JPS603528A - Pyroelectric type element - Google Patents

Pyroelectric type element

Info

Publication number
JPS603528A
JPS603528A JP58110554A JP11055483A JPS603528A JP S603528 A JPS603528 A JP S603528A JP 58110554 A JP58110554 A JP 58110554A JP 11055483 A JP11055483 A JP 11055483A JP S603528 A JPS603528 A JP S603528A
Authority
JP
Japan
Prior art keywords
pyroelectric
film
infrared
element body
conductor wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58110554A
Other languages
Japanese (ja)
Inventor
Tadahiko Katayama
片山 忠彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Components Co Ltd
Original Assignee
Toshiba Components Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Components Co Ltd filed Critical Toshiba Components Co Ltd
Priority to JP58110554A priority Critical patent/JPS603528A/en
Publication of JPS603528A publication Critical patent/JPS603528A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To obstruct generation of a spike noise due to an electric discharge, and to raise a temperature detecting accuracy of a pyroelectric infrared-ray sensor by providing an element body in which a pyroelectric element having an infrared-ray absorbing metallic film is used as a photodetecting part, a reflecting film formed on the rear side, a discharge preventing film for covering the surface, and an electric conductor wiring. CONSTITUTION:A pyroelectric type element 30 is installed to the center part of a substrate 41. An element supporting frame 20 is formed on the rear side of the pyroelectric type element 30. An element body 21 consisting of a single crystal thin piece of tantalic acid lithium, etc. is installed onto the element supporting body 20. A reflecting film 22 consisting of a metallic thin film is formed on the rear side of the element body 21, and held in the ground potential through the supporting frame 20. A photodetecting part 23 consisting of an infrared-ray absorbing metallic film is formed on the center part of the main surface of the element body 21. Also, an electric conductor wiring 24 connected to the photodetecting part 23 is formed on the main surface. The surface of the element body 21 containing the electric conductor wiring 24 and the photodetecting part 23 is formed by a discharge preventing film 25 having an infrared- ray transmitting property.

Description

【発明の詳細な説明】 本発明は、焦電形赤外線センサーに使用される焦電形素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pyroelectric element used in a pyroelectric infrared sensor.

従来、電子調理器の温度検知機として例えば第1図に示
す構造の焦電形赤外線センサーが使用されている。図中
1は、円板形のステムである。ステム1の中央部には、
円板形の基板2が同心円状に嵌合されている。基板2の
中央部には、方形の支持枠3が取付けられている。支持
枠3上には、タンタル酸リチウムの単結晶薄片からなる
焦電形素子4が装着されている。焦電形素子4は、主面
の中央部に赤外線を吸収する金属膜からなる円形の受光
部5を有している。
Conventionally, a pyroelectric infrared sensor having a structure shown in FIG. 1, for example, has been used as a temperature detector for an electronic cooking device. In the figure, 1 is a disk-shaped stem. In the center of stem 1,
A disk-shaped substrate 2 is fitted concentrically. A rectangular support frame 3 is attached to the center of the substrate 2. A pyroelectric element 4 made of a single crystal thin piece of lithium tantalate is mounted on the support frame 3. The pyroelectric element 4 has a circular light-receiving section 5 made of a metal film that absorbs infrared rays at the center of its principal surface.

主面には受光部5に接続した導体配線6が形成されてい
る。主面に対向した゛焦電素子4の裏面側には、金属膜
からなる反射膜(図示せず)が形成されている。焦電形
素子4を囲む基板2の周辺領域には、出力抵抗体8、高
抵抗素子9、電界効果型トランジスタ10が形成されて
いる。
A conductor wiring 6 connected to the light receiving section 5 is formed on the main surface. A reflective film (not shown) made of a metal film is formed on the back surface side of the pyroelectric element 4 facing the main surface. In the peripheral region of the substrate 2 surrounding the pyroelectric element 4, an output resistor 8, a high resistance element 9, and a field effect transistor 10 are formed.

また、電界効果型トランジスタ10の両側部には、ステ
ム1の裏面側から外部に導出するようにしてリード線1
1が取付けられている。電界効果型トランジスタ10は
、?ンディング線12を介して導体配線6及びリード線
11に接続されている。リード線11と高抵抗素子9間
、導体配線6と出力抵抗体8間には、デンディング線1
2が架設されている。ステム1上には、焦電形素子4を
覆うようにしてキャップ13が設けられている。受光部
5に対向するキャップ13の中央部の領域には、シリコ
ンやダルマニウム等の薄膜からなる赤外線透過膜14が
形成されている。これらは、電気的には第4図のように
結線されている。
In addition, lead wires 1 are provided on both sides of the field effect transistor 10 so as to be led out from the back side of the stem 1.
1 is installed. What is the field effect transistor 10? It is connected to the conductor wiring 6 and the lead wire 11 via a landing wire 12 . Dending wire 1 is connected between lead wire 11 and high resistance element 9 and between conductor wiring 6 and output resistor 8.
2 has been constructed. A cap 13 is provided on the stem 1 so as to cover the pyroelectric element 4. In the central region of the cap 13 facing the light receiving section 5, an infrared transmitting film 14 made of a thin film of silicon, damanium, or the like is formed. These are electrically connected as shown in FIG.

このように構成された焦電形赤外線センサー1臣は、感
度が高く、受光部5を高抵抗を通して接地しているが、
焦電素子4の上面は接地していない。このため、焦電素
子4全体の温度が上昇した場合、その表面に自発分極電
荷が発生する。この電荷量自体は小さい値であるが、焦
電素子4の電気容量が小さいため、自発分極電荷による
電圧は高電圧(600v/℃)になる、しかし受光部5
は金属膜よシ成り導体配線6、高抵抗素子9を通して接
地されているので受光部電位は、略接地電位となり主面
の他の部分は高電位になる。この高電圧は、素子の初期
温度と到達温度との温度差に略比例し、昇温時間にも影
響がある(発生した高電圧が一部主面の固有高抵抗を通
して電流が流れるため昇温時間が長いと発生した電圧は
若干低下する)このようにして発生した電位差により主
面受光部以外の部分よシ受光部5への放電、焦電形素子
裏面、支持枠3〔接地電位〕への放電、その他接地電位
又はそれに近い、素子に近接した配線、又は部品等に対
する火花又はストリーマ放電が発生する。この放電によ
る電流が増幅されてスパイ (クノイズとなシ、温度検
知精度を低下する問題があった。
The pyroelectric infrared sensor configured in this way has high sensitivity, and the light receiving section 5 is grounded through a high resistance.
The top surface of the pyroelectric element 4 is not grounded. Therefore, when the temperature of the entire pyroelectric element 4 rises, spontaneous polarization charges are generated on its surface. This amount of charge itself is small, but since the capacitance of the pyroelectric element 4 is small, the voltage due to spontaneous polarization becomes a high voltage (600 V/°C).
is grounded through the metal film conductor wiring 6 and the high-resistance element 9, so the potential of the light-receiving portion is approximately the ground potential, and the other portions of the main surface are at a high potential. This high voltage is approximately proportional to the temperature difference between the initial temperature and the final temperature of the element, and also affects the temperature rise time (the generated high voltage causes current to flow through some of the main surfaces' inherent high resistance, causing the temperature to rise. (If the time is long, the generated voltage will drop slightly.) The potential difference generated in this way causes discharge from parts other than the main surface light receiving part to the light receiving part 5, to the back surface of the pyroelectric element, and to the support frame 3 [ground potential]. sparks or streamer discharges to wiring or components near the device that are at or near ground potential. The current caused by this discharge was amplified, creating spike noise and reducing temperature detection accuracy.

本発明は、かかる点に鑑みてなされたものであシ、放電
によるス・やイクノイズの発生を阻止して、温度検知精
度の向上を達成した焦電形赤外線センサーを容易に得る
ことができる焦電素子を提供するものである。
The present invention has been made in view of the above, and provides a pyroelectric infrared sensor that can easily obtain a pyroelectric infrared sensor that prevents the generation of smoke and noise due to discharge and improves temperature detection accuracy. It provides electronic devices.

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第2図は、本発明の一実施例の焦電形素子を組込んだ焦
電形赤外線センサーの略概構成を示す説明図である。図
中40は、円板形のステムである。ステム40の中央部
には、円板形の基板41が同心状に嵌合されている。基
板41の中央部には、焦電素子4全 焦電形素子、90の裏側は、素子支持枠20で形成され
ている。素子支持枠20は、金属や半導体等の導電性の
良好ガ材質で形成されている。また、素子支持枠20は
、後述する素子本体21の熱膨張係数にほぼ等しい熱膨
張係数を有している。素子支持体20上には、第3図に
示す如く、タンタル酸リチウム等の単結晶薄片からなる
素子本体21が装着さ5− れている。素子本体21の肉厚は、通常0.1〜0.0
5wnの範囲のものが用いられている。素子本体21の
裏面には、金属薄膜からなる反射膜22が形成されてお
シ、支持枠20を通して接地電位に保たれる。素子本体
21の主面の中央部には、赤外線吸収金属膜からなる受
光部23が形成されている。また、主面には、受光部2
3に接続する導体配線24が形成されている。導体配線
24、受光部23を含む素子本体21の表面は、赤外線
透過性の放電防止膜25で形成されている。放電防止膜
25は、化学的に安定であり、かつ高電圧に耐え得るシ
リコン等の樹脂や、フェス、ゴム等の高絶縁部材、或は
、108〜10Ωんの高抵抗部材等で形成されている。
FIG. 2 is an explanatory diagram showing a schematic configuration of a pyroelectric infrared sensor incorporating a pyroelectric element according to an embodiment of the present invention. In the figure, 40 is a disk-shaped stem. A disk-shaped substrate 41 is fitted concentrically into the center of the stem 40 . A pyroelectric element 4 is formed entirely in the center of the substrate 41, and an element support frame 20 is formed on the back side of the pyroelectric element 90. The element support frame 20 is made of a highly conductive material such as metal or semiconductor. Further, the element support frame 20 has a coefficient of thermal expansion that is approximately equal to the coefficient of thermal expansion of the element body 21, which will be described later. As shown in FIG. 3, an element body 21 made of a single crystal thin piece of lithium tantalate or the like is mounted on the element support 20. The thickness of the element body 21 is usually 0.1 to 0.0
Those in the range of 5wn are used. A reflective film 22 made of a thin metal film is formed on the back surface of the element body 21, and is maintained at a ground potential through the support frame 20. A light receiving section 23 made of an infrared absorbing metal film is formed in the center of the main surface of the element body 21. In addition, on the main surface, a light receiving section 2
A conductor wiring 24 connected to 3 is formed. The surface of the element body 21 including the conductor wiring 24 and the light receiving section 23 is formed with an infrared-transparent discharge prevention film 25. The discharge prevention film 25 is made of a resin such as silicone that is chemically stable and can withstand high voltage, a highly insulating material such as a face or rubber, or a high resistance material of 10 8 to 10 Ω. There is.

つまり、放電防止膜25は、高絶縁部材のように素子本
体21の表面に発生した電荷の移動を阻止する機能を備
えたものか、或は、高抵抗部材のように素子本体21の
表面に発生した電荷を逐次放出して表面電位を下げる機
能を有するものであれば良い。
In other words, the discharge prevention film 25 is either a highly insulating material that has the function of blocking the movement of charges generated on the surface of the element body 21, or a high resistance material that is formed on the surface of the element body 21. Any material may be used as long as it has the function of lowering the surface potential by sequentially releasing the generated charges.

6一 なお、放電防止膜25は、赤外線不透過性のものを用い
て、受光部23を除いた素子本体210表面領域を覆う
ようにしても良い。
Note that the discharge prevention film 25 may be made of a material that does not transmit infrared rays, and may cover the surface area of the element body 210 except for the light receiving portion 23.

焦電形素子30を囲む基板41の周辺領域には、出力抵
抗体42、電界効果型トランジスタ43、温度計測素子
44が形成されている。温度計測素子44の両側部には
、ステム40の裏面側から外部に導出するようにしてリ
ード線45が取付けられている。温度計測素子44は、
?ンディング線48を介して導体配線24及びリード線
45に接続されている。リード線45と高抵抗素子43
間、導体配線24と出力抵抗体42間には、?ンディン
グ線48が架設されている。ステム40上には、焦電形
素子30を覆うようにしてキャラf46が設けられてい
る。
In the peripheral region of the substrate 41 surrounding the pyroelectric element 30, an output resistor 42, a field effect transistor 43, and a temperature measuring element 44 are formed. Lead wires 45 are attached to both sides of the temperature measuring element 44 so as to lead out from the back side of the stem 40 . The temperature measurement element 44 is
? It is connected to the conductor wiring 24 and a lead wire 45 via a landing wire 48 . Lead wire 45 and high resistance element 43
Between the conductor wiring 24 and the output resistor 42? A landing line 48 is installed. A character f46 is provided on the stem 40 so as to cover the pyroelectric element 30.

受光部23に対向するキャップ46の中央部の領域には
、シリコンやゲルマニウム等の薄膜からなる赤外線透過
膜47が形成されている。
An infrared transmitting film 47 made of a thin film of silicon, germanium, or the like is formed in the central region of the cap 46 facing the light receiving section 23 .

どのように構成された焦電形赤外線センサー旦によれば
、赤外線透過膜47を透過し、受呪部23から素子本体
21内に入射した赤外線によ多素子内部の温度が上昇し
、その表面に自発分極電荷が発生しても、その電荷は放
電防止膜25によって移動を阻止されるか、或は、逐次
放出されるので、焦電形素子二の周辺の低電位電極、回
路部間で放電が起きるのを防止できる。その結果、スパ
イクノイズの発生を阻止して焦電形赤外線センサー50
による温度検知精度を向上させることができる。
According to how the pyroelectric infrared sensor is configured, the infrared rays that pass through the infrared transmitting film 47 and enter the element main body 21 from the receiving part 23 increase the temperature inside the multi-element, and the surface of the infrared rays increases. Even if a spontaneous polarization charge is generated, the charge is prevented from moving by the discharge prevention film 25 or is sequentially released, so that the charge is This can prevent discharge from occurring. As a result, the generation of spike noise is prevented and the pyroelectric infrared sensor 50
temperature detection accuracy can be improved.

以上説明した如く、本発明に係る焦電形素子によれば、
放電によるスパイクノイズの発生を阻止して、焦電形赤
外線センサーの温度検知精度を向上させることができる
ものである。
As explained above, according to the pyroelectric element according to the present invention,
This prevents the generation of spike noise due to discharge and improves the temperature detection accuracy of the pyroelectric infrared sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の焦電形素子を組込んだ焦電形赤外線セ
ンサーの構造を示す説明図、第2図は、本発明の一実施
例の焦電形素子を組込んだ焦電形赤外線センサーの構造
を示す説明図、第 1半 20・・・素子支持枠、21・・・素子本体、22・・
・反射膜、23・・・受光部、24・・・導体配線、2
5・・・放電防止膜、30・・・焦電形素子、40・・
・ステム、41・・・ヘッダー、42・・・出力抵抗体
、43・・・高抵抗素子、44・・・電界効果型トラン
ジスタ、45・・・リード線、46・・・キャップ、4
8・・・ポンディング線、47・・・赤外線透過膜、5
0−・・赤外線センサー。 出願人代理人 弁理士 鈴 江 武 彦9− 第 1 図 匹 30 40 34824 4
FIG. 1 is an explanatory diagram showing the structure of a pyroelectric infrared sensor incorporating a conventional pyroelectric element, and FIG. 2 is an explanatory diagram showing the structure of a pyroelectric infrared sensor incorporating a pyroelectric element according to an embodiment of the present invention. Explanatory diagram showing the structure of an infrared sensor, first half 20... element support frame, 21... element body, 22...
・Reflection film, 23... Light receiving part, 24... Conductor wiring, 2
5... Discharge prevention film, 30... Pyroelectric element, 40...
- Stem, 41... Header, 42... Output resistor, 43... High resistance element, 44... Field effect transistor, 45... Lead wire, 46... Cap, 4
8...Ponding wire, 47...Infrared transmission film, 5
0--Infrared sensor. Applicant's agent Patent attorney Takehiko Suzue 9- Figure 1 30 40 34824 4

Claims (1)

【特許請求の範囲】 1、 焦電材の上に形成された赤外線吸収金属膜を有す
る焦電素子を受光部とする素子本体と、該素子本体の前
記主面に対向する裏面に形成された反射膜と、前記素子
本体の表面を覆う赤外線透過性の放電防止膜と、前記受
光部に接続して設けられた導体配線とを具備することを
特徴とする焦電形素子 2、焦電素子が焦電効果を利用するタンタル3、放電防
止膜が樹脂、フェス、ゴムから選ばれた高絶縁部材であ
る特許請求の範囲第1項、毎 または第2項記載の焦電素子。 4、放電防止膜が、10〜10rVc1nの抵抗を有す
る高抵抗部材で形成されている特許請求の範囲第1項ま
たは第2項記載の焦電形素子。 5、受光部を除いた主面を放電防止膜により被覆した特
許請求の範囲第3項または第4項記載の焦電形素子
[Claims] 1. An element body whose light receiving portion is a pyroelectric element having an infrared absorbing metal film formed on a pyroelectric material, and a reflection formed on a back surface opposite to the main surface of the element body. A pyroelectric element 2, characterized in that it comprises a film, an infrared-transparent discharge prevention film covering the surface of the element main body, and a conductive wiring connected to the light receiving part. The pyroelectric element according to claim 1, wherein the tantalum 3 that utilizes the pyroelectric effect and the discharge prevention film are made of a highly insulating material selected from resin, plastic, and rubber. 4. The pyroelectric element according to claim 1 or 2, wherein the discharge prevention film is formed of a high-resistance member having a resistance of 10 to 10 rVc1n. 5. The pyroelectric element according to claim 3 or 4, wherein the main surface excluding the light-receiving part is covered with an anti-discharge film.
JP58110554A 1983-06-20 1983-06-20 Pyroelectric type element Pending JPS603528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110554A JPS603528A (en) 1983-06-20 1983-06-20 Pyroelectric type element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110554A JPS603528A (en) 1983-06-20 1983-06-20 Pyroelectric type element

Publications (1)

Publication Number Publication Date
JPS603528A true JPS603528A (en) 1985-01-09

Family

ID=14538768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110554A Pending JPS603528A (en) 1983-06-20 1983-06-20 Pyroelectric type element

Country Status (1)

Country Link
JP (1) JPS603528A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239109A (en) * 1985-08-13 1987-02-20 Kobe Steel Ltd Guide flap device of flying shear and its controlling method
US4704534A (en) * 1985-03-29 1987-11-03 U.S. Philips Corporation Thermal radiation detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704534A (en) * 1985-03-29 1987-11-03 U.S. Philips Corporation Thermal radiation detector
JPS6239109A (en) * 1985-08-13 1987-02-20 Kobe Steel Ltd Guide flap device of flying shear and its controlling method
JPH0314569B2 (en) * 1985-08-13 1991-02-27 Kobe Steel Ltd

Similar Documents

Publication Publication Date Title
US4110616A (en) Pyroelectric detectors
US6717147B2 (en) Thermo-sensitive infrared ray detector
US4302674A (en) Infrared radiation detecting apparatus and method of manufacturing it
US4384207A (en) Differential pyroelectric detector
US4293768A (en) Infrared radiation detecting apparatus and method of manufacturing
JPS6129648B2 (en)
JPH11132857A (en) Infrared detector
US20080265164A1 (en) Thermal detector for electromagnetic radiation and infrared detection device using such detectors
US4060729A (en) Pyroelectric detector with decreased susceptibility to vibrational noise
JPS603528A (en) Pyroelectric type element
US3398281A (en) Direct reading, wavelength independent radiometer employing a pyroelectric crystal detector
JPH0356831A (en) Cooling type infrared detection device
JPH0815007A (en) Infrared sensor and manufacture thereof
JPS5866028A (en) Light/resistance-value converting element and compensation circuit using the same
JPH03135739A (en) Infrared detecting device
JP2754427B2 (en) Radiant fire detector
JPS6035016B2 (en) Thermistor bolometer
JPH04335120A (en) Infrared-ray detector
JPS6021781Y2 (en) infrared detector
JPH07120813B2 (en) Combined radiation detection and display
JPH06258144A (en) Temperature sensor
JPS61108935A (en) Pyroelectric type infrared sensor element
JPS5858425A (en) Pyroelectric infrared detector
JP2793615B2 (en) Infrared sensor
JPH05296830A (en) Pyroelectric element