JPS6033282A - Sludge composting method - Google Patents

Sludge composting method

Info

Publication number
JPS6033282A
JPS6033282A JP14194783A JP14194783A JPS6033282A JP S6033282 A JPS6033282 A JP S6033282A JP 14194783 A JP14194783 A JP 14194783A JP 14194783 A JP14194783 A JP 14194783A JP S6033282 A JPS6033282 A JP S6033282A
Authority
JP
Japan
Prior art keywords
sludge
treated
reaction tank
reaction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14194783A
Other languages
Japanese (ja)
Inventor
和田 知男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKONEYA SHIYOUTEN KK
Original Assignee
HAKONEYA SHIYOUTEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKONEYA SHIYOUTEN KK filed Critical HAKONEYA SHIYOUTEN KK
Priority to JP14194783A priority Critical patent/JPS6033282A/en
Publication of JPS6033282A publication Critical patent/JPS6033282A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明に汚泥堆肥化方法に係り−l痔に都市下水処理過
程やし尿処理過程から発生する汚泥等の微生物分解可能
な有機物を含む汚泥状物質を処理する方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sludge composting method - a method for treating sludge-like substances containing microorganism-decomposable organic matter such as sludge generated from urban sewage treatment processes and human waste treatment processes. .

従来より、都市下水処理過程より発生する汚泥やし尿処
理過程より発生する汚泥等の処理に関して様々な方法が
提案され、実施されてきているが、それらの中で必要エ
ネルギー量の最も少ない方法として汚泥を微生物作用に
よって堆肥状物質に変換するいわゆる堆肥化方法もしく
は発酵方法と称される方法が注目されている。
Up until now, various methods have been proposed and implemented for the treatment of sludge generated in the urban sewage treatment process and sludge generated in the human waste treatment process. A so-called composting method or fermentation method, in which compost is converted into a compost-like material by the action of microorganisms, is attracting attention.

この方法の基本的考え方は、被処理物を好ましい含水率
に調節した後、空気によく接触するようにし、いわゆる
好気性状態に保持し、この時好気性微生物が大量に増殖
かつ活動することを利用して、汚泥を化学的、生物化学
的により安定した低臭気性のいわゆる堆肥に変換するも
のである。
The basic idea of this method is that after adjusting the moisture content of the material to be treated, it is kept in a so-called aerobic state by making it come into contact with the air, and at this time, aerobic microorganisms are allowed to proliferate and become active in large quantities. It is used to convert sludge into so-called compost, which is chemically and biochemically stable and has low odor.

しかるに従来より行なわれてきた堆肥化方法にはそれら
′t−実施検討してみると、好気性微生物反応開始にい
たるまでの時間が長く、或はその反応途中でその反応が
停止してしまうなどの様々な欠点が存在している。
However, when we examine the conventional methods of composting, we find that it takes a long time to start the aerobic microbial reaction, or that the reaction stops midway through. There are various drawbacks.

このような点を考慮して本発明は、汚泥状物質を短時間
に堆肥状物質に変換するための効果的な方法全提供する
ものである。
In consideration of these points, the present invention provides an effective method for converting sludge-like material into compost-like material in a short time.

即ち本発明は、微生物分解可能な有機物を含む各種汚泥
状物質を好気性微生物を主とする微生物の活動によって
堆肥状物質に変換するもので、前気汚泥状物質を収容す
る反応槽に空気もしくは酸素、もしくは酸素を含む気体
全導入し、前記気体の温度、湿度、流量、流速、気圧及
び導入時間等の状態要素の内の少くとも一つを制御する
ことにより前記汚泥状物質を処理することを特徴とする
ものである。
That is, the present invention converts various sludge-like substances containing organic matter that can be decomposed by microorganisms into compost-like substances through the activities of microorganisms, mainly aerobic microorganisms. Treating the sludge-like material by completely introducing oxygen or a gas containing oxygen and controlling at least one of state factors such as the temperature, humidity, flow rate, flow rate, atmospheric pressure, and introduction time of the gas. It is characterized by:

次に本発明を図の実施例に従って詳細忙説明する。The present invention will now be explained in detail according to the embodiments shown in the figures.

第1図は本発明の1基本的実施態様の概略構成5!2t
−示すフローシートで、1は各種汚泥状物質である被処
理物で1反応[2の中に投入される。
FIG. 1 shows a schematic configuration 5!2t of one basic embodiment of the present invention.
- In the flow sheet shown, 1 is a material to be treated, which is various sludge-like substances, which are put into 1 reaction [2].

又反応槽2の下部開口部よりは送風機3と加湿器5並び
に加温器6をあわせ用いて温度及び湿度について制御を
行いながら空気4を送りこむ。
Air 4 is fed through the lower opening of the reaction tank 2 while controlling the temperature and humidity using a blower 3, a humidifier 5, and a warmer 6.

この空気は更に反応槽2中の被処理物1に接触した後9
反応槽上部開口部より反応槽外へとり出され、その一部
は再び配管7′によって送風機3に戻され循環が行なわ
れる。 勿論この間常に多少の空気が外部より新たに補
充されている。
After this air further comes into contact with the workpiece 1 in the reaction tank 2,
The air is taken out of the reaction tank through the upper opening of the reaction tank, and a part of it is returned to the blower 3 through the pipe 7' for circulation. Of course, during this time some fresh air is constantly being replenished from the outside.

このように本発明は、被処理物1に接触するを気の温度
並びに湿度?制御するものでおって、この結果好気性微
生物反応(以下単に反応と省略]の開始にいたる時間が
短縮され、又ひとたび反応が一開始したならば好ましい
反応状Mk目標とする時間にわたって継続的に保持させ
ることができる。
In this way, the present invention can control the temperature and humidity of the air that comes into contact with the object 1 to be treated. As a result, the time required to start the aerobic microbial reaction (hereinafter simply referred to as reaction) is shortened, and once the reaction has started, the desired reaction state Mk is maintained continuously over the target time. can be retained.

本発明の第1の実際例として、都市下水の活性汚泥法に
よる処理過程から発生する汚泥を被処理物として、実験
を試みた。 被処理物としては。
As a first practical example of the present invention, an experiment was conducted using sludge generated from the treatment process of urban sewage by the activated sludge method as the object to be treated. As the object to be processed.

フィルター、プレスによって機械的に脱水された後の汚
泥とし、約85重量−の含水率を持っていた。 この含
水率を低下させるために、含水率10重量%の粉末状堆
肥全混合し、含水率を55重量%とした混合物k la
6 @aに示すスクリュ一式プレスを使って直径30m
mw長さ100mmの丸棒状に成形した後、この丸棒状
彼処−履物t−1g2図に示すように直径1m、高さ5
mの円柱状の反応4W2に投入した。 反応@2の下部
には開口部2aがあ!l1%この開口部2aKは配管7
が接続していて主送風機からの空気を710湿器5並び
に加温器6金介して反応槽2内に送りこむ。 又反応4
112の上部にも開口部2bがあり、それに接続した配
管7′によって反応槽からの排気の一部は主送風機6の
吸い込み口へ還流され、残りはパルプ8aによって調節
されながら外部へ排出される。 又別の副送風機3′を
用いて外気が主送風機3の吸い込み口へ送りこまれる◎ 尚反応槽2内金通過する空気中の酸素は微生物反応によ
って消費されて減少するので、これを補充すふ會めにa
l送!榊3′を用りで新鋭外汎姐を送り込むのである。
The sludge was mechanically dewatered using a filter and press, and had a water content of about 85% by weight. In order to lower this moisture content, a mixture of powdered compost with a moisture content of 10% by weight was mixed to bring the moisture content to 55% by weight.
6 Using the screw set press shown in @a, the diameter is 30 m.
After molding into a round bar shape with a length of 100 mm, the round bar shape is shaped into a shape with a diameter of 1 m and a height of 5 mm as shown in the figure.
m of cylindrical reaction 4W2. There is an opening 2a at the bottom of reaction@2! l1% This opening 2aK is the pipe 7
is connected, and the air from the main blower is sent into the reaction tank 2 through the 710 humidifier 5 and the heater 6. Also reaction 4
There is also an opening 2b at the top of 112, and a part of the exhaust gas from the reaction tank is returned to the suction port of the main blower 6 through a pipe 7' connected to it, and the rest is discharged to the outside while being regulated by the pulp 8a. . In addition, outside air is sent to the suction port of the main blower 3 using another sub-blower 3'. Oxygen in the air passing through the inner metal of the reaction tank 2 is consumed by microbial reactions and decreases, so it is necessary to replenish it. At the meeting a
Send it! They used Sakaki 3' to send in a new and talented foreigner.

 又反応112には上部に被処理物投入口9a、下部に
被処理物取出し口9bがあり。
Further, the reaction 112 has a to-be-treated material inlet 9a at the upper part and a to-be-treated material outlet 9b at the lower part.

それぞれに7タ9a’、9b’l設けることにより反応
槽内の気密性を保つようにしている。
By providing seven tassels 9a' and 9b'l for each, airtightness inside the reaction tank is maintained.

このようにして1反応槽2に流入する際の空気の温度t
−40℃、相対湿度′に100%に保ったところ、装置
の運転開始後すぐに被処理物の温度は上昇しはじめ、約
5FI#間後には流入空気温度と同一の40℃に達した
後引続いて急速に上昇t−続け。
In this way, the temperature t of the air when it flows into 1 reaction tank 2
When kept at -40℃ and 100% relative humidity, the temperature of the object to be treated started to rise immediately after the equipment started operating, and after about 5 FI#s, it reached 40℃, which is the same as the inflow air temperature. Subsequently, the rapid rise t-continues.

更に約12時間後には65℃に達した。 そのまま更V
C,ias時間にわたって装置の運転を続けたが、その
間被処理物は60℃〜65℃の間の高温を保持し続けた
。 運転開始後100 時間の時点で装置の運転つまり
送風を停止し、被処理物を反応槽より取出したところ、
黒歇色、低臭性の良好な堆肥に変化していた。 但し、
この場合被処理物の温度が40℃に達した後、加温器6
の運転は停止せしめてみた。
After about 12 hours, the temperature reached 65°C. Continue as is V
The apparatus continued to operate for a period of C,ias, during which time the object to be treated continued to maintain a high temperature of 60°C to 65°C. At 100 hours after the start of operation, the operation of the equipment, that is, the air blowing, was stopped and the material to be treated was taken out from the reaction tank.
It had turned into good compost with black color and low odor. however,
In this case, after the temperature of the object to be treated reaches 40°C, the warmer 6
I tried to stop the operation.

次に第1の比較例として前述の第1の実際例と同−の被
処理物全同様に処理し、含水率55重量%の丸棒状に成
形した後、第2図の実際例で用いたものと全く同一の装
置を用い、但し反応槽2の上部投入口9aのフタ9a’
と下部取り出し口9bのフタ9b’を開け、主送風機6
と副送風機3′は運転せず、従って外気全率なる自然通
風によって反応槽の下部より送りこみ、上部から排出さ
れるようにしたが、このときの外気温度は平均15℃。
Next, as a first comparative example, all of the objects to be treated were treated in the same manner as in the first practical example described above, and after being formed into a round bar shape with a moisture content of 55% by weight, the material was used in the practical example shown in Figure 2. The same equipment was used, except that the lid 9a' of the upper inlet 9a of the reaction tank 2 was replaced.
Open the lid 9b' of the lower outlet 9b and remove the main blower 6.
The auxiliary blower 3' was not operated, and therefore the outside air was brought in from the bottom of the reaction tank by natural ventilation, and was discharged from the top, and the outside air temperature at this time was 15°C on average.

相対温度は平均40チであった。 この場合、被処理物
全反応槽に投入した後、あきらかな温度上昇がみとめら
れるまでに約48時間を必要とした。
Relative temperature averaged 40 degrees. In this case, it took about 48 hours after all the materials to be treated were introduced into the reaction tank until a clear temperature increase was observed.

又被処理物の温度が前述と同じ程度の高温に達するには
更に約24時間が必要であった。 そのまま放置したと
ころ60℃に達した後約12時間後には被処理物の温度
は降下しはじめ1反応はあきらかに鈍化した。
Further, approximately 24 hours were required for the temperature of the object to be treated to reach the same high temperature as described above. When the temperature of the object to be treated was left as it was, approximately 12 hours after the temperature reached 60° C., the temperature of the object to be treated began to drop, and the reaction was clearly slowed down.

更に第2の比較例として前述の第1の比較例と同じに被
処理物投入後100 時間の時点において被処理物を反
応槽より取り出したが、これはいまだに未発酵の部分が
多く含まれ、悪臭をともなう不完全な堆肥であった。
Furthermore, as a second comparative example, the material to be treated was taken out from the reaction tank 100 hours after the material was added, as in the first comparative example, but it still contained a large amount of unfermented material. It was incomplete compost with a foul odor.

第3図は本発明の第2図の実際例と前述のMlの比較例
の場合の被処理物の温度の時間に対する変化の特性曲線
を示し、夫々10a、10b のようになり、本発明の
実際例では慣用技術の比較例に対して反応開始がはやい
こと並びに良好な反応状態を長く保持することが明確に
表現されている。
FIG. 3 shows the characteristic curves of changes in the temperature of the processed material with respect to time in the actual example of FIG. 2 of the present invention and the above-mentioned comparative example of Ml. In the actual example, it is clearly expressed that the reaction starts quickly and that a good reaction state is maintained for a long time compared to the comparative example of conventional technology.

すなわち1本発明の実際例で被処理物の温度上昇が急速
に行なわれたのは、その最初期は加温された空気による
単なる刀口温効果によるものであるが、その結果好気性
微生物反応は急速に開始し、その反応による自己発生熱
によって被処理物の温度は更に上昇をつづけ、65℃の
高温に達したものである。
In other words, in the practical example of the present invention, the temperature of the object to be treated increased rapidly at the initial stage due to the mere knife-warming effect of the heated air, but as a result, the aerobic microbial reaction The reaction started rapidly, and the temperature of the object continued to rise due to the self-generated heat caused by the reaction, reaching a high temperature of 65°C.

又本発明の第1の実際例においては、反応槽に送りとま
れる空気が常に相対湿度10ロチであり、従って被処理
物からの蒸発による水分損失がなかったので、良好な反
応状態が長時間保持された。
In addition, in the first practical example of the present invention, the air fed into the reaction tank always had a relative humidity of 10 °C, and therefore there was no water loss due to evaporation from the material to be treated, so that good reaction conditions could be maintained for a long time. It was done.

一方第1の比較例においては、被処理物艦度が低かった
ために好気性微生物反応は緩慢であp、その熱が蓄積し
て明らかな昇温を開始するには48時間の長時間が必要
であった。 又昇温開始と同時に蒸発による被処理物か
らの水分の損失が進行し、反応に適正な含水率が短時間
しか維持されなかったためにすぐに被処理物の温度は降
下した。
On the other hand, in the first comparative example, the aerobic microbial reaction was slow because the temperature of the material to be treated was low, and it took a long time of 48 hours for the heat to accumulate and start to noticeably increase the temperature. Met. Moreover, the loss of moisture from the object to be treated due to evaporation proceeded at the same time as the temperature started to rise, and since the moisture content appropriate for the reaction was maintained only for a short period of time, the temperature of the object to be treated immediately dropped.

尚本発明の第1の実際例においては、前述のように被処
理、物の汚泥を反応槽に投入するに先立って丸棒状に造
粒したが、勿論この粒の形状や大きさに制限はなく、丸
棒状の他に球型、亜球屋等として用いることができる。
In the first practical example of the present invention, the sludge to be treated was granulated into round bar shapes before being introduced into the reaction tank as described above, but of course there are no restrictions on the shape or size of the granules. It can be used not only in round bar shape but also in spherical shape, sub-ball shape, etc.

 又造粒の方法にも制限はなく、転勤造粒法、押し出し
造粒法、圧縮造粒法、破砕造粒法等が用いられるが、そ
れらの中で本発明に最も効果的に利用され得る方法は押
し出し造粒法、圧縮造粒法及び破砕造粒法である。
There is also no restriction on the granulation method, and transfer granulation, extrusion granulation, compression granulation, crushing granulation, etc. can be used, but among them, the method can be used most effectively in the present invention. The methods are extrusion granulation, compression granulation, and crush granulation.

これらの具体的手法を例示するならば、押し出し造粒法
の代表的例は第6図aに示すスクリュ一式プレスを用い
るものであり、図で被処理物1はケーシング22内で回
転する螺旋羽根ヲ持ったスクリュー21によって押し型
13に押しつけられ。
To illustrate these specific methods, a typical example of the extrusion granulation method uses a screw set press shown in FIG. It is pressed against the press die 13 by the screw 21 holding it.

押し屋にあけられた穴13′から押し出されて造゛粒さ
れる。 この場合は丸棒状に成型され、その丸棒は押し
型の外側にそって回転する回転刃(図中省略)によって
切断される。 押し出し造粒法の別の具体的手法として
は、第6図すにラム式プレスを用いる方法がある。 同
図において被処理物1はケーシング22′の中でラム1
8によって押し型17に押し付けられ、押し型の穴17
′から押し出されて造粒される。
It is extruded through a hole 13' made in the presser and granulated. In this case, it is molded into a round bar shape, and the round bar is cut by a rotary blade (not shown) that rotates along the outside of the press die. Another specific extrusion granulation method is a method using a ram press as shown in FIG. In the same figure, the workpiece 1 is placed in a ram 1 in a casing 22'.
8 is pressed against the press die 17, and the hole 17 of the press die is
' is extruded and granulated.

れ、回転しながら移動するロー215によって下方向へ
押し付けられ、板14にあけられた穴14′から押し出
されて造粒されるのである。 このように押し出し造粒
法と扛要するに被処理物を加圧して押し型の穴から押し
出すことによって造粒する手法の総称であり、その具体
的方法はここに述べたものに限定されない。 又圧縮造
粒法とは、第6図dに示す如く、被処理物1を互に接し
て回転する2本もしくはそれ以上のローラー16.16
’の間へ圧入し、それらの目−ラー16.16’の表面
にはくぼみ16a、 16’aが設けられていて、被処
理物はそのくぼみの中で圧縮されて造粒される手法であ
る。 このときくぼみの形状や大きさを変えることによ
って造粒後の成形体の−大きさや型状は任意に変化でき
1球型、亜球型の他に自由な型状や大きさが得られる。
The particles are pushed downward by the row 215 that moves while rotating, and are pushed out through the holes 14' formed in the plate 14 and granulated. As described above, the extrusion granulation method is a general term for a method of granulating a material to be processed by pressurizing it and extruding it through the holes of a pressing die, and the specific method is not limited to the one described here. In addition, the compression granulation method refers to two or more rollers 16, 16 rotating the workpiece 1 in contact with each other, as shown in FIG. 6d.
In this method, depressions 16a and 16'a are provided on the surface of these holes 16 and 16', and the material to be processed is compressed and granulated in the depressions. be. At this time, by changing the shape and size of the depressions, the size and shape of the granulated product can be changed arbitrarily, and any shape or size can be obtained in addition to the spherical and sub-spherical shapes.

 又板状や波板状等に成形することもできる。 又回転
ローラーは用いず2枚もしくはそれ以上の板の間で圧縮
する方法もある。
It can also be formed into a plate shape, a corrugated plate shape, or the like. There is also a method of compressing between two or more plates without using rotating rollers.

更に、破砕造粒法とは、第6図eに示す如く。Furthermore, the crushing granulation method is as shown in FIG. 6e.

被処理物1全回転する2本のローラー19.19’の間
で圧縮して板状にした後に破砕機20で破砕する方法で
ある。
In this method, the object to be processed 1 is compressed into a plate shape between two fully rotating rollers 19 and 19' and then crushed by a crusher 20.

尚第2図の実際例で用いた手法のように、被処理物を反
応槽に投入する以前にあらかじめ造粒しておくと、反応
槽内ヲ窒気もしくは酸素もしくは酸素を含む気体が通過
する際の抵抗が少なく、従って本発明の実施が容易にな
り、又その効果も大きくなる。
If the material to be treated is granulated in advance before being introduced into the reaction tank, as in the method used in the practical example shown in Figure 2, nitrogen, oxygen, or oxygen-containing gas will pass through the reaction tank. Therefore, the present invention is easier to implement, and its effects are also greater.

次に本発明の第2の実際例について説明する。Next, a second practical example of the present invention will be explained.

この場合は、被処理物としては先の第1の実際例と同じ
脱水後の汚泥であるが、この場合はこれを含水率の調節
全行わずに含水率85重量%の′iまで処理した。 但
し、この含水率では先の実施例のごとく丸棒状に成形す
ることは不可能であったので、第4図a、bの側断面図
、斜面図に示す多面や底部には多数の小さな穴11′が
設けられており、下から送りこまれる空気4はこの穴1
1′ヲ通って被処理物1中を通過した。 この多孔板1
1全第5図のごとく反応槽3の中に多数積み重ねた。
In this case, the material to be treated is the same dehydrated sludge as in the first practical example, but in this case, it was treated to a moisture content of 85% by weight without any adjustment of the moisture content. . However, with this water content, it was impossible to form it into a round bar shape as in the previous example, so many small holes were formed on the many sides and bottom as shown in the side sectional views and slope views in Figures 4a and b. 11' is provided, and the air 4 sent from below is passed through this hole 1.
1' and passed through the object 1 to be treated. This perforated plate 1
1 A large number of them were stacked in a reaction tank 3 as shown in FIG.

この場合、被処理物の含水率をまず好気性微生物反応に
適正な約60重量%まで低下させる必要があるため邑初
の5時間は乾燥のみを行なわせることにし、加湿器6は
動作せず、加温器5のみ動作させ、又排気側のパルプ8
a並びに外気導入パルプ8cを全開にし、還流路に設け
たパルプ8bは閉じて主送風*3t−運転し、全ての排
気が外部へ流出するようにした。
In this case, since it is necessary to first reduce the moisture content of the material to be treated to about 60% by weight, which is appropriate for an aerobic microbial reaction, it is decided that only drying will be performed for the first 5 hours, and the humidifier 6 will not operate. , only the warmer 5 is operated, and the pulp 8 on the exhaust side
A and the outside air introduction pulp 8c were fully opened, and the pulp 8b provided in the reflux path was closed to operate the main air blower *3t-, so that all the exhaust gas flowed out to the outside.

しかる後、パルプ8aが多少間いた状態になるまで閉じ
、パルプ8bi全開にし一外気導入バルブ80合やや閉
じ、更に加湿器6も運転して60時間の間好気性微生物
反応状mt保持させた。
Thereafter, the pulp 8bi was closed until the pulp 8a was slightly closed, the pulp 8bi was fully opened, the outside air introduction valve 80 was slightly closed, and the humidifier 6 was also operated to maintain the aerobic microbial reaction state mt for 60 hours.

その後被処理物を取り出したところ良好な堆肥に変化し
ていた。
When the material to be treated was then taken out, it was found that it had turned into good compost.

同第2の実際例において用いた多孔板の形状としては、
いかなるものでも可で、単なる平面板に穴をあけたもの
でもあるいは波状の板に穴やスリット等をあけたもので
も可である。
The shape of the perforated plate used in the second practical example is as follows:
Any type of material is acceptable, such as a simple flat plate with holes or a corrugated plate with holes or slits.

本発明の第3の実際例として第7図a+bを示す。 こ
の場合反応槽2の内部に縦に多数配列した中空丸棒19
の夫々側方に多数の穴19’′t−あけ排水管19b 
とに接続するようにして夫々空気が連通ずるように結合
して、更に送排用配管7.7′と第2図のようにつなぎ
、被処理物1はこれら縦横多数の管が埋設するように反
応槽内に収容される。 この場合、更に第2の実際例と
同様に加温並びに加湿された空気4f:配管7をへて送
りこみ管19a 中空丸棒19より反応構内に送りこみ
、更に多数の中空丸棒19の穴19′より反応槽2内に
排出されて被処理物中を通って再び排出用管19bにつ
ながる中空丸d t)上方の排出用管19b^ 全へて配管7′に集められ1反応槽外へ排出される。
A third practical example of the invention is shown in FIGS. 7a+b. In this case, a large number of hollow round rods 19 are arranged vertically inside the reaction tank 2.
A large number of holes 19''t-drainage pipes 19b are provided on each side of the drain pipe 19b.
They are connected to each other so that the air can communicate with them, and are further connected to the supply/discharge pipes 7 and 7' as shown in Fig. 2. is housed in a reaction tank. In this case, as in the second practical example, the heated and humidified air 4f is sent through the pipe 7, the pipe 19a and the hollow round rod 19 into the reaction chamber, and the air is further fed into the reaction chamber through the holes in the hollow round rods 19. The hollow round d is discharged from 19' into the reaction tank 2, passes through the material to be treated, and is connected to the discharge pipe 19b again. is discharged to.

この場合の実際例で用いられた被処理物はjglの実施
例と同一の都市下水処理過程から発生する汚泥を脱水し
たもので、含水率を60重′xkチに調節して良好な堆
肥状物質が得られた。
The material to be treated in this practical example was dehydrated sludge generated from the same urban sewage treatment process as in the JGL example, and the water content was adjusted to 60% by weight to create a good compost-like material. Substance obtained.

尚この場合の実際例において一中を丸棒に多数の穴’に
6けて用いるが、中を丸棒の代りに中空の板状体を用い
てこれに多数の穴を設けて使用してもよい。 或は第7
図すのように、送り込み管19aに接続する中を丸棒1
9には全周にわたり多してもよい。
In this case, in the actual example, a round rod with many holes is used as the inside, but instead of a round rod, a hollow plate-like body is used and a large number of holes are provided in the inside. Good too. Or the seventh
As shown in the figure, insert the round rod 1 inside which is connected to the feed pipe 19a.
9 may extend over the entire circumference.

又第7図Cに示すように、排出用管19b と送り込み
管19a をそれぞれ中空丸棒に多数の穴をあけたもの
全作り、どちらも反応格の上側に設けて被処理物1中へ
挿入することもできるが、この場合図では省略しである
が、容管19a、19b の外側にスクリューもしくは
オーガーの螺旋状ドリル全般け、これを回転させなから
管1’9a、19bを被処理物中に挿入すると、容易に
挿入ができる。
In addition, as shown in FIG. 7C, the discharge pipe 19b and the feed pipe 19a are each made of a hollow round rod with a large number of holes, and both are installed above the reactor and inserted into the object to be treated 1. However, in this case, although not shown in the figure, a screw or auger spiral drill is installed on the outside of the container tubes 19a, 19b. If you insert it inside, you can easily insert it.

又反応中もこのドリル全運転すれば被処理物全攪拌する
ことができる。
Also, if this drill is operated at all times during the reaction, the entire material to be treated can be stirred.

又第6図Cとは逆に管19a、19b f(反応槽の下
側から反応槽中に挿入することもでき、この場合は管1
9a、19b は固定したままで反応槽上部から被処理
物を投入し、反応終了後反応槽下部から被処理物をとり
だすことができる。 又本発明を用いれば、被処理物の
好気性微生物反応によって発生する熱エネルギーを利用
可能なエネルギーに変換することができる。 例えば第
2因における排気用の配管7′に第8図のように熱交換
機21を接続して、水等の熱媒体を加温すれば温水が得
られ、これは暖房や他の類似の反応槽の加温、あるいは
汚泥消化槽(嫌気性メタン発酵槽)の加温等に用いるこ
とができる。
In addition, contrary to FIG.
9a and 19b are fixed, and the object to be treated can be introduced from the upper part of the reaction tank, and after the reaction is completed, the object to be processed can be taken out from the lower part of the reaction tank. Further, by using the present invention, thermal energy generated by an aerobic microbial reaction of the material to be treated can be converted into usable energy. For example, if a heat exchanger 21 is connected to the exhaust pipe 7' in the second cause as shown in Figure 8, and a heat medium such as water is heated, hot water can be obtained, and this can be used for heating or other similar reactions. It can be used to heat a tank or a sludge digestion tank (anaerobic methane fermentation tank).

或は第2図における排気パルプ8avi−開いて。Or exhaust pulp 8avi-open in FIG.

この排気を第2図と類似の他の反応槽の下部送風口へ導
けば、その反応槽内の被処理物t−加温することができ
、その反応槽内における好気性微生物反応の開始はやめ
ることができる。 又第8図における排気用の配管7′
に熱交換機21を接続し、これによって新鮮外気もしく
は酸素を含む気体4をガロ熱し、その加熱された気体を
加湿し、もしくは加湿することなしに反応槽2の下部へ
導くこともできる。
If this exhaust gas is guided to the lower ventilation port of another reaction tank similar to that shown in Fig. 2, the material to be treated in that reaction tank can be heated, and the aerobic microbial reaction in that reaction tank can be started. You can stop. Also, the exhaust pipe 7' in Fig. 8
A heat exchanger 21 is connected to the reactor 2, whereby fresh outside air or oxygen-containing gas 4 is galvanically heated, and the heated gas can be humidified or guided to the lower part of the reaction tank 2 without being humidified.

以上の実際例に述べたように1本発明は汚泥状物質を短
時間に堆肥状物質に変換する極めて有効な方法奮提供す
るものである。
As described in the above practical examples, the present invention provides an extremely effective method for converting sludge-like material into compost-like material in a short period of time.

尚本発明のこれまでの実際例では、空気もしくは外気を
温度並びに湿度制御する場合について述べたが、空気も
しくは外気のかわりに、もしくはそれらに混合して酸素
もしくは酸素を含む気体を用い、これ全反応槽へ注入す
ることもできる。
In the practical examples of the present invention so far, the case has been described in which the temperature and humidity of air or outside air are controlled. It can also be injected into a reaction tank.

又これら各種気体の温度並びに湿度の制御は、温度並び
に湿度のどちらか一方もしくは両方を同時に行なうこと
ができ、又制御としても加温もしくは加湿のいずれを先
にしても支持はない。 又反応中の一部の時間において
のみ制御全行ない他の時間は制御を行なわないこともあ
りうる。
Further, the temperature and humidity of these various gases can be controlled by either or both of them at the same time, and there is no support for controlling either heating or humidification first. It is also possible that full control is performed only during a part of the time during the reaction and not at other times.

又外気温度や外気の湿度が反応に適当な場合は全、く制
御を行わないこともある。 加湿のがわりに被処理物に
対して水又は水を含む液体全散布もしくは注入すること
もめジうる。
Further, if the outside air temperature and outside air humidity are appropriate for the reaction, no control may be performed at all. Instead of humidification, it is also possible to spray or inject water or a liquid containing water onto the object to be treated.

被加工物としては、下水或はし尿の処理過程から発生す
る汚泥に限られず、生し尿の他に家畜や動物のふん尿、
あるいはそれらの処理過程から発生する汚泥、あるいは
屠殺場1食品加工工場9食肉加工工場等の各種生産施設
から発生する汚泥など、およそあらゆる有機物を含む汚
泥状物質が含まれる。 加湿器、加温器、送風機の方式
、屋式や形状にも制限はない。 又加湿器は除湿器、加
温器は冷却機、送風機は吸風機によって代替されたり併
用したりして用いることもある。
The processed material is not limited to sludge generated from the treatment process of sewage or human waste, but also raw human waste, livestock and animal excrement, etc.
Alternatively, sludge-like substances containing almost all kinds of organic matter are included, such as sludge generated from these processing processes, or sludge generated from various production facilities such as slaughterhouses, food processing plants, and meat processing plants. There are no restrictions on the method, type, or shape of humidifiers, warmers, and blowers. Also, a humidifier may be replaced by a dehumidifier, a warmer by a cooler, and a blower by a suction fan, or in combination.

又本発明では反応槽に流入する空気もしくは酸素或は酸
素金倉む気体の温度ならひに湿度の両状態要素の内の少
くとも1つ、場合によっては2つ同時に制御することが
主として行なわれるが、他にこれら反応槽に流入する気
体の流蓋、流速、気圧及び流入時間等の状態要素を制御
の対象とすることもできる。
In addition, in the present invention, at least one of the two state factors, such as the temperature and humidity of the air or oxygen flowing into the reaction tank or the gas containing oxygen, is controlled at the same time, and in some cases, two are mainly controlled simultaneously. In addition, other state factors such as the flow top, flow rate, air pressure, and inflow time of the gas flowing into the reaction tank can also be controlled.

本発明において用いることのできる反応槽の構造は限定
されず、第1.第2.第3の実際例で示したものの他に
、ロータリーキルン式、ウィンドロ一式、野積み式、エ
レベータ式、オーガ一式。
The structure of the reaction tank that can be used in the present invention is not limited. Second. In addition to the ones shown in the third practical example, there is a rotary kiln type, a windrow set, an open pile type, an elevator type, and an auger set.

多段式(トーマス、ダイジェスタ−)等各種のものがあ
る。
There are various types such as multi-stage type (Thomas, digester).

尚本発明によって堆肥化の終了した被処理物を乾燥させ
る必要がしばしばあるが、その際に本発明の方法は有効
であり、被処理物全反応槽内に保持したまま送風機と加
湿器を運転し、加湿器の運転は停止し、外気全加熱して
から多値に反応槽内に注入し、その’[循環せずに外部
に排出させるようにすれば被処理物を容易に乾燥させる
ことができる。
Incidentally, it is often necessary to dry the material that has been composted using the present invention, and the method of the present invention is effective in this case, since the blower and humidifier can be operated while all the material to be processed is kept in the reaction tank. However, the operation of the humidifier is stopped, and the outside air is fully heated before being injected into the reaction tank in a multi-level manner.The material to be treated can be easily dried if the humidifier is discharged outside without being circulated. I can do it.

或は好気性微生物反応槽とは別に乾燥専用の装置を設け
てもよく、ロータリーキルン式、ベルト式、野積み式等
のいろいろな乾燥装置が利用できる。 又乾燥に必要な
エネルギー量が最も少ない方法としては、改良されたス
クリュープレス式の押し出し造粒機や、改良された圧縮
造粒機を用いる方法があり、通常の押し出し圧力や圧縮
圧力よりはるかに大きい圧力t−mえることによって、
被処理物を機械的に脱水し、乾燥状態にすることがで、
きる。
Alternatively, a dedicated drying device may be provided separately from the aerobic microbial reaction tank, and various drying devices such as a rotary kiln type, a belt type, and an open pile type can be used. In addition, methods that require the least amount of energy for drying include methods that use an improved screw press type extrusion granulator or an improved compression granulator, which use far less energy than normal extrusion pressure or compression pressure. By applying a large pressure t-m,
By mechanically dehydrating the processed material and making it dry,
Wear.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の詳細な説明するためのもので。 第1図は本発明の1基本的な実施態様にともなう概略構
成図を示す70−シート、第2図は本発明の第1の実際
例における概略構成図を示す70−シート、第3図は第
1の実、際物と比較例における時間に対する被処理物温
度特性曲線図、第4図a。 ′シ bは本発明の第2の実際例に用いる多孔板の断面図、斜
面図である。 第5図は第2の実際例の概略構成図であ
るフローシート、第6図a、b、c。 d、eは被処理物を造粒する際圧用いる夫々異る造粒機
の簡略図、第7図a、b、cは第3の実際例で用いる反
応槽内の管の夫々異る構成断面図。 第8図は第2図の70−シートの一部に熱交換器を用い
た場合の概略図である。 図で1は汚泥物質の被処理物、2は反応槽、5は送風機
、4は空気、5は加湿器、6は加温器、7゜7′に配管
、saはバルブ、9a+9’aは蓋。 第1図 第2図 第3図 8号 間 第4α図 第4b図 第5図 第6α図 第6b図 第6C図 ◆ 第6d図 第6e図  0 e θ2 第7C図
The drawings are for explaining the invention in detail. FIG. 1 is a 70-sheet showing a schematic block diagram according to one basic embodiment of the present invention, FIG. 2 is a 70-sheet showing a schematic block diagram in a first practical example of the present invention, and FIG. FIG. 4a is a diagram of the temperature characteristic curve of the processed material versus time in the first actual product, the actual product, and the comparative example. 'B' is a sectional view and an oblique view of a perforated plate used in a second practical example of the present invention. FIG. 5 is a flow sheet showing a schematic configuration diagram of the second practical example, and FIG. 6 a, b, c. d and e are simplified diagrams of different granulators that use different pressures when granulating the processed material, and Figures 7a, b, and c are different configurations of the tubes in the reaction tank used in the third practical example. Cross-sectional view. FIG. 8 is a schematic diagram of a case where a heat exchanger is used in a part of the 70-sheet shown in FIG. In the figure, 1 is the sludge material to be treated, 2 is the reaction tank, 5 is the blower, 4 is the air, 5 is the humidifier, 6 is the warmer, 7°7' is the pipe, sa is the valve, 9a+9'a is the lid. Figure 1 Figure 2 Figure 3 Figure 8 Figure 4α Figure 4b Figure 5 Figure 6α Figure 6b Figure 6C Figure 6d Figure 6e 0 e θ2 Figure 7C

Claims (1)

【特許請求の範囲】 +11 微生物分解可能な有機物を含む各種汚泥状物質
全好気性微生物を主とする微生物の活動によって堆肥状
物質に変換するもので、前記汚泥状物質全収容する反応
槽に空気若しくは酸素、もしくは酸素を含む気体を導入
し、前記気体の温度、湿度。 流量、流速、気圧及び導入時間等の状態要素の内の少く
とも一つを制御することにより前記汚泥状物質全処理す
ることを特徴とする汚泥堆肥化方法。 (2) 汚泥状物質をあらかじめ機械的手段などを用い
て丸棒状1球状等の各種形状に成形もしくは造粒した後
反応槽に収容し、反応処理せしむることを特徴とする特
許請求の範囲第1項記載の汚泥堆肥化方法。
[Scope of Claims] +11 Various sludge-like substances containing organic matter that can be decomposed by microorganisms are converted into compost-like substances by the activities of microorganisms, mainly aerobic microorganisms, in which air is added to a reaction tank containing all the sludge-like substances. Alternatively, oxygen or a gas containing oxygen is introduced, and the temperature and humidity of the gas are adjusted. A sludge composting method characterized in that the sludge-like material is completely treated by controlling at least one of state factors such as flow rate, flow rate, air pressure, and introduction time. (2) A claim characterized in that a sludge-like substance is previously formed or granulated into various shapes such as a round rod or one sphere using mechanical means, and then placed in a reaction tank and subjected to a reaction treatment. The sludge composting method according to item 1.
JP14194783A 1983-08-04 1983-08-04 Sludge composting method Pending JPS6033282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14194783A JPS6033282A (en) 1983-08-04 1983-08-04 Sludge composting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14194783A JPS6033282A (en) 1983-08-04 1983-08-04 Sludge composting method

Publications (1)

Publication Number Publication Date
JPS6033282A true JPS6033282A (en) 1985-02-20

Family

ID=15303834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14194783A Pending JPS6033282A (en) 1983-08-04 1983-08-04 Sludge composting method

Country Status (1)

Country Link
JP (1) JPS6033282A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237705A (en) * 1986-04-09 1987-10-17 日本碍子株式会社 Manufacture of voltage nonlinear resistance element
JPH05220463A (en) * 1991-12-18 1993-08-31 Sosuukai:Kk Raw refuse treating oven
JP2003047995A (en) * 2001-08-07 2003-02-18 Mitsubishi Kakoki Kaisha Ltd Sludge treatment apparatus and sludge treatment method
JP2003326299A (en) * 2002-05-09 2003-11-18 Mitsubishi Kakoki Kaisha Ltd Sludge treatment apparatus and sludge treatment method
KR100694266B1 (en) * 2000-12-21 2007-03-14 재단법인 포항산업과학연구원 An apparatus and method for manufacturing organic fertilizer using sludge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237705A (en) * 1986-04-09 1987-10-17 日本碍子株式会社 Manufacture of voltage nonlinear resistance element
JPH0476482B2 (en) * 1986-04-09 1992-12-03 Ngk Insulators Ltd
JPH05220463A (en) * 1991-12-18 1993-08-31 Sosuukai:Kk Raw refuse treating oven
KR100694266B1 (en) * 2000-12-21 2007-03-14 재단법인 포항산업과학연구원 An apparatus and method for manufacturing organic fertilizer using sludge
JP2003047995A (en) * 2001-08-07 2003-02-18 Mitsubishi Kakoki Kaisha Ltd Sludge treatment apparatus and sludge treatment method
JP2003326299A (en) * 2002-05-09 2003-11-18 Mitsubishi Kakoki Kaisha Ltd Sludge treatment apparatus and sludge treatment method

Similar Documents

Publication Publication Date Title
KR101479958B1 (en) Method and apparatus for aerobically air-drying sludge filter cakes
CA2064313C (en) Method for manufacturing of organic fertilizers
US7960165B2 (en) Method and apparatus for drying organic material
DE2723581A1 (en) METHOD FOR AEROBIC ROTATION OF ORGANIC SOLIDS AND DEVICE FOR CARRYING OUT THE METHOD
JP2011025147A (en) Method and apparatus for fermentation of organic waste
JPH08309319A (en) Organic waste treatment apparatus
JPS6033282A (en) Sludge composting method
JPS5918352B2 (en) Processing method for processed materials
WO2006084943A1 (en) Method for treating biomass
US7160713B2 (en) Method and apparatus for oxidizing organic matter
JP2004216332A (en) Treatment method and treatment system for waste
JPH07171547A (en) Fermentation system for organic waste
JP2000026180A (en) Method for composting organic sludge
JP4553746B2 (en) Method for drying hydrous material and method for producing compost
JPS60239379A (en) Method of composting organic sewage
KR100863335B1 (en) Dry systems for food waste
KR200330139Y1 (en) Fermentation drying device of a leftover food
KR20040089185A (en) Fermentation drying method and device thereof of a leftover food
JP2005160438A (en) Method and apparatus for treating food residue
WO2010151101A1 (en) Novel in-vessel high rate composter
JPH0146200B2 (en)
JP2002200471A (en) Decomposition treatment equipment for organic waste
KR100203992B1 (en) An apparatus for livestock's night soil
JPS61151084A (en) Treatment of matter
JP3563287B2 (en) Compost fermenter for aerobic fermentation