JPS6035590A - Planar type semiconductor light emitting device - Google Patents

Planar type semiconductor light emitting device

Info

Publication number
JPS6035590A
JPS6035590A JP58143897A JP14389783A JPS6035590A JP S6035590 A JPS6035590 A JP S6035590A JP 58143897 A JP58143897 A JP 58143897A JP 14389783 A JP14389783 A JP 14389783A JP S6035590 A JPS6035590 A JP S6035590A
Authority
JP
Japan
Prior art keywords
active layer
region
light emitting
layer
type region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58143897A
Other languages
Japanese (ja)
Other versions
JPS6355878B2 (en
Inventor
Takao Uchiumi
孝雄 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58143897A priority Critical patent/JPS6035590A/en
Publication of JPS6035590A publication Critical patent/JPS6035590A/en
Publication of JPS6355878B2 publication Critical patent/JPS6355878B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06203Transistor-type lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer

Abstract

PURPOSE:To simplify the manufacture and further facilitate the control of the luminous efficiency of laser and the luminous position of light emitting mode characteristic by a method wherein an electrode and a control electrode in which driving current is injected are formed on the same plane. CONSTITUTION:A double hetero-junction structure 15 consisting of the lower clad layer 13, an active layer 12, and the upper clad layer 14 is formed on a substrate crystal 11, and P type and N type impurities are diffused and ion-implanted respectively to depths reaching at least the active layer 12 in parallel at fixed intervals in the longitudinal direction of the layer 14, resulting in the formation of a P type region 16 and an N type region 17 in the active layer 12 on both sides of a light emitting region 18 constituting the active layer. Metallic electrodes 19 and 20 are evaporated on respective regions, and a metallic stripe-form electrode 21 is provided as the control electrode between the P type region 16 and the N type region 17 of the layer 14.

Description

【発明の詳細な説明】 この発明は同一平面上に駆動電流注入電極を備えたプレ
ーナ型の発光ダイオード、半導体レーザなどの半導体発
光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light emitting device, such as a planar light emitting diode or a semiconductor laser, which has drive current injection electrodes on the same plane.

半導体レーザはダブルへテロ接合構造とすることにより
閾値電流が低減し、室温での連続発振が実現されるよう
になった。このダブルへテロ接合半導体レーザの基本構
造の一実施例は第1図に示すようにGaAa基板/上に
GaAs と殆ど格子定数が等しく且つ禁制帯エネルギ
ー幅の大きい下部クラッド層としてのtt −AI G
ctAa層3、活性層としてのGaAs層コ、更にその
上に上部クラッド層としてのP AlGaAs N I
Iを液相成るいは気相エピタキシャル成長法により順次
形成することによ多構成される。このようなダブルへテ
ロ接合構造Sのp−AlGaAs層ヶをグラスにし、n
 1GaAs層3をマイナスにして順方向バイアス電流
を加えると、電子と正孔が活性層コに注入され、注入さ
nた電子と正孔は活性層と両クラッド層の間のへテロ接
合によって作られたポテンシャル障壁によって拡散が抑
えられ、効率よく活性層内に閉じ込められて電子と正孔
の再結合により光が生じる。発振閾値は主として活性層
の厚さ、即ちキャリア密度並びに光の密度に依存し、活
性層は現在サブミクロンのオーダで制御して形成するこ
とができるようになつたので、僅かな電流で活性層内の
電子と正孔の密度を高くすることができる。一方、バン
ドギャップの小さな活性層の屈折率はバンドギャップの
大きなりラッド層の屈折率よシも大きく、従って活性層
をコアとする誘導体導波路が形成され、活性層内での電
子と正孔の再結合によって生じた光は活性層内を伝播す
ることになり、結晶の臂開面を利用して構成された共振
器によって訪導放出作用を繰シ返して増幅され、レーザ
発振が起る。
Semiconductor lasers have a double heterojunction structure, which reduces the threshold current and enables continuous oscillation at room temperature. One embodiment of the basic structure of this double heterojunction semiconductor laser is as shown in FIG.
ctAa layer 3, GaAs layer 3 as an active layer, and P AlGaAs N I as an upper cladding layer on top of it.
It is constructed by sequentially forming I by liquid phase or vapor phase epitaxial growth. The p-AlGaAs layer of such a double heterojunction structure S is made into a glass, and the n
1 When the GaAs layer 3 is made negative and a forward bias current is applied, electrons and holes are injected into the active layer, and the injected electrons and holes are created by the heterojunction between the active layer and both cladding layers. Diffusion is suppressed by the potential barrier and efficiently confined within the active layer, where electrons and holes recombine to generate light. The oscillation threshold mainly depends on the thickness of the active layer, that is, the carrier density and the density of light, and since the active layer can now be formed with control on the order of submicrons, the active layer can be formed with a small amount of current. The density of electrons and holes within can be increased. On the other hand, the refractive index of the active layer with a small bandgap is larger than that of the LAD layer with a large bandgap. Therefore, a dielectric waveguide is formed with the active layer as the core, and electrons and holes within the active layer are formed. The light generated by the recombination propagates within the active layer, and is amplified by repeating the guided emission action in a resonator constructed using the open plane of the crystal, resulting in laser oscillation. .

上述の如く、ダブルへテロ接合構造によって発光ダイオ
ード成るいは半導体レーザは実用に供されるように々す
、ミクロンオーダのものが出現して更に電界効果型トラ
ンジスタなどの電子素子と組合せ光−電子集積回路を構
成する試みも表されている。
As mentioned above, light-emitting diodes or semiconductor lasers are being put into practical use due to the double heterojunction structure, and devices on the micron order have appeared, and photo-electronic devices have been combined with electronic devices such as field-effect transistors. Attempts to construct integrated circuits are also represented.

しかるに上述の如き発光ダイオード成るいは半導体レー
ザはダブルへテロ接合の活性層に対して垂直な方向に駆
動電流を流しているため、電界効果型トランジスタの↓
うに電極を同一平面に設けるような構成とすることがで
きず、従って光−電子集積回路を構成する場合、製造工
程が非常に複雑となることは避けられない。
However, in the above-mentioned light emitting diode or semiconductor laser, the drive current flows in a direction perpendicular to the active layer of the double heterojunction, so the field effect transistor's ↓
Therefore, when forming an opto-electronic integrated circuit, it is inevitable that the manufacturing process becomes very complicated.

この発明の目的は駆動電流注入用電極及び制御電極が同
一平面上に設けられて発光効率、発光モード特性、発光
位置などを容易に制御することのできる発光ダイオード
成るいは半導体レーザなどのプレーナ型半導体発光装置
を提供することにある。
The object of the present invention is to provide a planar type light emitting diode or semiconductor laser, in which a drive current injection electrode and a control electrode are provided on the same plane so that luminous efficiency, luminous mode characteristics, luminous position, etc. can be easily controlled. An object of the present invention is to provide a semiconductor light emitting device.

第2図に示した一実施例により本発明による半導体発光
装置を説明すると、GaA3などの半絶縁性基板結晶/
lの上に上記基板結晶と格子定数が等しく、且つ禁制帯
エネルギー幅の大きい半絶縁性の半導体結晶層/3が下
部クラッド層として設けられ、その上に活性層として禁
制帯エネルギー幅の小さい半導体結晶層/2が設けられ
、更にその上に禁制帯エネルギー幅の大きい半絶縁性の
半導体結晶層/Vが積層状に設けられている。
The semiconductor light emitting device according to the present invention will be explained with reference to an embodiment shown in FIG.
A semi-insulating semiconductor crystal layer /3 having a lattice constant equal to that of the substrate crystal and having a large forbidden band energy width is provided as a lower cladding layer on top of the substrate crystal, and a semiconductor crystal having a small forbidden band energy width is provided on top of this as an active layer. A crystal layer /2 is provided, and a semi-insulating semiconductor crystal layer /V having a large forbidden band energy width is further provided in a laminated manner on top of the crystal layer /2.

この多層構造15は半導体レーザ装置のダブルペテロ接
合構造と同じであって、膜厚制御性の良い気相エピタキ
シャル成長法又は分子線エピタキシャル成長法により形
成するが、公知の液相エピタキシャル成長法を用いて形
成することもできる。
This multilayer structure 15 is the same as the double Peter junction structure of a semiconductor laser device, and is formed by a vapor phase epitaxial growth method or a molecular beam epitaxial growth method with good film thickness controllability, but it is formed by using a known liquid phase epitaxial growth method. You can also do that.

このダブルへテロ接合を構成する半導体層としてはGa
Alks/GaAs 、 I?LG(LAIIP/I?
LP 、 InGaAsP/Gapsなどが挙げられ、
構成材料によシ発振波長が変る。ダブルへテロ接合構造
/Sのうち、アンドープの活性層12の上下のクラッド
層1.3./IIについては、通常のダブルへテロ接合
構造の半導体レーザ装置と異ガリ、導電性である必要は
なく、また一方のクラッド層をn型、他方をp型と異っ
た電導型にする必要もなく、絶縁性の高い半導体で構成
する。
The semiconductor layer constituting this double heterojunction is made of Ga.
Alks/GaAs, I? LG(LAIIP/I?
Examples include LP, InGaAsP/Gaps, etc.
The oscillation wavelength changes depending on the constituent material. In the double heterojunction structure/S, cladding layers 1.3 above and below the undoped active layer 12. Regarding /II, it is different from a normal double heterojunction structure semiconductor laser device, and it does not need to be conductive, and it is necessary to have one cladding layer of n-type and the other of p-type, which is a different conductivity type. It is made of a highly insulating semiconductor.

このクラッド層の絶縁性が低いと横向きの励起電流に平
行したリーク電流を引き起すばかりでなく、後に詳述す
る電界効果制御電極にもリーク電流を引き起こす、こと
になるのでそれ相当の高い絶縁性であることが必要であ
る。このため、特に上部クラッド層/ダの絶縁性が不充
分な場合は、その上に更に数1ooX程度の厚さの5s
Ot * 5ZN4などの絶縁膜を設けて絶縁性を高め
る。このように、クラッド層が高い絶縁性であると、同
一平面上に電界効果型トランジスタを形成するような場
合も都合が良い。
If the insulation of this cladding layer is low, it will not only cause leakage current parallel to the lateral excitation current, but also leakage current to the field effect control electrode, which will be detailed later. It is necessary that For this reason, especially if the insulation of the upper cladding layer/da is insufficient, an additional 5s
An insulating film such as Ot*5ZN4 is provided to improve insulation. In this way, it is convenient for the cladding layer to have high insulating properties when field effect transistors are formed on the same plane.

上述の如く、格子定数がほぼ等しく、禁制帯エネルギー
幅の異なる結晶層にてダブルへテロ接合構造lSを基板
結晶//上に形成したら、上部クラッド層/グの長さ方
向に所定の間隔を保って平行にp型不純物とn型不純物
をそれぞj、少くとも活性層/ユに達する深さまで拡散
またはイオン注入して、p型領域/6とn型領域/7を
形成し、それぞれの領域上には金属電極/9..20を
蒸着する。−例として、n−IJ不純物にSz、7)型
不純物にBeを用い、イオン注入濃度10” 〜10”
cm−”で120KgVの加速エネルギーによりイオン
注入を行うと、不純物添加濃度として、10′?−10
111cm−”程度の所要濃度のイオン注入領域が得ら
れる。
As mentioned above, once a double heterojunction structure IS is formed on the substrate crystal using crystal layers having approximately the same lattice constant and different forbidden band energy widths, a predetermined interval is formed in the length direction of the upper cladding layer. p-type impurities and n-type impurities are diffused or ion-implanted in parallel to each other to a depth that reaches at least the active layer/U to form a p-type region/6 and an n-type region/7. Metal electrode on the area/9. .. 20 is deposited. - As an example, using Sz as the n-IJ impurity and Be as the 7) type impurity, the ion implantation concentration is 10" to 10"
When ion implantation is performed with an acceleration energy of 120 KgV at cm-", the impurity doping concentration is 10'?-10
An ion implantation region of the required concentration of about 111 cm-'' is obtained.

従って、活性層/Jには活性層を構成しているアンドー
プ半導体結晶層(発光領域)igを中心としその両側に
p型領域/6とn型領域/りを配置したp −i −n
接合を形成することになる。なお、半導体発光装置が半
導体レーザを構成する場合は、ダブルヘテロ接合構造/
Sの両端面を垂直に骨間またはエツチングして反射鏡(
共振器)を形成する。
Therefore, the active layer /J has an undoped semiconductor crystal layer (light emitting region) ig constituting the active layer as the center, and a p-type region /6 and an n-type region /i are arranged on both sides of the p-i-n layer.
A bond will be formed. Note that when the semiconductor light emitting device constitutes a semiconductor laser, a double heterojunction structure/
A reflector (
resonator).

上記実施例において活性層はアンドープ半導体結晶層を
用いたが、活性層は必ずしも真性半導体でおる必要はガ
く、n+−pC活性層)−p”+C−π(またはν) 
−p++$+−n−p+ の構成でも同様の効果が得ら
れる。
In the above embodiments, an undoped semiconductor crystal layer was used as the active layer, but the active layer does not necessarily have to be an intrinsic semiconductor.
A similar effect can be obtained with the configuration -p++$+-n-p+.

上部クラッド層lqのp型領域/ろとn型領域17の間
には金九ストライプ状電極、2/を制御電極として設け
る。
Between the p-type region/ro and the n-type region 17 of the upper cladding layer lq, a gold nine-striped electrode, 2/, is provided as a control electrode.

上述の如き構成において、p型領域/Aより正孔電流を
、n型領域/7より電子電流を両領域に電位を付加する
ことにより注入する。レーザ発振に必要な10I10l
8t 程度の高い電子・正孔対密度昧従来のダブルへテ
ロ接合レーザにおけるp−n方向のキャリヤの閉じ込め
によることに依存するのではなく、活性層の薄い層の側
面の狭いキャリヤ注入面より高電流密度注入により達成
される。
In the above configuration, a hole current is injected from the p-type region /A and an electron current is injected from the n-type region /7 by applying a potential to both regions. 10I10L required for laser oscillation
The high electron/hole pair density on the order of 8t does not depend on carrier confinement in the p-n direction in conventional double heterojunction lasers, but rather on the narrow carrier injection surface on the sides of the thin layer of the active layer. Achieved by current density injection.

具体的に注入電流密度は活性層の厚さ、p副領域よりn
型領域までの距離などにより決定し、先ずp領域16と
n領域/7の間に低い順方向電圧を印加すると、注入さ
れた電子と正孔は狭い活性層の発光領域7gにおいて対
向流となり、相互に衝突、散乱を繰返すが、電子・正孔
密度が低いため殆どが再結合することなく発光領域を通
過して、電子はp領域に、正孔はn領域に達し、そこで
それぞn再結合する。この時、上下クラッド磨は高絶縁
性のため注入電流の漏洩は殆ど生じない。しかし、p領
域、n領域共に結晶欠陥が多く存在し、再結合による発
光効率は低い。
Specifically, the injection current density is determined by the thickness of the active layer, from the p subregion to the n
When a low forward voltage is first applied between the p region 16 and the n region/7, which is determined by the distance to the mold region, the injected electrons and holes become countercurrents in the narrow light emitting region 7g of the active layer. They repeatedly collide and scatter each other, but because the density of electrons and holes is low, most of them pass through the light-emitting region without recombining, and the electrons reach the p region and the holes reach the n region, where they undergo n regeneration. Join. At this time, since the upper and lower claddings have high insulation properties, almost no leakage of the injected current occurs. However, there are many crystal defects in both the p region and the n region, and the luminous efficiency due to recombination is low.

印加する順方向電圧を高めると、電子・正孔の注入電流
密度が増大し、発光領域内を通過する電子・正孔密度が
増大する。電子密度が10’δcIn−”程度に達する
と、電子と正孔の再結合時間、即ちキャリヤ寿命が短縮
し、発光領域内での発光再結合の起る確率が増大する。
When the applied forward voltage is increased, the injection current density of electrons and holes increases, and the density of electrons and holes passing through the light emitting region increases. When the electron density reaches about 10'δcIn-'', the recombination time of electrons and holes, that is, the carrier lifetime, decreases, and the probability of radiative recombination occurring within the light emitting region increases.

発光領域内での電子と正孔の再結合は発光効率も高く、
光の場の強さも併せて増大する。光の場の強さが成る閾
値を越すと、光の自然放出と併せて光の場による光の誘
導放出が起り、遂にレーシング状態となって、発光領域
の両端面よ一すレーザ光が発振する。一旦レーシングが
おこるとこのレーザ光は、電子と正孔の再結合がイオン
注入された欠陥の多い領域でなく、艮い結晶性の発光領
域の中央で主として行われるため、最も強く発振し、発
光領域の上下はダブルへテロ接合により充分に光の閉じ
込めを行うことができ、横方向においてもp副領域とn
型領域により成る程度の光の閉じ込めが行われる。上述
のレーシング状態とする注入電流密度が閾値電流密度と
呼ば几るものであり、実際にレーシングの起る閾値電流
密度は10’4/i以上と高く、印加電圧に対するその
値は空間電荷効果によって抑制される。
The recombination of electrons and holes within the light emitting region has high luminous efficiency.
The strength of the light field also increases. When the strength of the light field exceeds a threshold, stimulated emission of light by the light field occurs in addition to spontaneous light emission, and finally a racing state occurs, and laser light oscillates on both end faces of the light emitting region. do. Once lacing occurs, this laser light oscillates most strongly and emits light because the recombination of electrons and holes occurs mainly in the center of the crystalline light-emitting region, rather than in the ion-implanted defect-rich region. Double heterojunctions can sufficiently confine light at the top and bottom of the region, and in the lateral direction, the p subregion and n subregion
A degree of light confinement is provided by the mold region. The injected current density that produces the above-mentioned racing state is called the threshold current density, and the threshold current density at which racing actually occurs is as high as 10'4/i or more, and its value with respect to the applied voltage varies due to the space charge effect. suppressed.

次に両不純物領域間に設けた制御電極コ/の作用につい
て説明すると、先ず、制御電極に外部より電位を印加し
ない場合制御電極2/とp領域16の間隙をdpXまた
n型領域/りの間隙をdnとし、制御電極の電位とp副
領域及びn型領域との電制両電極がp副領域とn型領域
の丁度中間に位置させると、制御電極は常に自動的にp
副領域の電位とn型領域の電位の中間の電位に保たれる
ため、制御電極とそれぞれの領域間の間隔dp 、 d
nを小さくすることにより霜、子注入と正孔注入を同時
に促進する効果がある。
Next, to explain the action of the control electrode 2/ provided between both impurity regions, first, when no potential is applied to the control electrode from the outside, the gap between the control electrode 2/ and the p-region 16 is dpX or the n-type region/ If the gap is dn and both electrodes are located exactly between the p sub-region and the n-type region, the potential of the control electrode and the p-subregion and the n-type region are located exactly between the p-subregion and the n-type region.
Since it is kept at a potential intermediate between the potential of the sub-region and the potential of the n-type region, the distance between the control electrode and each region dp, d
By reducing n, there is an effect of simultaneously promoting frost, child injection, and hole injection.

この制御電極下の活性層内では金属導体の影響で外部電
界もなく、更に注入キャリヤ自身の空間電荷効果もなく
、主としてキャリヤ自身の濃度勾配−トの拡散により電
子、正孔が入り乱れた熱運動状態となっている。これは
電界下の高速でキャリヤの流れるドリフト状態に較べて
流れは停滞状態にあり、従って制御電極下の活性層は相
対的にキャリヤ密度が上昇し再結合が促・ 進される。
In the active layer under this control electrode, there is no external electric field due to the influence of the metal conductor, and there is also no space charge effect of the injected carriers themselves, and the thermal movement of electrons and holes is mainly due to the diffusion of the carriers' own concentration gradient. It is in a state. Compared to the drift state in which carriers flow at high speed under an electric field, the flow is in a stagnant state, and therefore the carrier density in the active layer under the control electrode increases relatively, promoting recombination.

この制御電極はキャリヤの拡散長程度の幅があれば充分
効果が生じ、GaAs レーザ装置の場合には数ミクロ
ンのオーダーであり、制御電極と不純物注入領域との間
隔は狭い程良いが通常1〜2ミクロン程度でちる。
This control electrode is sufficiently effective if it has a width equivalent to the carrier diffusion length, and in the case of a GaAs laser device, it is on the order of several microns. Chills at about 2 microns.

この制御電極に更にプラスの電位を印加すると電子注入
が促進され、正孔注入が抑制されて電子と正孔の再結合
位置が発光領域のp属領域側になる。またマイナスの電
位を印加すると電子注入が抑制され、正孔注入が促進さ
れて再結合位置がn型領域側となり、印加電圧の大きさ
によりその位置が決定する。従って、制御電極の幅、不
純物注入領域までの距離、印加する電位、極性などを調
整することによりレーザの発光効率、発光モード特性、
発光位置などを制御することができる。
When a positive potential is further applied to this control electrode, electron injection is promoted, hole injection is suppressed, and the recombination position of electrons and holes is brought to the p-group region side of the light-emitting region. Furthermore, when a negative potential is applied, electron injection is suppressed and hole injection is promoted, so that the recombination position is on the n-type region side, and the position is determined by the magnitude of the applied voltage. Therefore, by adjusting the width of the control electrode, the distance to the impurity implantation region, the applied potential, the polarity, etc., the emission efficiency and emission mode characteristics of the laser can be improved.
Light emitting position etc. can be controlled.

第5図は制御電極を2個設けた実施例を示し、上部クラ
ッド層/グのp属領域/Aとn型領域/7との間のp属
領域に近接した位置とn型領域に近接した位置にそれぞ
れの領域に沿って一対の金属制御電極21を蒸着などに
より設ける。
FIG. 5 shows an embodiment in which two control electrodes are provided, one in the vicinity of the p-type region between the p-type region/A and the n-type region/7 in the upper cladding layer /G, and the other in the vicinity of the n-type region. A pair of metal control electrodes 21 are provided at the positions along the respective regions by vapor deposition or the like.

n型領域/7側に設けられた制御電極21bは半絶縁性
半導体の上部クラッド層/ダ上にショットキ電極を形成
しており、n型領域の電位に対してプラスの電位を印加
すると、制御電極直下の活性層の電位t−n型領域に対
してプラスに押し上げ、n型領域から活性層の発光領域
への電子の注入を促進する方向へ03 <。特に半導体
レーザ装置の如く、高電流密度注入の場合には注入電流
密度が空間電荷効果により抑制された状態になっている
ので、制御電極21bのプラス電位印加は電子注入量を
増大し、レーシング状態を促進する効果を持つ。逆に制
御電極、2ybKn型領域に対してマイナスの電位を印
加すると、注入電流を抑制し、レーシング状態を停止酸
るいは抑制する効果をもたらす。
The control electrode 21b provided on the n-type region/7 side forms a Schottky electrode on the upper cladding layer/da of the semi-insulating semiconductor, and when a positive potential is applied to the n-type region, the control electrode 21b is activated. 03< in the direction of pushing up the potential of the active layer directly under the electrode to a positive value with respect to the t-n type region and promoting injection of electrons from the n-type region to the light emitting region of the active layer. In particular, in the case of high current density injection such as in a semiconductor laser device, the injection current density is suppressed by the space charge effect, so applying a positive potential to the control electrode 21b increases the amount of electron injection, resulting in a racing state. It has the effect of promoting. Conversely, when a negative potential is applied to the control electrode and the 2ybKn type region, the injection current is suppressed and the racing state is stopped or suppressed.

p属領域側に設けられた制御電極21αは正孔に対して
、?Lm領域側の制御電極2/l)が電子に作用したの
と同様の効果を持ち、制@電極2/αにp属領域に対し
てマイナス電位を印加すると、制御電極直下の活性層の
電位をp属領域に対してマイナスに押し下げる。これは
正孔注入を抑制している空間電荷効果を軽減し、高密度
の正孔の注入を促進する。逆に制御電極、2/(Lにプ
ラスの電位を印加すると正孔の注入を抑制し、レーシン
グ状態を停止酸るいは抑制する効果をもたらす。
The control electrode 21α provided on the p-group region side has ? The control electrode 2/l) on the Lm region side has the same effect on electrons, and when a negative potential is applied to the control @electrode 2/α with respect to the p region, the potential of the active layer directly under the control electrode increases. is pushed down negatively relative to the p-genus region. This reduces the space charge effect that inhibits hole injection and promotes high-density hole injection. Conversely, when a positive potential is applied to the control electrode 2/(L), the injection of holes is suppressed, resulting in the effect of stopping or suppressing the racing state.

p型領域電極/9及びn型領域電極コ0に一定の電圧を
印加し、制御電極21bにはプラス電位を印加し、制御
電極コ/、にはマイナス電位を同時に印加すると、それ
ぞれの領域よりの電子注入と正孔注入を促進することに
加えて、活性層の発光領域の中央部のドリフト電界が低
下する。
When a constant voltage is applied to the p-type region electrode /9 and the n-type region electrode 0, a positive potential is applied to the control electrode 21b, and a negative potential is simultaneously applied to the control electrode 21b, the voltage from each region increases. In addition to promoting electron injection and hole injection, the drift electric field in the center of the light emitting region of the active layer is reduced.

このため電子・正孔のドリフト速度が低下し、結果とし
て発光領域中央部における電子・正孔密度が増大し、発
光再結合が促進さ九る。更に両制御電極への印加電圧を
増加すると、発光領域中央部のドリフト電界は零または
マイナスになる。従ってここではキャリヤの流れが極度
に停滞し、キャリヤ密度が更に増大する。即ち、制御電
極の印加ポテンシャルにより一種のキャリヤの箋閉じ込
め〃が行われる。
Therefore, the drift speed of electrons and holes decreases, and as a result, the density of electrons and holes in the center of the light emitting region increases, promoting radiative recombination. When the voltage applied to both control electrodes is further increased, the drift electric field at the center of the light emitting region becomes zero or negative. Therefore, the flow of carriers becomes extremely stagnant here, and the carrier density further increases. That is, a kind of carrier trapping is performed by the potential applied to the control electrode.

上記の説明において両制御電極へ同時に所定の電圧を印
加してレーザの発振、停止の促進について述べたが、n
型領域側の制御電極21bにのみプラスの電位を印加す
ると、電子注入が促進さ力、正孔注入が抑制されるため
必然的に電子・正孔の再結合は発光領域のp属領域側で
おこる。逆にp属領域側の制御電極、2/αのみにマイ
ナスの電位を印加するとp属領域の正孔注入が促進さ1
、再結合はn型領域側においておこり、印加する電圧の
大きさにょシ発光位@が決定する。従って、両制御電極
へ印加する電位の大きさを制御することにょシ、レーザ
発振を促進するばかシでなく発光領域におけるレーザの
発振位置をp属領域からn型領域の間に亘って任意に移
動、設定させることができ、レーザ光の光ファイバーへ
の入射の調整が容易になる。
In the above explanation, we talked about applying a predetermined voltage to both control electrodes at the same time to promote laser oscillation and stopping.
If a positive potential is applied only to the control electrode 21b on the mold region side, electron injection is promoted and hole injection is suppressed, so that recombination of electrons and holes is inevitably caused on the p-type region side of the light emitting region. It happens. On the other hand, if a negative potential is applied only to the control electrode 2/α on the p-type region side, hole injection in the p-type region is promoted.
, recombination occurs on the n-type region side, and the luminescence level is determined by the magnitude of the applied voltage. Therefore, in order to control the magnitude of the potential applied to both control electrodes, it is necessary to control the laser oscillation position in the light emitting region between the p-type region and the n-type region, rather than simply promoting laser oscillation. It can be moved and set, making it easy to adjust the incidence of laser light into the optical fiber.

本発明による半導体発光装置の一例を述べると、結晶の
長さ100μm1活性層の厚さ0.1μm1n型領域と
p型頭域の間隔、即ち活性層の発光領域の幅が6μmの
GaA4As −GIZA8−GaAlks ダブルへ
テロ構造の半導体レーザ装置において、上部クラッド層
上のn型領域とp型頭域とに沿って1μmの間隔を保っ
てそれぞれ幅が1μmの金属ストライプ状電極を蒸着し
、n型領域とp型頭域に2.Ovの電圧を印加すると電
流密度が約102fiy’ad程度しかならず励振しな
い。このような状態において、n型領域側の制御電極に
はp型頭域と同じ電位、p型頭域側の制御電極にはn型
領域と同じ電位を印加すると、105A/m程度の駆動
電流が流れ、活性層の中央部のドリフト電界の低い領域
で電子・正孔密度が10”crn−”以上となりレーシ
ング状態となる。
An example of a semiconductor light emitting device according to the present invention is a GaA4As-GIZA8- crystal having a length of 100 μm, an active layer thickness of 0.1 μm, a distance between an n-type region and a p-type head region, that is, a width of a light-emitting region of the active layer of 6 μm. In a GaAlks double heterostructure semiconductor laser device, metal stripe-like electrodes each having a width of 1 μm are deposited along the n-type region and the p-type head region on the upper cladding layer with an interval of 1 μm, and the n-type region and 2 in the p-type head area. When a voltage of Ov is applied, the current density is only about 10 2 fiy'ad and no excitation occurs. In this state, if you apply the same potential as the p-type region to the control electrode on the n-type region side and the same potential as the n-type region to the control electrode on the p-type region side, a drive current of about 105 A/m will be generated. flows, and the electron/hole density becomes 10"crn-" or more in the region where the drift electric field is low at the center of the active layer, resulting in a racing state.

なお図面に示した発光装置の実施例においては、活性層
として単一半導体構造のものを示したが、厚さが50〜
1ooXの組成の異なる二種の化合物半導体極薄膜を交
互に三層以上積層とした多層量子井戸型構造とすること
もできる。このように活性層を量子井戸型構造とするこ
とにより、発振閾値電流密度は低くかり、且つ温度変化
により変動は少く、その多層を構成している半導体極薄
膜の厚さを変えることにより発振するレーザ光の波長を
変えることができ、注入キャリヤの閉じ込め効果の向上
を図るなどの量子井戸型構造のシー1装置の特徴をも具
備したプレーナ型半導体発光装置となる。
In the embodiment of the light emitting device shown in the drawings, a single semiconductor structure is shown as the active layer, but the active layer has a thickness of 50 to 50 nm.
A multilayer quantum well structure may also be provided in which three or more ultrathin films of two types of compound semiconductors having different compositions of 1ooX are alternately laminated. By forming the active layer into a quantum well structure, the oscillation threshold current density is low and changes little due to temperature changes, and oscillation can be achieved by changing the thickness of the ultra-thin semiconductor film that makes up the multilayer. This is a planar semiconductor light-emitting device that also has the features of a C1 device with a quantum well structure, such as being able to change the wavelength of laser light and improving the confinement effect of injected carriers.

この発明による半導体発光装置′は上記の説明で明らか
なように、駆動電流を注入する電極及び制御電極が同一
平面上に形成しているため、集積回路を形成するような
場合に製造が簡単となり、特に電界効果型トランジスタ
の如き電子素子と組合せた光−電子集積回路を同一平面
上に容易に構成できるようになる。また光の発光領域は
ダブルへテロ接合構造により」二下方向は充分に光の閉
じ込めを行うことができ、横方向においてもp型頭域と
n型領域により成る程度の光の閉じ込めが行われ、光の
伝搬損失の少なく、更にレーザの発光効率、発光モード
特性、発光位置の制御をすることができ、光通信、情報
処理などに好適に使用する半導体レーザ装置を実現する
ことになる。
As is clear from the above description, in the semiconductor light emitting device according to the present invention, the electrode for injecting a driving current and the control electrode are formed on the same plane, so that manufacturing is simple when forming an integrated circuit. In particular, opto-electronic integrated circuits combined with electronic elements such as field effect transistors can be easily constructed on the same plane. In addition, the light emitting region has a double heterojunction structure, which allows for sufficient light confinement in the two downward directions, and light confinement in the horizontal direction as well, which is made up of the p-type head region and the n-type region. This makes it possible to realize a semiconductor laser device that has low light propagation loss, and also allows control of laser light emission efficiency, light emission mode characteristics, and light emission position, and is suitable for use in optical communications, information processing, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は公知のダブルへテロ接合構造の半導体レーザ装
置の概略を示す斜視図、第2図はこの発明によるプレー
ナ型半導体発光装置の一実施例を示す斜視図、第3図は
この発明による半導体発光装置の他の実施例を示す斜視
図である。 //・・・基板結晶、12・・・活性層、13・・・下
部クラッド層、/4’・・・上部クラッド層、/、5−
・・・ダブルへテロ接合構造、/6・・・p型頭域、/
り・・・n型領域、/Ir・・・発光領域1.2/・・
・制御電極3、
FIG. 1 is a perspective view schematically showing a known semiconductor laser device with a double heterojunction structure, FIG. 2 is a perspective view showing an embodiment of a planar semiconductor light emitting device according to the present invention, and FIG. FIG. 7 is a perspective view showing another example of the semiconductor light emitting device. //... Substrate crystal, 12... Active layer, 13... Lower cladding layer, /4'... Upper cladding layer, /, 5-
...double heterozygous structure, /6...p-type head region, /
R...n type region, /Ir...light emitting region 1.2/...
・Control electrode 3,

Claims (1)

【特許請求の範囲】[Claims] 活性層の上下より該活性層より禁制帯エネルギー幅の大
きい化合物半導体層でクラッドしたダブルへテロ接合構
造の半導体発光装置において、該上部クラッド層の長さ
方向に所定の間隔を保って少くとも活性層に達する深さ
のp型不純物イオン注入領域とル型不純物イオン注入領
域を設け、両膝イオン注入領域間には制御電極を設けた
ことを特徴とするブレーナ型半導体発光装置。
In a semiconductor light emitting device having a double heterojunction structure in which an active layer is clad from above and below with compound semiconductor layers having a larger forbidden band energy width than the active layer, at least the active layer is kept at a predetermined interval in the length direction of the upper cladding layer. 1. A Brainer type semiconductor light emitting device, characterized in that a p-type impurity ion implantation region and a l-type impurity ion implantation region are provided with a depth that reaches the depth of the layer, and a control electrode is provided between both knee ion implantation regions.
JP58143897A 1983-08-08 1983-08-08 Planar type semiconductor light emitting device Granted JPS6035590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58143897A JPS6035590A (en) 1983-08-08 1983-08-08 Planar type semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58143897A JPS6035590A (en) 1983-08-08 1983-08-08 Planar type semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPS6035590A true JPS6035590A (en) 1985-02-23
JPS6355878B2 JPS6355878B2 (en) 1988-11-04

Family

ID=15349595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58143897A Granted JPS6035590A (en) 1983-08-08 1983-08-08 Planar type semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS6035590A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159784A (en) * 1985-01-08 1986-07-19 Canon Inc Semiconductor laser device
JP2001226215A (en) * 1999-12-10 2001-08-21 Kanebo Ltd Cosmetic and method of producing ether derivative of raffinose
JP2008244308A (en) * 2007-03-28 2008-10-09 Fujitsu Ltd Semiconductor optical element and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159784A (en) * 1985-01-08 1986-07-19 Canon Inc Semiconductor laser device
JP2001226215A (en) * 1999-12-10 2001-08-21 Kanebo Ltd Cosmetic and method of producing ether derivative of raffinose
JP2008244308A (en) * 2007-03-28 2008-10-09 Fujitsu Ltd Semiconductor optical element and manufacturing method therefor

Also Published As

Publication number Publication date
JPS6355878B2 (en) 1988-11-04

Similar Documents

Publication Publication Date Title
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
JPH0750448A (en) Semiconductor laser and manufacture thereof
JPH11330605A (en) Semiconductor laser
US5163064A (en) Laser diode array and manufacturing method thereof
JPH01239980A (en) Semiconductor laser device
US4905060A (en) Light emitting device with disordered region
US5588016A (en) Semiconductor laser device
US4759025A (en) Window structure semiconductor laser
US6822989B1 (en) Semiconductor laser and a manufacturing method for the same
JPH11284280A (en) Semiconductor laser device, its manufacture and manufacture of iii-v compound semiconductor element
JPS6035590A (en) Planar type semiconductor light emitting device
US5022037A (en) Semiconductor laser device
CN111937260B (en) Semiconductor laser and method for manufacturing the same
US4841535A (en) Semiconductor laser device
JPH10256647A (en) Semiconductor laser element and fabrication thereof
JP3801410B2 (en) Semiconductor laser device and manufacturing method thereof
US6518076B2 (en) Semiconductor laser device and manufacturing method of the same
JPH01155678A (en) Semiconductor light emitting device
JPS607789A (en) Planar semiconductor light emitting device
KR920006392B1 (en) Manufacturing method of semiconductor
JP2547458B2 (en) Semiconductor laser device and manufacturing method thereof
JPS60134489A (en) Semiconductor laser device
KR900000021B1 (en) Semiconductor laser
JP3206573B2 (en) Semiconductor laser and manufacturing method thereof
JPH0245992A (en) Semiconductor laser device