JPH0353068B2 - - Google Patents

Info

Publication number
JPH0353068B2
JPH0353068B2 JP5361384A JP5361384A JPH0353068B2 JP H0353068 B2 JPH0353068 B2 JP H0353068B2 JP 5361384 A JP5361384 A JP 5361384A JP 5361384 A JP5361384 A JP 5361384A JP H0353068 B2 JPH0353068 B2 JP H0353068B2
Authority
JP
Japan
Prior art keywords
tube
flange
welding
joint
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5361384A
Other languages
Japanese (ja)
Other versions
JPS60199576A (en
Inventor
Mitsuhiro Motomura
Hiroshi Mitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOMATSU ESUTO KK
Original Assignee
KOMATSU ESUTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOMATSU ESUTO KK filed Critical KOMATSU ESUTO KK
Priority to JP5361384A priority Critical patent/JPS60199576A/en
Publication of JPS60199576A publication Critical patent/JPS60199576A/en
Publication of JPH0353068B2 publication Critical patent/JPH0353068B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams

Description

【発明の詳細な説明】 本発明は油圧配管用のチユーブとフランジの継
手溶接方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of welding a joint between a tube and a flange for hydraulic piping.

従来建設機械などに装着される油圧機器の油圧
配管におけるチユーブ1とフランジ2の継手に
は、例えば第1A図に示す形式の溶接継手または
第1B図に示す形式の溶接継手があつて、その溶
接方法としてCO2溶接法、ろう付法が用いられて
おり、そのCO2溶接継手は融合またはクレータ処
理に対する技術不足によりその継手箇所の油もれ
およびクラツクが多く、またろう継手は信頼性の
高い継手であるがろう材が高価であるためコスト
高となり、それらの溶接法には品質面またはコス
ト面から問題があつた。
Conventionally, the joint between the tube 1 and the flange 2 in the hydraulic piping of hydraulic equipment installed in construction machinery, etc. has, for example, a welded joint of the type shown in Fig. 1A or a welded joint of the type shown in Fig. 1B. CO 2 welding and brazing are the methods used, and CO 2 welded joints tend to have oil leaks and cracks at the joints due to lack of technology for fusion or crater treatment, and brazed joints are highly reliable. Although they are joints, the cost is high because the filler metal is expensive, and the welding methods used for these have problems in terms of quality and cost.

本発明は、従来の溶接法による前述の問題を解
消して、信頼性が高く且つ溶接欠陥のない油圧配
管用のチユーブとフランジの継手溶接方法を提供
するために、チユーブの先端部をほぼチユーブの
肉厚に亘る傾斜幅の円錐台状に形成するととも
に、そのチユーブと接合するフランジの接合箇所
を前記チユーブの円錐台状に適合する凹状に形成
し、前記チユーブおよびフランジの円錐状傾斜面
を近接させて、その継手にパルスTIG接合法を適
用するようにし、溶接の技倆によらなくてよいよ
うに自動化したものである。
The present invention solves the above-mentioned problems caused by conventional welding methods and provides a tube-flange joint welding method for hydraulic piping that is highly reliable and free from welding defects. The tube is formed into a truncated conical shape with an inclined width extending over the wall thickness, and the joint portion of the flange that joins the tube is formed into a concave shape that fits the truncated conical shape of the tube, and the conical inclined surface of the tube and flange is The pulse TIG welding method is applied to the joints in close proximity to each other, and is automated so that it does not depend on welding skills.

以下本発明による油圧配管用のチユーブとフラ
ンジの継手溶接方法の実施例について第2図〜第
6図を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method of welding a joint between a tube and a flange for hydraulic piping according to the present invention will be described below with reference to FIGS. 2 to 6.

TIG溶接法とはTungsten Inert Gas Welding
の頭文字を並べたものであつて、基本的には非減
耗性のタングステン電極から出るアークの熱が溶
接部へ放射され、遮蔽用のアルゴンガスなどの不
活性ガスを流してできる不活性雰囲気中で溶接用
の溶融物ができ、熱がこの溶融物から伝わり、所
望の深さの溶接接合をし、例えば片面裏波溶接
(完全溶け込み溶接)を行なうようにするもので
ある。なお、不活性ガスは最初にイオン化されて
酸化膜を除去する清浄作用があり、従つてフラツ
クスは不要となる。この方法はフラツクスを作用
しないので、溶接後の耐食性がよく外観もきれい
であり、そのうえ酸素、アセチレンガス溶接に比
べて溶接速度が早いので、種々の厚み溶接ができ
るのである。
What is TIG welding? Tungsten Inert Gas Welding
It is basically an inert atmosphere created by radiating arc heat from a non-depletable tungsten electrode to the welding area and flowing an inert gas such as argon gas for shielding. Inside, a welding melt is created, and heat is transferred from this melt to form a welded joint to a desired depth, for example, one-sided uranami welding (full penetration welding). Note that the inert gas is first ionized and has a cleaning effect of removing the oxide film, so that no flux is required. Since this method does not apply flux, it has good corrosion resistance after welding and has a beautiful appearance.Furthermore, the welding speed is faster than oxygen or acetylene gas welding, so it is possible to weld various thicknesses.

次にパルスTIG溶接とは、溶接そのものは前述
のTIG溶接法によるのであるが、第2図に示すよ
うに電極がTb時間の移動とTp時間の停止とを交
互に繰返し、溶接電流が電極移動のTb時間にベ
ース電流Ib、電極停止のTp時間にピーク電流Ip
となるパルス波形となるようにしたものである。
なお、チユーブとフランジの継手をパルスTIG溶
接するために、例えば第3図に示すように電極を
溶接部に沿つて360°移動させながら溶接をする場
合に、ピーク電流値Ipは最初は高く、そして次第
に低くなるようにし、ついで360°を越えたときに
オーバーラツプに適合する電流値とし、ついでク
レータ処理に適合する電流値とするようにプログ
ラム化することもできる。
Next, in pulse TIG welding, the welding itself is based on the TIG welding method described above, but as shown in Figure 2, the electrode alternately moves during Tb time and stops during Tp time, and the welding current moves the electrode. Base current Ib at Tb time of , peak current Ip at Tp time of electrode stop
The pulse waveform is as follows.
In addition, when performing pulse TIG welding of a joint between a tube and a flange, for example, when welding is performed while moving the electrode 360° along the welding part as shown in Figure 3, the peak current value Ip is initially high; It is also possible to program the current value to be gradually lowered, then to a current value suitable for overlap when exceeding 360 degrees, and then to a current value suitable for cratering treatment.

次に第4図はチユーブ1とフランジ2の継手を
パルスTIG溶接する実施例を示したものであり、
チユーブ1の先端部をほぼそのチユーブの肉厚に
亘る傾斜幅の円錐台状に形成するとともに、フラ
ンジ2の接合箇所をチユーブ1の円錐台状に適合
する凹状に形成し、チユーブ1とフランジ2の円
錐状傾斜面を近接させて、タングステン電極3の
移動時のベース電流値Ibおよび時間Tb、並びに
その電極の停止時のピーク電流値Ipおよび時間
Tpを予め定められたパルス波とした溶接電流を
用いてパルスTIG溶接するようにしたものであ
る。チユーブとフランジの継手溶接は、チユーブ
とフランジが互いに円錐状傾斜面を近接させて溶
接されるので、両者の中心線を整合させることが
できる。
Next, Figure 4 shows an example of pulse TIG welding of the joint between tube 1 and flange 2.
The tip of the tube 1 is formed in the shape of a truncated cone with an inclined width extending approximately through the wall thickness of the tube, and the joint portion of the flange 2 is formed in a concave shape that fits the truncated cone shape of the tube 1. The base current value Ib and time Tb when the tungsten electrode 3 moves, and the peak current value Ip and time when the electrode stops
Pulse TIG welding is performed using a welding current with Tp as a predetermined pulse wave. In joint welding of the tube and flange, since the tube and flange are welded with their conical inclined surfaces close to each other, their center lines can be aligned.

なお、その継手溶接の場合、断面溶接線が斜め
になるため距離が長く、チユーブ1とフランジ2
の接合部に第4図に示すように電極3を向けると
きはチユーブ1の外部が溶けて良好な溶接結果が
得られないことがある。そこで電極3の先端を第
5図に示すように、チユーブとフランジの外部の
接合点より予め定められた距離だけオフセツト
し、その電極の方向をチユーブとフランジの内部
の接合点を向けることによつて良好な溶接が可能
になり、必要な場所に適正な裏波を得ることがで
きる。オフセツト量は材質とチユーブ厚さによつ
て変化するので、実験的に最適値を求めてもよく
熱量の計算から求めてもよい。
In addition, in the case of joint welding, the cross-sectional weld line is diagonal, so the distance is long, and tube 1 and flange 2
When the electrode 3 is directed to the joint of the tube 1 as shown in FIG. 4, the outside of the tube 1 may melt and a good welding result may not be obtained. Therefore, as shown in Fig. 5, the tip of the electrode 3 is offset by a predetermined distance from the joint point on the outside of the tube and flange, and the direction of the electrode is oriented toward the joint point on the inside of the tube and flange. This allows for good welding and allows for proper welding to be achieved where needed. Since the amount of offset changes depending on the material and tube thickness, the optimum value may be determined experimentally or by calculating the amount of heat.

また、チユーブが薄くて溶接が困難なときに
は、第6図に示すようにフランジ2を上にしてほ
ぼ水平方向に保持するとともにチユーブ1を下に
してほぼ垂直方向に保持することにより、溶融金
属がチユーブ方向に流れ結合部の強度を高めた溶
接が可能になる。
When the tube is thin and difficult to weld, it is possible to hold the molten metal in a substantially horizontal direction with the flange 2 facing up and in a substantially vertical direction with the tube 1 facing down, as shown in Figure 6. It becomes possible to weld with increased flow joint strength in the tube direction.

なお、第4図〜第6図における電極3は2本〜
6本程度の複数にすることもでき、それによつて
溶接時間の短縮を図ることができる。
In addition, the electrodes 3 in FIGS. 4 to 6 are two to
It is also possible to use a plurality of about six pieces, thereby shortening the welding time.

本発明による方法は、上述のように構成されて
いるので、 フイラワイヤを用いないため間接材料費が低
減でき、 溶接条件は例えば第3図に示すように完全に
プログラム化され、被溶接物によるバラツキを
なくすことができ、 溶接電流として第2図に示すようなパルス波
を用いており、ピーク時およびベース時の電流
値、時間を独立に変更できるため人熱制御が容
易であり、 ピーク時に電極を静止させベース時に動かす
ようにパルス波と同期させることにより人熱を
集中させることができ、安定した裏波溶接が可
能であり、 被溶接物は固定され電極が回転するため、被
溶接物の形状の影響を受けない、 などの効果がある。
Since the method according to the present invention is configured as described above, indirect material costs can be reduced because filler wire is not used, and the welding conditions can be completely programmed as shown in Figure 3, so that variations due to the workpiece can be reduced. A pulse wave as shown in Figure 2 is used as the welding current, and the current value and time at peak and base times can be changed independently, making it easy to control human heat. By keeping the weld stationary and moving it at the base in synchronization with the pulse wave, human heat can be concentrated and stable Uranami welding is possible.The workpiece is fixed and the electrode rotates, so the It has the advantage of not being affected by shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図および第1B図は従来のチユーブとフ
ランジの溶接継手を示す断面側面図、第2図はパ
ルスTIG溶接の溶接条件による電極の移動と電流
波形の関係の一例を示す線図的説明図、第3図は
第2図の溶接条件のプログラムの一例を示す線図
的説明図、第4図〜第6図は本発明によるチユー
ブとフランジの継手溶接の実施例を示す断面側面
図である。 1……チユーブ、2……フランジ、3……タン
グステン電極、Tp……電極移動時間、Tb……電
極停止時間、Ip……ピーク電流値、Ib……ベース
電流値。
Figures 1A and 1B are cross-sectional side views showing a conventional welded joint between a tube and a flange, and Figure 2 is a diagrammatic explanatory diagram showing an example of the relationship between electrode movement and current waveform depending on the welding conditions of pulsed TIG welding. , FIG. 3 is a diagrammatic explanatory diagram showing an example of the welding condition program shown in FIG. 2, and FIGS. 4 to 6 are cross-sectional side views showing examples of tube-flange joint welding according to the present invention. . 1...tube, 2...flange, 3...tungsten electrode, Tp...electrode moving time, Tb...electrode stopping time, Ip...peak current value, Ib...base current value.

Claims (1)

【特許請求の範囲】 1 チユーブの先端部をほぼそのチユーブの肉厚
に亘る傾斜幅の円錐台状に形成するとともに、そ
のチユーブと接合するフランジの接合箇所を前記
チユーブの円錐台状に適合する凹状に形成し、前
記チユーブおよびフランジの円錐状傾斜面を近接
させて、タングステン電極の移動時のベース電流
値および時間並びに前記電極の停止時のピーク電
流値および時間を予め定められたパルス波とした
溶接電流を用いてパルスTIG接合することを特徴
とする油圧配管用のチユーブとフランジの継手溶
接方法。 2 特許請求の範囲第1項記載の継手溶接方法に
おいて、前記タングステン電極の先端を前記チユ
ーブとフランジの外部の接合点より予め定められ
た距離だけオフセツトし、前記電極の方向を前記
チユーブとフランジの内部の接合点に向けたこと
を特徴とする継手溶接方法。 3 特許請求の範囲第2項記載の継手溶接方法に
おいて、前記フランジを上にしてほぼ水平方向に
保持するとともに前記チユーブを下にしてほぼ垂
直方向に保持するようにしたことを特徴とする継
手溶接方法。
[Scope of Claims] 1. The tip of the tube is formed into a truncated cone shape with an inclined width that extends approximately through the wall thickness of the tube, and the joint portion of the flange that joins the tube is adapted to the truncated cone shape of the tube. The tube is formed into a concave shape, and the conical inclined surfaces of the tube and flange are brought close to each other, and the base current value and time when the tungsten electrode is moved and the peak current value and time when the electrode is stopped are set to a predetermined pulse wave. A joint welding method for a tube and flange for hydraulic piping, which is characterized by pulse TIG joining using a welding current of 2. In the joint welding method according to claim 1, the tip of the tungsten electrode is offset by a predetermined distance from the external joint point of the tube and flange, and the direction of the electrode is aligned with the direction of the tube and flange. A joint welding method characterized by welding to internal joint points. 3. The joint welding method according to claim 2, wherein the joint welding is held in a substantially horizontal direction with the flange upward, and in a substantially vertical direction with the tube downward. Method.
JP5361384A 1984-03-22 1984-03-22 Joint welding method of tube and flange for hydraulic piping Granted JPS60199576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5361384A JPS60199576A (en) 1984-03-22 1984-03-22 Joint welding method of tube and flange for hydraulic piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5361384A JPS60199576A (en) 1984-03-22 1984-03-22 Joint welding method of tube and flange for hydraulic piping

Publications (2)

Publication Number Publication Date
JPS60199576A JPS60199576A (en) 1985-10-09
JPH0353068B2 true JPH0353068B2 (en) 1991-08-13

Family

ID=12947749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5361384A Granted JPS60199576A (en) 1984-03-22 1984-03-22 Joint welding method of tube and flange for hydraulic piping

Country Status (1)

Country Link
JP (1) JPS60199576A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128119A (en) * 1989-10-12 1991-05-31 Nippon Kokan Pipe Fittings Mfg Co Ltd Manufacture of branch tube
CN110091033A (en) * 2019-05-17 2019-08-06 成都飞机工业(集团)有限责任公司 A kind of welding method promoting hydraulic pipe fatigue behaviour
CN112317926B (en) * 2020-10-13 2022-05-03 杭州新松机器人自动化有限公司 Universal type water lifting pipe robot automatic TIG welding tool and welding method thereof
CN113102911B (en) * 2021-04-14 2021-10-29 营口诚源机械设备有限公司 Low-deformation vertical welding structure and process

Also Published As

Publication number Publication date
JPS60199576A (en) 1985-10-09

Similar Documents

Publication Publication Date Title
CN108788507A (en) A kind of divided edge structure and welding procedure of steel plate welding
CN104722896A (en) Automatic submerged arc welding method of nickel base alloy
CN108856965B (en) Method for welding inclined tube plate by using MAG welding
JP2000084665A (en) Vertical downward build-up welding method
KR100811920B1 (en) One side welding method of butt-welded joints
JPH0353068B2 (en)
US4267428A (en) Contoured welding rod
JPH06114587A (en) Butt welding method for thick plates
JP2001030091A (en) Structure of t-shaped joint with narrow groove, its welding method, and welded structure
CN112404660A (en) Pipeline welding method
JPH0994658A (en) One side butt welding method
JP2833279B2 (en) Steel pipe welding method
RU2787195C1 (en) Method for hybrid laser-arc welding of thick-wall pipes
JP4128022B2 (en) Groove butt welding method using insert member and insert member used therefor
JPS61193788A (en) Welding method
CN108856990B (en) Method for welding inclined pipe by MAG welding
JPH057115B2 (en)
JPH049096Y2 (en)
Tsushima et al. Tandem electrode AC‐MIG welding‐Development of AC‐MIG welding process (Report 4)
JPH09271992A (en) Backing material for t-joint
JPH0615110B2 (en) One-sided welding method
JPH0227072B2 (en)
JP2002273568A (en) Overhead welding method
JPH06285639A (en) Inner surface seam welding method for clad steel tube
JPS6125464B2 (en)