102 a of the insulating coating 102.

工程(5):図5(a)〜(c)に示すように、平坦化処理が完了した平角状絶縁電線1Cを硬化炉26にて温度150〜500℃程度(好適には180〜450℃程度であり、最適には350℃)で熱硬化させて、平角状絶縁電線1とする。その後、作製した平角状絶縁電線1を巻き取る。工程(5)は、本発明の第4の工程の一例である。   Step (5): As shown in FIGS. 5 (a) to 5 (c), the flat rectangular insulated wire 1C having been subjected to the flattening process is heated in a curing furnace 26 at a temperature of about 150 to 500 ° C. (preferably 180 to 450 ° C. And is cured at 350 ° C. optimally to obtain a rectangular insulated wire 1. Then, the produced flat insulated wire 1 is wound up. Step (5) is an example of the fourth step of the present invention.

焼成炉26は、例えば、50℃→100℃→150℃→200℃→250℃→300℃→350℃といったように、段階的に温度が高くなっているように温度域が設定されていることが好ましく、そうすることで急激な温度上昇に伴う絶縁被膜102の発泡を抑制して緻密で均一な絶縁被膜102を得ることができる。   The temperature range of the firing furnace 26 is set so that the temperature gradually increases, for example, 50 ° C. → 100 ° C. → 150 ° C. → 200 ° C. → 250 ° C. → 300 ° C. → 350 ° C. It is preferable, and by doing so, it is possible to obtain a dense and uniform insulating film 102 by suppressing foaming of the insulating film 102 due to a rapid temperature rise.

以上のようにして、最後に温度350℃の硬化炉を通過させるという熱硬化処理を行うことによって平角状絶縁電線1Cの絶縁被膜2を完全に硬化させる。これにより平角状導体101と均一厚さを有する絶縁被膜2とからなる平角状絶縁電線1が製品として提供される。   As described above, the insulation coating 2 of the rectangular insulated wire 1C is completely cured by performing a heat curing process of finally passing through a curing furnace having a temperature of 350 ° C. As a result, the rectangular insulated wire 1 comprising the rectangular conductor 101 and the insulating coating 2 having a uniform thickness is provided as a product.

このようにして得られた平角状絶縁電線1は、コイルに重ね巻きしても上下に相互に隣接する電線同士間に空隙が発生しなくなり、コイルにおける平角状導体101のスペースファクタが大きくなる。   Even if the rectangular insulated wire 1 obtained in this way is wound around a coil, no gap is generated between the adjacent wires in the vertical direction, and the space factor of the rectangular conductor 101 in the coil increases.

上述した工程(4)においては、撥水ローラからなる撥水体104を回転駆動する駆動モータ105を設けたが、駆動モータ105を無くしてもよい。さらには、図6に示すように、回転しないヘラ状の撥水スキージから撥水体104’を構成してもよい。なお、図6では、撥水体104’は、平角状絶縁電線1Cから若干離間した状態で図示されているが、実際には撥水体104’は平角状絶縁電線1Cに当接しているのはいうまでもない。   In the above-described step (4), the drive motor 105 that rotationally drives the water-repellent body 104 including the water-repellent roller is provided, but the drive motor 105 may be omitted. Furthermore, as shown in FIG. 6, the water-repellent body 104 'may be constituted by a spatula-like water-repellent squeegee that does not rotate. In FIG. 6, the water repellent body 104 ′ is illustrated in a state slightly separated from the flat rectangular insulated wire 1 C, but actually the water repellent body 104 ′ is in contact with the flat rectangular insulated wire 1 C. Not too long.

1 平角状絶縁電線
1A〜1C 平角状絶縁電線(製造途中状態)
21 圧延ロール
22 電着塗装槽
23 電着液
23’未着の電着液(未電着塗料)
24 導入孔
25 マイナス電極
26 硬化炉
100 丸状導体
101 平角状導体
101a 一方の対向面対
101b 他方の対向面対
102 絶縁被膜
102a 角部
103 吹付ノズル
104 撥水体
104a 軸心
105 駆動モータ
1 Flat insulated wire 1A to 1C Flat insulated wire (during manufacturing)
21 Roll 22 Electrodeposition tank 23 Electrodeposition liquid 23 'non-deposition electrodeposition liquid (non-electrodeposition paint)
24 Introducing hole 25 Negative electrode 26 Curing furnace 100 Round conductor 101 Flat conductor 101a One opposing surface pair 101b The other opposing surface pair 102 Insulating coating 102a Corner portion 103 Spray nozzle 104 Water repellent body 104a Axle 105 Drive motor

Claims (4)

矩形状の横断面形状を有して平角状絶縁電線の電線心材となる平角状導体の表面に、電着塗装処理によって絶縁被膜を形成する第1の工程と、
前記絶縁被膜に付着している未電着塗料を除去する第2の工程と、
撥水体を、前記平角状導体の一方の対向面対の少なくとも幅方向両端に当接させた状態で、前記平角状導体を前記撥水体に対して相対移動させることで、前記一方の対向面対を平坦化する第3の工程と、
前記絶縁被膜を硬化させて前記平角状絶縁電線を形成する第4の工程と、
を含む、
ことを特徴とする平角状絶縁電線の製造方法。
A first step of forming an insulating coating on the surface of a rectangular conductor having a rectangular cross-sectional shape and serving as a wire core of a rectangular insulating wire by an electrodeposition coating process;
A second step of removing the non-electrodeposition paint adhering to the insulating coating;
In a state where the water repellent body is in contact with at least both ends in the width direction of the one opposing surface pair of the flat rectangular conductor, the rectangular conductor is moved relative to the water repellent body, thereby the one opposing surface pair. A third step of flattening;
A fourth step of curing the insulating coating to form the rectangular insulated wire;
including,
A method for producing a rectangular insulated wire, characterized in that:
前記第3の工程では、前記撥水体を前記平角状絶縁電線の電線厚みに応じて設定される離間間隔を空けて対向配置させた状態で、未電着塗料除去済みの前記平角状導体を、前記一方の対向面対が前記撥水体に対向する向きにして前記撥水体の間を導体長手方向に沿って通過させることで、前記一方の対向面対を平坦化する、
ことを特徴とする、請求項1に記載の平角状絶縁電線の製造方法。
In the third step, in the state where the water-repellent body is disposed oppositely with a spacing interval set according to the thickness of the flat insulated wire, the rectangular conductor from which the non-electrodeposition paint has been removed, The one opposing surface pair is flattened by passing between the water repellent bodies along the conductor longitudinal direction in a direction in which the one opposing surface pair faces the water repellent body,
The manufacturing method of the flat insulated insulated wire of Claim 1 characterized by the above-mentioned.
前記第3の工程では、前記撥水体として、前記平角状導体の幅方向と平行となった軸心を有し少なくとも表面が撥水材料からなる撥水ローラを用いる、
ことを特徴とする、請求項1または2に記載の平角状絶縁電線の製造方法。
In the third step, as the water repellent body, a water repellent roller having an axial center parallel to the width direction of the rectangular conductor and having at least a surface made of a water repellent material is used.
The manufacturing method of the flat insulated insulated wire of Claim 1 or 2 characterized by the above-mentioned.
前記第3の工程では、前記撥水ローラを、未電着塗料除去済みの前記平角状導体の搬送方向に沿う方向に回転駆動させながら、未電着塗料除去済みの前記平角状導体を前記撥水体の間を通過させ、かつ前記撥水ローラの回転速度を、未電着塗料除去済みの前記平角状導体の搬送速度と同等にする、
請求項3に記載の平角状絶縁電線の製造方法。
In the third step, the water-repellent roller is driven to rotate in a direction along the conveying direction of the non-electrodeposited paint-removed flat conductor, while the non-electrodeposit-painted flat conductor is removed. Pass between water bodies, and the rotational speed of the water repellent roller is equal to the conveying speed of the rectangular conductor from which the non-electrodeposition paint has been removed,
The manufacturing method of the rectangular insulated wire of Claim 3.
JP2012075910A 2012-03-29 2012-03-29 Method of producing rectangular insulated wire Pending JP2013206783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075910A JP2013206783A (en) 2012-03-29 2012-03-29 Method of producing rectangular insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075910A JP2013206783A (en) 2012-03-29 2012-03-29 Method of producing rectangular insulated wire

Publications (1)

Publication Number Publication Date
JP2013206783A true JP2013206783A (en) 2013-10-07

Family

ID=49525650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075910A Pending JP2013206783A (en) 2012-03-29 2012-03-29 Method of producing rectangular insulated wire

Country Status (1)

Country Link
JP (1) JP2013206783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177026A1 (en) * 2018-03-14 2019-09-19 三菱マテリアル株式会社 Method for manufacturing insulated conductor wire material
CN113555169A (en) * 2021-08-04 2021-10-26 铜陵市创威科技有限责任公司 Flat wire single-side painting die

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3401058A (en) * 1964-10-16 1968-09-10 Westinghouse Electric Corp Method of coating electrical conductors
JPS518445Y1 (en) * 1970-10-05 1976-03-06
JPS52136374A (en) * 1976-05-08 1977-11-15 Mitsubishi Electric Corp Manufacturing method of electrodepositing insulation wire
JP2010140641A (en) * 2008-12-09 2010-06-24 Mitsubishi Cable Ind Ltd Manufacturing method of insulated wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3401058A (en) * 1964-10-16 1968-09-10 Westinghouse Electric Corp Method of coating electrical conductors
JPS518445Y1 (en) * 1970-10-05 1976-03-06
JPS52136374A (en) * 1976-05-08 1977-11-15 Mitsubishi Electric Corp Manufacturing method of electrodepositing insulation wire
JP2010140641A (en) * 2008-12-09 2010-06-24 Mitsubishi Cable Ind Ltd Manufacturing method of insulated wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177026A1 (en) * 2018-03-14 2019-09-19 三菱マテリアル株式会社 Method for manufacturing insulated conductor wire material
JP2019160637A (en) * 2018-03-14 2019-09-19 三菱マテリアル株式会社 Manufacturing method of insulation conductor wire material
CN111819640A (en) * 2018-03-14 2020-10-23 三菱综合材料株式会社 Method for manufacturing insulated conductor wire
EP3767645A4 (en) * 2018-03-14 2021-12-08 Mitsubishi Materials Corporation Method for manufacturing insulated conductor wire material
CN113555169A (en) * 2021-08-04 2021-10-26 铜陵市创威科技有限责任公司 Flat wire single-side painting die

Similar Documents

Publication Publication Date Title
CN111357062B (en) Insulated conductor and method for manufacturing insulated conductor
FR2555599A1 (en) METHOD OF ELECTROLYTICALLY DEPOSITING AN INSULATION ON ELECTRICAL CONNECTIONS
CN101552140B (en) Method for manufacturing electrode foil
CN109801745A (en) A kind of new-energy automobile driving motor electromagnetic wire and preparation method thereof
CN103778994B (en) The anodization electric wire and its manufacture method of multiple coating
JP6822252B2 (en) Coil and its manufacturing method
JP2013206783A (en) Method of producing rectangular insulated wire
JP2010140641A (en) Manufacturing method of insulated wire
JP2013045624A (en) Coating method of wire surface, manufacturing method of insulated wire, and insulated wire
JP7398376B2 (en) Method for manufacturing parts with cavities
JP5084227B2 (en) Insulated wire manufacturing method, insulated wire, and electric coil
CN112606372A (en) Preparation method of high-barrier aluminized polyethylene film
US20200290834A1 (en) Conveying device
JP2008085077A (en) Ring-shaped insulating coil board and its manufacturing method
WO2019172120A1 (en) Insulated flat rectangular conductor, coil and method for producing insulated flat rectangular conductor
WO2019177026A1 (en) Method for manufacturing insulated conductor wire material
KR101677443B1 (en) Apparatus and method for insulation coating of electrical steel sheet and electrical steel sheet manufactured using the same
JP2008041568A (en) Straight angle electric wire having semiconductive layer, and manufacturing method therefor
CN106409403A (en) Flat enameled wire and manufacturing process thereof
US3525652A (en) Method of manufacturing an insulated foil conductor
JP2571594B2 (en) Anti-corrosion rolling bearing
US3401058A (en) Method of coating electrical conductors
WO2021020386A1 (en) Insulating superconducting wire material, method of manufacturing insulating superconducting wire material, and superconducting coil
EP3214624B1 (en) Insulated electric wire and method for manufacturing same
JP2699210B2 (en) Flat rectangular insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160301