JPS6035234B2 - Narrow gap carbon dioxide arc welding method - Google Patents

Narrow gap carbon dioxide arc welding method

Info

Publication number
JPS6035234B2
JPS6035234B2 JP14304778A JP14304778A JPS6035234B2 JP S6035234 B2 JPS6035234 B2 JP S6035234B2 JP 14304778 A JP14304778 A JP 14304778A JP 14304778 A JP14304778 A JP 14304778A JP S6035234 B2 JPS6035234 B2 JP S6035234B2
Authority
JP
Japan
Prior art keywords
welding
carbon dioxide
narrow gap
welding method
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14304778A
Other languages
Japanese (ja)
Other versions
JPS5570480A (en
Inventor
孝夫 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP14304778A priority Critical patent/JPS6035234B2/en
Publication of JPS5570480A publication Critical patent/JPS5570480A/en
Publication of JPS6035234B2 publication Critical patent/JPS6035234B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 本発明は狭開先炭酸ガスアーク溶接方法に関する。[Detailed description of the invention] The present invention relates to a narrow gap carbon dioxide gas arc welding method.

炭酸ガスアーク溶接は、安価な溶接法として一般に炭素
鋼あるいはせいぜい低合金鋼までに適用されているが、
機械的性質が被覆アーク溶接に比べて遜色がなく、割れ
も少ないので、最近かなり普及しており、それに使用さ
れる閥先形状は第1図aに示すような形状であったが、
構造物が大型化するにつれて板厚が厚くなるため、溶接
時間が長くかかり、また溶接歪が大きくなる等の問題が
発生した。
Carbon dioxide arc welding is generally applied to carbon steel or at most low alloy steel as an inexpensive welding method.
Since its mechanical properties are comparable to those of shielded arc welding and there are fewer cracks, it has become quite popular recently, and the shape of the tip used for it is as shown in Figure 1a.
As the size of the structure increases, the thickness of the plates increases, resulting in problems such as longer welding time and increased welding distortion.

そこでこの解決策として第1図bに示すような形状の狭
開先による狭開先溶接法が提案されたが、それに使用さ
れる装置は非常に複雑なものになっている。本発明はこ
れらの問題を溶接施工面より解決することを目的とする
。このため本発明は、炭素鋼あるいは低合金鋼からなる
鋼管を回転させながらこの鋼管の円周突合溶接を狭開先
炭素ガスアーク溶接方法で施工するに際し、開先間隙X
(単位側)の変化に合わせて溶接電流1(単位A)、ア
ーク電圧V(単位V)を下記の式を満足するそれぞれの
下限値la,Vaおよび上限値lb,Vbの間laSI
Slb VaミVSVb ここでla=7.5X+239.5 1b=9.9X+299.6 Va=0.57X+27.57 Vb=0.75X+28.25 に設定する構成としたものである。
As a solution to this problem, a narrow gap welding method using a narrow gap shown in FIG. 1B has been proposed, but the equipment used therein is extremely complicated. The present invention aims to solve these problems from the aspect of welding work. For this reason, the present invention provides a method for circumferential butt welding of steel pipes made of carbon steel or low-alloy steel by a narrow-gap carbon gas arc welding method while rotating the steel pipes.
Welding current 1 (unit A) and arc voltage V (unit V) are adjusted according to changes in (unit side) laSI between lower limit values la, Va and upper limit values lb, Vb that satisfy the following formulas.
Slb Va mi VSVb Here, la=7.5X+239.5 1b=9.9X+299.6 Va=0.57X+27.57 Vb=0.75X+28.25.

以下、本発明の−実施例を図面に基づいて説明する。Embodiments of the present invention will be described below with reference to the drawings.

関先間隙が第2図のように狭いと、ビードのデンドラィ
ドが両側開先面la,lbから直角に成長するので、凝
固末期に低融点液相2がビード3の中央に開先面la,
lbに平行な面として残存することになり、これに溶接
金属の収縮圧力が作用して割れの現象が発生するので、
電流をあまり高くすることはできない。
When the joint gap is narrow as shown in Fig. 2, the dendrites of the bead grow perpendicularly from the groove surfaces la and lb on both sides, so that at the end of solidification, the low melting point liquid phase 2 forms in the center of the bead 3 at the groove surfaces la and lb.
It will remain as a plane parallel to lb, and the shrinkage pressure of the weld metal will act on this, causing cracking.
The current cannot be made too high.

また逆に電流を低くすぎるとビード中が狭くなり、両側
関先面la,lbに溶込み不良を生じる。この意味で関
先間隙と電流との関係は重要であり、健全な溶接のでき
る電流範囲は自ずから決まる。第4図はその実験結果を
示す。またアーク電圧と閥先間隙との関係も自ずから決
まり、その実験結果を第5図に示す。ここで溶接条件は
ともに、極性をD.C.R.P.、溶接速度を380肋
/min、シールドガス圧を3k9/地、シ−ルドガス
流量を40クノmin、トーチ角度を1oo、ワイヤ−
突出し長さを3仇肋、管厚を5物駁とした。なおトーチ
角度は第3図に示す如く被溶接管4の真上の位置からト
ーチ5を溶接方向にずらした傾斜角8を云い、これによ
り溶融金属の溶接後方(管回転方向イ下手側)への垂れ
落ちによる港着不良や、初層ビー−ドの女台端部と開先
底面との接触角が小さくなって盛り上がることによる上
層ピードのの初層ビードへの溶込み不良を解消できるも
のであり、10〜20oの範囲が好適である。第4図に
おいて曲線aと曲線bの間にはさまれるA範囲は造生領
域を示し、これら曲線a,bに対応する溶接電流la,
lb(単位A)と関先間隙×(単位肋)との関係は図よ
り次式のように求められる。la=7.球十239.5
m lb:9.9X+299.6 ‘2} 従って適正溶接電流1は la三1三1b なる関係を有する、なおB,Cは欠陥領域を示し、Bは
融合不良の範囲、Cは割れの範囲である。
On the other hand, if the current is too low, the inside of the bead becomes narrow, resulting in poor penetration at both joint surfaces la and lb. In this sense, the relationship between the joint gap and the current is important, and the current range that allows for sound welding is determined by itself. Figure 4 shows the experimental results. The relationship between the arc voltage and the tip gap is also determined automatically, and the experimental results are shown in FIG. Here, the welding conditions are both polarity D. C. R. P. , the welding speed was 380 mm/min, the shielding gas pressure was 3k9/min, the shielding gas flow rate was 40 min, the torch angle was 100 mm, the wire was
The protrusion length was 3 mm and the pipe thickness was 5 mm. Incidentally, the torch angle is the inclination angle 8 that is obtained by shifting the torch 5 in the welding direction from the position directly above the pipe 4 to be welded, as shown in Fig. 3, so that the molten metal is moved toward the rear of welding (downward side in the direction of pipe rotation). This can eliminate poor arrival at the port due to dripping of the bead, and poor penetration of the upper layer bead into the first layer bead due to the contact angle between the female end of the first layer bead and the bottom of the groove becoming smaller and rising. Yes, and a range of 10 to 20 degrees is suitable. In FIG. 4, a range A sandwiched between curves a and b indicates a nucleation region, and welding currents la, which correspond to these curves a and b,
The relationship between lb (unit A) and joint gap x (unit rib) can be determined from the figure as shown in the following equation. la=7. Ball ten 239.5
m lb: 9.9 be.

また第5図において、曲線aと曲線bの間にはさまれる
A範囲は適正領域を示し、これら曲線a,bに対応する
溶接電圧Va,Vb(単位V)と関先間隙X(単位側)
との関係は図より次式のように求められる。
In addition, in Fig. 5, the A range sandwiched between curves a and b indicates the appropriate area, and the welding voltages Va and Vb (unit: V) corresponding to these curves a and b correspond to the joint gap X (unit side )
The relationship with is calculated from the figure as follows.

Vaコ0.57X+27.57 脚 Vb=0.75X+28.25 (4’従って適正ア
ーク電圧Vは Va三V≦Vb なる関係を有する。
Va = 0.57X + 27.57 Leg Vb = 0.75X + 28.25 (4' Therefore, the appropriate arc voltage V has the relationship Va3V≦Vb.

なおB,Cは欠陥領域を示し、Bは融合不良の範囲、C
は“えぐれ”発生の範囲である。ここで開先間隙が広く
なるにつれて適正アーク電圧が増加しているのは、次の
理由によるものである。
Note that B and C indicate defective areas, B is the range of poor fusion, and C
is the range where "gouge" occurs. The reason why the appropriate arc voltage increases as the groove gap becomes wider is as follows.

アーク電圧が高くなるにつれてビード中は増加するが、
間隙が広くなっているので溶込みは適正になる。しかし
高すぎると開先側面の“えぐれ”が大きくなり、溶融プ
ールが大きくなって溶融金属が溶接方向に流れ落ちるよ
うになって開先底部に溶込み不良を生ずる。反対に電圧
が低過ぎるとアークの領域が狭くビード中が小こなるの
で開先側面に溶込み不良を生ずるようになる。以上本発
明によれば、開先間隙の変化に合わせて‘1}〜{4}
式の如くに溶接電流、アーク電圧を決めることにより、
複雑な装置を用いることなく、単に熔接法の施工面から
溶接金属の流れ落ちや港込み不良などの欠点のない状態
で容易に狭開先溶接を実施できるに至ったのである。
As the arc voltage increases, it increases during the bead, but
Since the gap is wide, penetration becomes appropriate. However, if it is too high, the "gouge" on the side surface of the groove becomes large, the molten pool becomes large, and the molten metal flows down in the welding direction, resulting in poor penetration at the bottom of the groove. On the other hand, if the voltage is too low, the arc area will be narrow and the inside of the bead will be small, resulting in poor penetration on the side surfaces of the groove. As described above, according to the present invention, according to the change in the groove gap, '1} to {4}
By determining the welding current and arc voltage as shown in the formula,
It has now become possible to easily perform narrow gap welding without the use of complicated equipment and without the drawbacks of weld metal running down from the welding surface or poor port penetration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは開先形状を説明する正面図、第2図は狭
関先溶接の溶接状態を説明する断面図、第3図はトーチ
角度の説明図、第4図および第5図は本発明の一実施例
を示す特性図である。 la,lb・・・・・・両側開先面、3…・・・ビード
。第2図第3図 第1図 第4図 第5図
Figures 1a and b are front views explaining the groove shape, Figure 2 is a sectional view explaining the welding state of narrow joint welding, Figure 3 is an illustration of the torch angle, Figures 4 and 5. 1 is a characteristic diagram showing one embodiment of the present invention. la, lb...both side groove surfaces, 3...bead. Figure 2 Figure 3 Figure 1 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 炭素鋼あるいは低合金鋼からなる鋼管を回転させな
がらこの鋼管の円周突合溶接を狭開先炭酸ガスアーク溶
接方法で施工するに際し、開先間隔X(単位mm)の変
化に合わせて溶接電流I(単位A)、アーク電圧V(単
位V)を下記の式を満足するそれぞれの下限値Ia,V
aおよび上限値Ib,Vbの間Ia≦I≦Ib Va≦V≦Vb ここでIa=7.5X+239.5 Ib=9.9X+299.6 Va=0.57X+27.57 Vb=0.75X+28.25 に設定することを特徴とする狭開先炭酸ガスアーク溶接
方法。
[Scope of Claims] 1. Changes in groove spacing X (unit: mm) when performing circumferential butt welding of a steel pipe made of carbon steel or low alloy steel by a narrow gap carbon dioxide gas arc welding method while rotating the steel pipe. Welding current I (unit A) and arc voltage V (unit V) are set to lower limit values Ia and V that satisfy the following formulas according to
a and upper limit values Ib and Vb, Ia≦I≦Ib Va≦V≦Vb Here, Ia=7.5X+239.5 Ib=9.9X+299.6 Va=0.57X+27.57 Vb=0.75X+28.25 A narrow gap carbon dioxide arc welding method characterized by:
JP14304778A 1978-11-20 1978-11-20 Narrow gap carbon dioxide arc welding method Expired JPS6035234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14304778A JPS6035234B2 (en) 1978-11-20 1978-11-20 Narrow gap carbon dioxide arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14304778A JPS6035234B2 (en) 1978-11-20 1978-11-20 Narrow gap carbon dioxide arc welding method

Publications (2)

Publication Number Publication Date
JPS5570480A JPS5570480A (en) 1980-05-27
JPS6035234B2 true JPS6035234B2 (en) 1985-08-13

Family

ID=15329661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14304778A Expired JPS6035234B2 (en) 1978-11-20 1978-11-20 Narrow gap carbon dioxide arc welding method

Country Status (1)

Country Link
JP (1) JPS6035234B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825877A (en) * 2017-03-29 2017-06-13 于银强 stainless steel square tube welding process

Also Published As

Publication number Publication date
JPS5570480A (en) 1980-05-27

Similar Documents

Publication Publication Date Title
JP4957441B2 (en) Gas shield arc welding method
JPS6035234B2 (en) Narrow gap carbon dioxide arc welding method
JPS61249667A (en) Automatic fillet welding method with high speed rotating arc
JPS5918152B2 (en) Narrow gap carbon dioxide arc welding method
JP3232933B2 (en) Vertical welding method
JP3186885B2 (en) Single-sided submerged arc welding method
JP3808213B2 (en) Submerged arc welding method for thick steel plate
JP3120907B2 (en) Single-sided submerged arc welding method
JPH049096Y2 (en)
JPS6031598B2 (en) All-position narrow gap single-sided MIG automatic welding method for iron pipes
JP2522114B2 (en) Joint welding method for steel members
Tsushima et al. Tandem electrode AC‐MIG welding‐Development of AC‐MIG welding process (Report 4)
JPH0353068B2 (en)
JPS61266185A (en) Double electrode mig welding method
JPH0324304B2 (en)
JPS59183982A (en) Tack welding method by tig welding
JPH057115B2 (en)
JPH0324302B2 (en)
JPH08229677A (en) Shape of groove for automatic welding
JPS5825878A (en) Welding method for different kind of metals
JPS5533833A (en) High speed inclined position submerged arc welding method
JPS589779A (en) Butt welding method
JPH0215312B2 (en)
JPS5841946B2 (en) Thick plate welding method in MIG welding
CA1125383A (en) Welding process for production of a steel pipe