JPS6033292A - Preparation of single crystal semiconductor - Google Patents

Preparation of single crystal semiconductor

Info

Publication number
JPS6033292A
JPS6033292A JP13925383A JP13925383A JPS6033292A JP S6033292 A JPS6033292 A JP S6033292A JP 13925383 A JP13925383 A JP 13925383A JP 13925383 A JP13925383 A JP 13925383A JP S6033292 A JPS6033292 A JP S6033292A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
magnetic field
silicon
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13925383A
Other languages
Japanese (ja)
Inventor
Hidekazu Taji
田路 英一
Mitsuhiro Yamato
充博 大和
Masaharu Watanabe
正晴 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP13925383A priority Critical patent/JPS6033292A/en
Publication of JPS6033292A publication Critical patent/JPS6033292A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Abstract

PURPOSE:To prepare a single crystal semiconductor having low oxygen concn. and low concn. of impurity and high purity by rotating a means for impressing magnetic field to molten starting material for a semiconductor in a crucible supported freely rotatably by rotating the means synchronously with the rotation of the crucible. CONSTITUTION:Two electromagnets 11, 12 are provided to both the sides of a crucible 4 on the outside periphery of a chamber 1 arranging to confront the N pole to the S pole and impressing a magnetic field in the horizontal direction to the molten silicon 9 in the crucible 4. These electromagnets 11, 12 are constructed to be mechanically or electrically rotatable synchronously with the rotation of the crucible 4 around the chamber 1. Magnetic field in the horizontal direction is impressed to the molten silicon 9 in the crucible 4 by passing approximately DC current through a heater 5 and electromagnet 11, 12 using the pulling device and the electromagnets 11, 12 are rorated synchronously with the rotation of the crucible 4. Single crystal silicon 10 is pulled up by pulling up a chain 7 in this state.

Description

【発明の詳細な説明】 本発明は単結晶半導体の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a single crystal semiconductor.

半導体装置の製造に用いられる単結晶半導体は主にチョ
クラルスキー法(C2法)によって製造されている。従
来、このC2法には第1図に示すような単結晶半導体引
上装置が用いられている。
Single crystal semiconductors used for manufacturing semiconductor devices are mainly manufactured by the Czochralski method (C2 method). Conventionally, a single crystal semiconductor pulling apparatus as shown in FIG. 1 has been used in this C2 method.

すなわち、図中1は上部と下部が開口したチャンバーで
ある。このチャンバー1の下部開口からは回転自在な支
持棒2が挿入されておル。
That is, numeral 1 in the figure is a chamber whose top and bottom are open. A rotatable support rod 2 is inserted into the lower opening of the chamber 1.

この支持棒2上には黒鉛製保護体3が支持され、石英ル
ツボ4t−保護している。前記保護体3の外周には円筒
状のヒータ6及び保温筒6が順次配設されている。また
、前記チャンバー1の上部開口からは例えばチェーン7
が吊下されてお91種結晶8を保持している。
A graphite protector 3 is supported on the support rod 2 to protect the quartz crucible 4t. A cylindrical heater 6 and a heat retaining tube 6 are sequentially arranged around the outer periphery of the protector 3. Further, from the upper opening of the chamber 1, for example, a chain 7
is suspended and holds 91 seed crystals 8.

上記引上装置を用いたC2法は、単結晶シリコンを製造
する場合を例にとれば、ルッデ4内にシリコン原料を入
れ、ヒータ5によシリコン原料を溶融させ、この溶融シ
リコン9に種結晶8を浸し、ルツ?4と種結晶8とを逆
方向に回転させながらチェーン2を引上げることにょシ
単結晶シリコン10を引上げるものである。
In the C2 method using the above-mentioned pulling device, for example, when manufacturing single crystal silicon, a silicon raw material is put into a Ludde 4, the silicon raw material is melted by a heater 5, and a seed crystal is added to this molten silicon 9. Soak 8, Ruth? The single crystal silicon 10 is pulled up by pulling up the chain 2 while rotating the chain 4 and the seed crystal 8 in opposite directions.

上述した方法では製造される単結晶シリコン10中の酸
素濃度や不純物濃度が高くなシ、高純度の結晶を得るこ
とができないという欠点がある。これは以下のような原
因によると考えられる。
The above-described method has the disadvantage that the oxygen concentration and impurity concentration in the single crystal silicon 10 produced are high, and that a high-purity crystal cannot be obtained. This is thought to be due to the following reasons.

すなわち、上記C2法では均熱のためにルツ?4を回転
しているが、ルツボ4内の溶融シリコン9はルツボ4の
回転速度と比較するとゆつくシとしか回転しない。この
ため、ルツ?4は溶融シリコン9との接触によシ浸食さ
れ易くなシ、酸素やその他のルツボ4中に含まれる不純
物が単結晶シリコン10にとシ込まれる。したがって、
高純度の結晶を得ることができないと考えられる。
In other words, in the C2 method mentioned above, because of uniform heating, the temperature is 100%. However, the molten silicon 9 in the crucible 4 rotates only slowly compared to the rotation speed of the crucible 4. Because of this, Ruth? 4 is easily eroded by contact with molten silicon 9, and oxygen and other impurities contained in crucible 4 are injected into single crystal silicon 10. therefore,
It is considered that high purity crystals cannot be obtained.

また、従来のC2法では、ルツ7t4内の溶融シリコン
9中で起こる強制対流や熱対流が原因となり、単結晶シ
リコン10中の酸素濃度分布等が不均一になるという欠
点があるため、溶融シリコン9に水平方向あるいは鉛「
f方向に磁場を印加することによシ対流を抑制し、単結
晶シリコン10の酸素濃度分布等を均一化することが行
なわれている。
In addition, the conventional C2 method has the disadvantage that the oxygen concentration distribution in the single crystal silicon 10 becomes uneven due to forced convection and thermal convection that occur in the molten silicon 9 in Ruth 7t4. 9 horizontally or lead
By applying a magnetic field in the f direction, convection is suppressed and the oxygen concentration distribution of the single crystal silicon 10 is made uniform.

このように磁場を印加すれば、酸素濃度分布等を均一化
することはできるが、上述したルツ?4の浸食による単
結晶シリコン10中の酸素濃度や不純物濃度の増加を防
止できるわけではなく、高純度の結晶を得ることは困難
であった。
By applying a magnetic field in this way, it is possible to equalize the oxygen concentration distribution, etc., but the above-mentioned Ruth? It has not been possible to prevent the increase in oxygen concentration and impurity concentration in the single crystal silicon 10 due to the erosion of 4, and it has been difficult to obtain highly pure crystals.

本発明は上記事情に鑑みてなされたものであシ、酸素濃
度や不純物濃度の低い高純度の単結晶半導体を製造し得
る方法全提供しようとするものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a complete method for producing a high purity single crystal semiconductor with low oxygen concentration and impurity concentration.

すなわち、本発明の単結晶半導体の製造方法は、ルツ?
内の溶融半導体原料に磁場を印加する手段を設け、この
磁場印加手段をルツがの回転と同期させて回転させるこ
とを特徴とするものである。
That is, the method for manufacturing a single crystal semiconductor of the present invention is based on Ruth?
The device is characterized in that it is provided with means for applying a magnetic field to the molten semiconductor raw material inside, and that the magnetic field applying means is rotated in synchronization with the rotation of the molten semiconductor material.

このように磁場印加手段をルツボの回転と同期させて回
転させれば、溶融半導体原料はルツが内で相対的には停
止した状態かまたはそれに近い状態となるので、ルツ?
の浸食が減少して単結晶半導体の純度を向上することが
できる。
In this way, if the magnetic field application means is rotated in synchronization with the rotation of the crucible, the molten semiconductor raw material will be in a relatively stopped state within the crucible, or a state close to it, so that the crucible will remain relatively stationary within the crucible.
erosion can be reduced and the purity of single crystal semiconductors can be improved.

以下、本発明の実施例を第2図及び第3図τ参照して説
明する。なお、既述した第1図と同一の部材には同一番
号を付して説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 2 and 3. Incidentally, the same members as those in FIG. 1 already described are given the same numbers and their explanations will be omitted.

チャンバー1の外周のルツボ4の両側方の位置KH2個
の電磁石11.12がN極とS極が対向するように配設
されており、ルツボ4内の溶融シリコン9に水平方向の
磁場を印加するようになっている。これら電極石11.
12けチャンバー1の周囲をルツボ4の回転と同期して
機械的あるいは電気的に回転できるようになっている。
Two electromagnets 11 and 12 located on both sides of the crucible 4 on the outer periphery of the chamber 1 are arranged so that their N and S poles face each other, and apply a horizontal magnetic field to the molten silicon 9 in the crucible 4. It is supposed to be done. These electrode stones11.
The circumference of the 12-chamber chamber 1 can be mechanically or electrically rotated in synchronization with the rotation of the crucible 4.

上記引上装置を用いて、ヒータ5にはほぼ直流の電流を
通電し、電磁石11.12に通電して、ルツぎ4内の溶
融シリコン9に水平方向の磁場全印加しなから、第3図
に示す如く電磁石11.12fルツぎ4の回転と同期さ
せて回転させるほかは、従来の方法とほぼ同様にして単
結晶シリコン10の引上げが行なわれる。
Using the above-mentioned lifting device, the heater 5 is energized with a nearly direct current, the electromagnets 11 and 12 are energized, and the entire horizontal magnetic field is applied to the molten silicon 9 in the screw 4. As shown in the figure, the single crystal silicon 10 is pulled up in substantially the same manner as the conventional method except that the electromagnets 11, 12f are rotated in synchronization with the rotation of the throne 4.

しかして、上記方法によれば、電磁石11゜12の回転
に伴い、ルツが4内の溶融シリコン9も同程度の速度で
回転するので・ルツボ4と溶融シリコン9とは相対的に
は停止した状態かまたはそれに近い状態となる。したが
って、ルツ73?4の浸食は著しく減少し、溶融シリコ
ン9中和取り込まれる酸素やその他のルツボ4中に含ま
れる不純物が減少し、製造される単結晶シリコンの純度
を向上することができる。
According to the above method, as the electromagnets 11 and 12 rotate, the molten silicon 9 in the crucible 4 also rotates at the same speed, so the crucible 4 and the molten silicon 9 are relatively stationary. state or a state close to it. Therefore, the erosion of the crucible 73-4 is significantly reduced, the oxygen neutralized by the molten silicon 9 and other impurities contained in the crucible 4 are reduced, and the purity of the single crystal silicon produced can be improved.

事実、従来の方法ではlチャージ、24〜30時間の操
作で、約8〜9+++m厚のルッMの溶融シリコンと接
触部分は約1〜2閣浸食され、この結果製造された単結
晶シリコン中の酸素濃度はlO〜20X10 cm で
あったのに対し、本発明方法では同じlチャージの操作
でルツボの浸食は約0.2〜0.5閣であシ、製造され
た単結晶シリコン中′の酸素濃度は4〜6×1o17c
rn″3と著しく減少することができた。
In fact, in the conventional method, after 1 charge and 24 to 30 hours of operation, the contact area with the molten silicon of about 8 to 9 +++ m thickness is eroded by about 1 to 2 cm, and as a result, the monocrystalline silicon in the produced monocrystalline silicon is eroded. The oxygen concentration was 10~20x10 cm, whereas in the method of the present invention, the erosion of the crucible was about 0.2~0.5 cm with the same 1 charge operation, and the Oxygen concentration is 4-6×1o17c
It was possible to reduce it significantly to rn″3.

マタ、単結晶シリコン中の酸素濃度分布、比抵抗分布の
均一性も向上しておシ、高品質の単結晶シリコンを製造
することができた。
Additionally, the uniformity of the oxygen concentration distribution and resistivity distribution in single-crystal silicon was also improved, making it possible to produce high-quality single-crystal silicon.

、なお、上記実施例で用いた引上装置では2個の電磁石
11.12を用いてルッが4中の溶融シリコン9に水平
方向の磁場を印加したが、これに限らず、例えば第4図
に示す如く、図示しないチャンバーの外周にリング状の
例えば超電導コイル13を配設してルッぎ4内の溶融シ
リコンに鉛直方向の磁場を印加し、この超電導コイル1
3をルツボ4の回転と同期させて回転させてもよい。こ
の場合、同図に示す如く、超電導コイル13の回転中心
金ルッ〆4の回転中心から偏心させて溶融シリコンに印
加される磁場が非対称となるようにしておき、超電導コ
イル13の中心が図中の破線上を運すtbするようにす
れば、有効にルツボ4の浸食を防止することができる。
In addition, in the pulling device used in the above embodiment, a horizontal magnetic field was applied to the molten silicon 9 in the silicone 4 using two electromagnets 11 and 12, but the invention is not limited to this, for example, as shown in FIG. As shown in FIG. 2, a ring-shaped superconducting coil 13, for example, is disposed around the outer periphery of a chamber (not shown), and a vertical magnetic field is applied to the molten silicon in the Ruggi 4.
3 may be rotated in synchronization with the rotation of the crucible 4. In this case, as shown in the figure, the center of rotation of the superconducting coil 13 is eccentric from the center of rotation of the metal ring 4, so that the magnetic field applied to the molten silicon is asymmetrical, so that the center of the superconducting coil 13 is centered in the figure. If tb is carried on the broken line, erosion of the crucible 4 can be effectively prevented.

才た、以上の説明では、単結晶シリコンを製造する場合
について述べたが、これに限らず例えばGaAs等の単
結晶全製造する場合にも本発明方法を同様に適用できる
ことは勿論である。
In the above explanation, the case of manufacturing single crystal silicon has been described, but it goes without saying that the method of the present invention can be similarly applied to the case of manufacturing a single crystal of GaAs or the like.

以上詳述した如く本発明の単結晶半導体の製造方法によ
れば、酸素濃度等の低い高純度の単結晶半導体を製造で
bる等顕著な効果を奏するものである。
As described above in detail, the method for manufacturing a single crystal semiconductor of the present invention has remarkable effects such as manufacturing a high purity single crystal semiconductor with low oxygen concentration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の単結晶半導体引上装置の断面図、第2図
は本発明の実施例において用いられた単結晶半導体引上
装置の断面図、第3図は本発明の実施例における単結晶
半導体の製造方法を示す説明図、第4図は本発明の他の
実施例における単結晶半導体の製造方法を示す図である
。 1・・・チャンバー、2・・・支持棒、3・・・保護体
、4・・・ルツボ、5・・・ヒータ、6・・・保温筒、
7・・・チェーン、8・・・椋結晶、9・・・溶融シリ
コン、1゜・・・単結晶シリコン、11.12・・・電
磁石、13・・・超電導コイル。
FIG. 1 is a sectional view of a conventional single crystal semiconductor pulling device, FIG. 2 is a sectional view of a single crystal semiconductor pulling device used in an embodiment of the present invention, and FIG. 3 is a sectional view of a conventional single crystal semiconductor pulling device used in an embodiment of the present invention. FIG. 4 is an explanatory diagram showing a method for manufacturing a crystalline semiconductor. FIG. 4 is a diagram showing a method for manufacturing a single crystal semiconductor in another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Chamber, 2... Support rod, 3... Protector, 4... Crucible, 5... Heater, 6... Heat insulation cylinder,
7... Chain, 8... Muku crystal, 9... Molten silicon, 1°... Single crystal silicon, 11.12... Electromagnet, 13... Superconducting coil.

Claims (1)

【特許請求の範囲】[Claims] チャンバー内にルツ?を回転自在に支持し、該ルツボ内
の溶融半導体原料にルツゲ上方から回転自在に吊下され
た種結晶を浸して核種結晶を引上げることによシ単結晶
半導体ヲ製造する方法において、前記ルツボ内の溶融半
導1体原料に磁場を印加する手段を設け、該磁場印加手
段を前起ルツボの回転と同期させて回転させることを特
徴とする単結晶半導体の製造方法。
Ruth in the chamber? A method for producing a single crystal semiconductor by rotatably supporting the crucible, dipping a seed crystal rotatably suspended from above the crucible into the molten semiconductor raw material in the crucible, and pulling up the nuclide crystal. A method for manufacturing a single crystal semiconductor, comprising: providing means for applying a magnetic field to a single molten semiconductor raw material; and rotating the magnetic field applying means in synchronization with the rotation of a pre-warming crucible.
JP13925383A 1983-07-29 1983-07-29 Preparation of single crystal semiconductor Pending JPS6033292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13925383A JPS6033292A (en) 1983-07-29 1983-07-29 Preparation of single crystal semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13925383A JPS6033292A (en) 1983-07-29 1983-07-29 Preparation of single crystal semiconductor

Publications (1)

Publication Number Publication Date
JPS6033292A true JPS6033292A (en) 1985-02-20

Family

ID=15240999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13925383A Pending JPS6033292A (en) 1983-07-29 1983-07-29 Preparation of single crystal semiconductor

Country Status (1)

Country Link
JP (1) JPS6033292A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424090A (en) * 1987-07-20 1989-01-26 Toshiba Ceramics Co Method and apparatus for producing single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424090A (en) * 1987-07-20 1989-01-26 Toshiba Ceramics Co Method and apparatus for producing single crystal

Similar Documents

Publication Publication Date Title
JP2003277197A (en) CdTe SINGLE CRYSTAL, CdTe POLYCRYSTAL AND METHOD FOR PRODUCING THE SINGLE CRYSTAL
KR20110094025A (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
JPS6153187A (en) Device for growing single crystal
JPH09183691A (en) Apparatus for producing silicon single crystal
JPS6033292A (en) Preparation of single crystal semiconductor
JPS59121183A (en) Method for crystal growth
JPS6033294A (en) Pulling device for single crystal semiconductor
JP3900827B2 (en) Quartz crucible for single crystal pulling, single crystal pulling apparatus and single crystal pulling method
JP2010248003A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JPH02221184A (en) Method and apparatus for producing single crystal
TWI701363B (en) Method of growing silicon single crystal
JPH03193694A (en) Crystal growing device
JPS6033297A (en) Pulling device for single crystal semiconductor
JPH0633221B2 (en) Single crystal manufacturing equipment
JPS6033290A (en) Preparation of single crystal semiconductor
JP2612019B2 (en) Single crystal pulling device
JPS5938199B2 (en) Compound semiconductor crystal growth equipment
JPS61227989A (en) Production of single crystal and apparatus therefor
JPH0660080B2 (en) Single crystal growth equipment
JPS60195087A (en) Furnace for growing single crystal
JPH0570282A (en) Single crystal pulling up device
JPS6033295A (en) Pulling device for single crystal semiconductor
JPH0142920B2 (en)
JPS6033293A (en) Pulling device for single crystal semiconductor
JPH10279399A (en) Production of single crystal