JPS6033048A - Scanning system for probe for flaw detection of hoop plate material - Google Patents

Scanning system for probe for flaw detection of hoop plate material

Info

Publication number
JPS6033048A
JPS6033048A JP58142877A JP14287783A JPS6033048A JP S6033048 A JPS6033048 A JP S6033048A JP 58142877 A JP58142877 A JP 58142877A JP 14287783 A JP14287783 A JP 14287783A JP S6033048 A JPS6033048 A JP S6033048A
Authority
JP
Japan
Prior art keywords
inspected
probe
flaw detection
probes
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58142877A
Other languages
Japanese (ja)
Inventor
Koji Sekiguchi
関口 宏治
Yukihiro Koyama
幸弘 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP58142877A priority Critical patent/JPS6033048A/en
Publication of JPS6033048A publication Critical patent/JPS6033048A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To reduce the acceleration applied to a mechanism part and eliminate play due to the acceleration, and perform flaw detection stably by putting plural probes and their holding member in circular motion and a material to be inspected in relative linear motion, and making a scan by their composite motion. CONSTITUTION:When a flaw of a hoop plate material is detected with an ultrasonic wave, the material 1 to be inspected is dipped in water while piercing a water tank 3, and when a rotating shaft 11 is rotated, a rotary ring 9 rotates to put respective probes 4a, 4d- mounted on the ring 9 in constant-speed circular motion. Simultaneously, when the material 1 to be inspected is moved continuously at a constant speed as shown by an arrow, the probes 4a, 4b- scan drawing cycloidal curves, which are as many as the proves and at equal pitch over the entire surface of the material 1 to be inspected. Consequently, a constant-speed scanning for flaw detection on the entire surface of the material 11 to be inspected is made without any discrimination between the center part and edge parts.

Description

【発明の詳細な説明】 〔産業上利用できる分野〕 本発明は、薄鋼板などの帯板状材料の全面を超音波自動
探傷する装置における探触子走査方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Applicability] The present invention relates to a probe scanning method in an apparatus for automatic ultrasonic flaw detection on the entire surface of a strip-shaped material such as a thin steel plate.

〔従来技術〕[Prior art]

帯板材を超音波探傷する場合、被検材の肉厚により探傷
方法が異なる。比較的厚手の場合、例えば4 ten 
を以上の場合は一探反射法、一方、薄手の場合、例えば
4 tan を以下の場合は一探反射透過法によって探
傷されることが多い。ただ、両探傷法は、共に探触子の
走査方式は共通である。そこで、本明細書では、−探反
射透過法によシ探傷する場合を例として説明する。
When performing ultrasonic flaw detection on strip material, the method of flaw detection differs depending on the thickness of the material being tested. If it is relatively thick, for example 4 ten
If it is more than 4 tan, it is often detected by the one-probe reflection method, while if it is thin, for example, if it is less than 4 tan, it is often detected by the one-probe reflection transmission method. However, both flaw detection methods use the same probe scanning method. Therefore, in this specification, a case where flaw detection is performed by the -detection reflection transmission method will be explained as an example.

先づ、−探反射透過法について第1図および第2図を参
照して説明する。
First, the -reflection transmission method will be explained with reference to FIGS. 1 and 2.

第1図は一探反射透過法の原理を示す説明図である。同
図において、板状の被検材1を反射板2と共に水槽3の
中に水浸する。ここでは、超音波の媒質として水を使用
しているが、超音波を伝播する他の液体を用いることも
できる。
FIG. 1 is an explanatory diagram showing the principle of the one-probe reflection-transmission method. In the figure, a plate-shaped specimen 1 is immersed together with a reflecting plate 2 in a water tank 3. Although water is used here as the ultrasound medium, other liquids that propagate ultrasound can also be used.

上記被検材1と反射板2とは、略平行に水槽3内に保持
される。そして、被検材1と対峙して探触子4が水槽3
に垂直に浸漬される。
The test material 1 and the reflecting plate 2 are held in a water tank 3 in a substantially parallel manner. Then, the probe 4 faces the test material 1 in the water tank 3.
immersed vertically.

この状態で探触子4から超音波パルスTを発射すると、
被検材1の液面反射S01、被検材1内部の表裏面間で
の繰返し反射による遅れエコーSOI、反射板2の表面
反射81%再び被検材1内部の表裏面間繰返し反射によ
る遅れエコーf3o1など、被検材1および反射板2の
各界面における反射波を生ずる。
When the ultrasonic pulse T is emitted from the probe 4 in this state,
Liquid surface reflection S01 of test material 1, delayed echo SOI due to repeated reflection between the front and back surfaces inside test material 1, surface reflection of reflector 2 81% again delayed due to repeated reflection between front and back surfaces inside test material 1 Reflected waves such as an echo f3o1 at each interface between the test material 1 and the reflection plate 2 are generated.

これらの反射波のAスコープ波形を第2図に示す。ここ
で、被検材1の超音波探傷音場内に欠陥があれば、この
欠陥により超音波伝播が遮蔽される結果、反射板2から
の表面反射S1のエコーレベルが低下する。−探反射透
過法は、これを利用して、第2図に示すようにゲートF
Cで抽出したS1エコーのレベルが、予め設定したレベ
ルL以下に低下した場合に、欠陥検出信号を発信する構
成となっている。
The A-scope waveforms of these reflected waves are shown in FIG. Here, if there is a defect in the ultrasonic flaw detection sound field of the test material 1, the ultrasonic propagation is blocked by this defect, and as a result, the echo level of the surface reflection S1 from the reflector plate 2 is reduced. -Using this, the probe reflection transmission method uses the gate F as shown in Figure 2.
The configuration is such that a defect detection signal is transmitted when the level of the S1 echo extracted at step C falls below a preset level L.

上述の散切は、−次元を探傷する際の原理であるが、帯
板状の被検材を全面探傷する場合は、探触子を板幅方向
に走査する必要がある。
The above-mentioned cutting is the principle for flaw detection in the negative dimension, but when detecting flaws on the entire surface of a strip-shaped test material, it is necessary to scan the probe in the width direction of the plate.

従来、この種の探触子走査方式としては2例えば第3図
および第4図に示す方式がある。
Conventionally, there are two types of probe scanning methods of this type, such as those shown in FIGS. 3 and 4.

これらの図において、被検材1は、水槽3を貫通して、
一定速度で連続的に矢印の方向に搬送される。水槽3の
被検材1貫通部分は、水槽3内の水の漏洩を防ぐため、
入側および出側の両方に、ゴム板3a、3a’および3
b、 3b’ Kよシ水シールを行なっている。また、
水槽3は、水の漏出等による水位低下を防ぐため、水補
給を行なうための給水管(図示せず)と、水位を保つた
めのオーバーフロー管5を備えている。複数の探触子4
m、4b、・・・4nは、被検材1の板幅方向に1個づ
つ等間隔にて一列に探触子保持板6に取付けられている
。この探触子保持板6は、その両端をスライドガイド7
aおよび7bにて板幅方向に摺動自在に保持されると共
に、一端を、板幅方向に往復揺動する往復揺動機構8に
連結されている。
In these figures, the test material 1 penetrates the water tank 3,
Continuously transported in the direction of the arrow at a constant speed. The part of the water tank 3 that penetrates the test material 1 is
Rubber plates 3a, 3a' and 3 are provided on both the inlet and outlet sides.
b, 3b' K is performing water sealing. Also,
The water tank 3 includes a water supply pipe (not shown) for replenishing water and an overflow pipe 5 for maintaining the water level in order to prevent a drop in water level due to water leakage or the like. Multiple probes 4
m, 4b, . . . 4n are attached to the probe holding plate 6 in a row at equal intervals one by one in the width direction of the test material 1. This probe holding plate 6 has slide guides 7 on both ends thereof.
It is held slidably in the board width direction at a and 7b, and one end is connected to a reciprocating swing mechanism 8 that swings back and forth in the board width direction.

このように構成される装置で、探触子保持板6を、探触
子4a、4b、・・・4nの配置間隔に等しい全振梗で
往拶揺動させるど、探触子4a、4b、・・・4n の
走査軌跡として、例えば第5図に示すように1複数の正
弦波軌跡が得られる。従来は、このような正弦波軌跡に
よシ探傷を行なっていた。
With the device configured in this manner, the probe holding plate 6 is oscillated in a forward and backward motion equal to the arrangement spacing of the probes 4a, 4b, . . . , 4n. , . . 4n scanning trajectories, for example, a plurality of sine wave trajectories as shown in FIG. 5 are obtained. Conventionally, flaw detection was performed using such a sine wave locus.

しかし、このような従来の探触子走査方式にあっては、
次のような入力がある。即ち、通常、帯板に内在する欠
陥の検出は、圧延工程で帯板長手方向に伸長した欠陥を
検出することが目的であるため、第6図に示すように、
検出すべき欠陥の最小長さ妃比べて、探触子走査正弦波
軌跡の波長をこれと略等しいか、これよシ短かくする必
要がある。このため、例えば、被検材の搬送速度を40
m/分、検出すべき欠陥の最小長さを50鴫とすると、
探触子4m、4b+・・・4nを14Hz で、探触子
配#間隔に相遇する全振幅で振動させなければならない
。その結果、探触子配ヤ間陣を5011II+1とする
と、揺動する各機構部に、常時、最大10G程度の加速
度が加わる。そのため、機構部にガタッキを生じやすく
、探傷に際し、機構および動作が不安定となる欠点があ
る。また、水槽中の媒質を激しく、攪拌、振騰するため
、気泡を巻込んで、超音波音場を乱し、探傷不能となシ
やすい欠点がある。。
However, in such a conventional probe scanning method,
I have input like this: That is, normally, the purpose of detecting defects inherent in a strip is to detect defects that extend in the longitudinal direction of the strip during the rolling process, so as shown in FIG.
Compared to the minimum length of the defect to be detected, the wavelength of the probe scanning sinusoidal trajectory must be approximately equal to or shorter than this. For this reason, for example, the conveyance speed of the material to be inspected is set to 40
m/min, and the minimum length of the defect to be detected is 50 mm.
The probes 4m, 4b+...4n must be vibrated at 14 Hz with a full amplitude commensurate with the probe spacing. As a result, if the probe arrangement spacing is 5011II+1, an acceleration of about 10 G at maximum is always applied to each swinging mechanism. Therefore, there is a drawback that the mechanism part tends to become loose, and the mechanism and operation become unstable during flaw detection. In addition, since the medium in the water tank is vigorously stirred and shaken, air bubbles are drawn in, which disturbs the ultrasonic sound field and tends to make flaw detection impossible. .

更に、上述した従来の正弦波往復揺動走査では、第5図
に示すように、被検材1の長手方向欠陥が存在する位置
が、振幅の中央近傍位置であるか、中央を外れた位置で
あるかにより、走査線と交叉する長さが異なり、探傷密
度が均等でないという欠点がある。
Furthermore, in the conventional sine wave reciprocating scanning described above, as shown in FIG. Depending on the length of the scanning line, the length of the line intersecting the scanning line differs, which has the disadvantage that the flaw detection density is not uniform.

〔発明の目的〕[Purpose of the invention]

本発明は、上記欠点に鑑みてなされたもので、その目的
は、複数の探触子を、円運動と相対直線運動の合成によ
り走査することにより、機構部姉加わる加速度を小さく
して、加速度によるガタッキを無くシ、機構上および動
作上安定した探傷を行なうことができ、また、水槽中の
媒質を攪拌、振騰せず、従って気泡の巻込みを無くして
、超音波音場を乱すことなく安定に探傷でき、さらに、
走査軌跡のピッチを一定にして、被検材全面を均等に走
査探傷し得る帯板材探傷用探触子走査方式を提供するこ
とにある。
The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to reduce the acceleration applied to the mechanism by scanning a plurality of probes by combining circular motion and relative linear motion. This method eliminates rattling due to mechanical and operational stability, and does not stir or shake the medium in the water tank, thus eliminating air bubbles that disturb the ultrasonic sound field. It is possible to stably detect flaws without any
It is an object of the present invention to provide a probe scanning method for flaw detection of a strip material, which can evenly scan and detect the entire surface of a material to be inspected by keeping the pitch of the scanning locus constant.

〔発明の構成〕[Structure of the invention]

本発明は、帯板状材料から成る被検材の一部または全部
を、超音波を伝播する媒質中に浸漬保持し、該被検材上
を、探触子を走査して全面探傷する超音波探傷装置にお
ける探触子走査方式において、 ト)複数の探触子を、同一円周上に等ピッチで配置する
と共に、上記媒質中にて上記被検材と平行な面上に保持
する手段と、 (b) 上記各探触子を、上記円・周に沿って円運動さ
せる回転手段と、 (c)上記被検材と上記探触子を保持する手段とを相対
的に直線運動させる手段、と を備えて、被検材の全面に等ピッチの走査軌跡群を画か
せる構成としたことを特徴とする。
The present invention involves ultrasonic flaw detection in which a part or all of a material to be inspected made of a strip-shaped material is immersed and held in a medium that propagates ultrasonic waves, and a probe is scanned over the entire surface of the material to be inspected. In a probe scanning method in a sonic flaw detection device, g) a means for arranging a plurality of probes at equal pitches on the same circumference and holding them on a surface parallel to the test material in the medium; (b) rotating means for circularly moving each of the probes along the circle/periphery; and (c) linearly moving the test material and means for holding the probe relative to each other. The present invention is characterized in that it is configured to include a means for drawing a group of scanning trajectories at an equal pitch over the entire surface of a material to be inspected.

このような構成によれば、複数個の探触子は、各々同一
円周上を円運動すると共に、被検材と平行に相対直線運
動するため、これらの運動の合成として、被検材面上に
サイクロイド曲線軌跡群を画く。各曲線は、どの位置忙
おいても等ピッチとなシ、シかも、このピッチは、探触
子の個数、円運動の回転数、相対運動の速度等によって
適宜設定できるので、被検材を一様彦密度でかつ高密度
で探傷することができる。
According to such a configuration, each of the plurality of probes moves circularly on the same circumference and also moves relatively linearly in parallel with the test material, so that as a result of these movements, the surface of the test material is Draw a group of cycloid curve trajectories above. Each curve may have the same pitch no matter where it is located, but this pitch can be set as appropriate depending on the number of probes, the number of rotations of circular motion, the speed of relative motion, etc. It is possible to detect flaws with uniform and high density.

また1、各探触子は、一定速度で円運動するだけである
ので、遠心加速度を生ずるが、従来の揺動のように過大
な加速度を生ずることはない。
Further, 1. Since each probe only moves circularly at a constant speed, centrifugal acceleration is generated, but unlike conventional rocking, excessive acceleration is not generated.

しかも、一方向に回転するので、媒質の撹拌、振騰が少
なく、気泡の巻込みも無く、超音波音場を乱さずに探傷
できる。
Moreover, since it rotates in one direction, there is little stirring or shaking of the medium, there is no entrainment of air bubbles, and flaw detection can be performed without disturbing the ultrasonic sound field.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第7図は本発明探触子走査方式の一実施例を示す平面図
、第8図はその断面図である。
FIG. 7 is a plan view showing an embodiment of the probe scanning system of the present invention, and FIG. 8 is a sectional view thereof.

これらの図に示す実施例は、媒質として水を満たした水
槽3に、該水槽3の側壁部を貫通して帯状の被検材1の
一部を浸漬し、該浸漬された被検材1の上方から、複数
の探触子4a、4b。
In the embodiment shown in these figures, a part of the strip-shaped test material 1 is immersed in a water tank 3 filled with water as a medium through the side wall of the water tank 3, and the immersed test material 1 is immersed. From above, a plurality of probes 4a, 4b.

・・・4nによシ超音波を発射して、探傷を行なう形式
の探傷装置に適用される。
...It is applied to a type of flaw detection device that performs flaw detection by emitting ultrasonic waves using 4n.

探傷装置を構成する水槽3には、上記従来の場合と同様
に、被検材貫通部分の水シール用ゴム板3a、3a’お
よび3b、3b’と、給水管(図示せス)と、オーバー
フロー管5とを備えている。
As in the conventional case, the water tank 3 constituting the flaw detection device includes rubber plates 3a, 3a' and 3b, 3b' for sealing water at the part that penetrates the test material, a water supply pipe (not shown), and an overflow. It is equipped with a tube 5.

また、水槽3内の被検材1の下方には、被検材1と略平
行に反射板2が浸漬しである。この反射板2は、後述す
るように、探触子が円周上に配設されると共に、該円周
上を運動することを考慮した形状に形成されている。本
実施例では、円環状に形成されている。
Further, a reflecting plate 2 is immersed below the specimen 1 in the water tank 3, substantially parallel to the specimen 1. As will be described later, this reflecting plate 2 is formed in a shape that takes into consideration that the probe is disposed on the circumference and moves on the circumference. In this embodiment, it is formed in an annular shape.

上記複数の探触子4a、4b、・・・4nを水槽3中に
て上記被検材1上釦保持する手段として、水槽3の被検
材1上方に、該被検材1と平行に回転円環9が設けであ
る。探触子4 m、 4 b*・・・4nは、この回転
円環9の同一円周上に等ピッチで取付けである。回転円
環9は、その下面を水槽3内の水に浸漬し、一方、上方
を、アーム10を介して後述する回転軸11に連結する
。この回転軸11とアーム10とにより、回転円環9が
被検材1と平行になるよう支持され、その結果、探触子
4m、4b、・・・4nが被検材1と平行な面上に保持
される。
As a means for holding the plurality of probes 4a, 4b, . A rotating ring 9 is provided. The probes 4m, 4b*...4n are mounted on the same circumference of the rotating ring 9 at equal pitches. The lower surface of the rotating ring 9 is immersed in the water in the water tank 3, and the upper surface is connected to a rotating shaft 11, which will be described later, via an arm 10. The rotary ring 9 is supported by the rotating shaft 11 and the arm 10 so as to be parallel to the specimen 1, and as a result, the probes 4m, 4b, ... 4n are aligned in a plane parallel to the specimen 1. held on top.

なお、円環9の、水に浸漬される部分は、探触子4m、
4b、・・・4nを装着した状態にて水中で回転すると
き、水の攪拌を減するため、できるだけ突起部を持たな
い形状に設計されることが必要である。
In addition, the part of the ring 9 that is immersed in water has a probe of 4 m,
4b, . . . 4n are attached and rotate in water, in order to reduce water agitation, it is necessary to design the shape to have as few protrusions as possible.

上記各探触子4a、 4b、・・・4nを各々が位置す
る円周に沿って円運動させる手段として、第9図に示す
駆動ヘッド12が設けである。この駆動ヘッド12には
、駆動ヘッドハウジング16を上下方向に貫通して回転
軸11が設けてあり、一方、ハウジング16内には、回
転円環9への信号伝達装置17が設けである。このハウ
ジング16は、支持部材1g<より、図示しない探傷装
置筐体等に取付けられている。
A driving head 12 shown in FIG. 9 is provided as a means for circularly moving each of the probes 4a, 4b, . . . 4n along the circumference where each of the probes is located. The drive head 12 is provided with a rotating shaft 11 passing through the drive head housing 16 in the vertical direction, and a signal transmission device 17 to the rotating ring 9 is provided within the housing 16. This housing 16 is attached to a flaw detector housing (not shown) or the like via the support member 1g.

上記信号伝達装置17は、回転部に対して信号を送受す
る手段であって、電磁トランス方式、静電結合方式、ス
リップリング・ブラシ方式等の公知の手段から適宜選定
して構成される。本実施例では、この信号伝達装置17
は、上記回転円環9に装着されたn個の探触子4a、4
b、・・・4れとの信号送受を行なうため、nチャネル
分の信号を伝達することができるよう構成しである。
The signal transmission device 17 is a means for transmitting and receiving signals to and from the rotating part, and is constructed by appropriately selecting from known means such as an electromagnetic transformer method, a capacitive coupling method, and a slip ring/brush method. In this embodiment, this signal transmission device 17
is the n number of probes 4a, 4 attached to the rotating ring 9.
In order to perform signal transmission and reception with four channels b, . . . , the structure is such that signals for n channels can be transmitted.

回転軸11は、軸受13 a、 13 bによシ軸支さ
れ、その下端は上記アーム10に連結され、一方、上端
にはプーリ15が固着されて、ベルト14を介して図示
しない駆動モータと連結される。また、この回転軸11
は、上記信号伝達装置17と各探触子4a、4b、・・
・4nとの間のケーブルを通すため、中空軸となってい
る。
The rotating shaft 11 is supported by bearings 13a and 13b, and its lower end is connected to the arm 10, while a pulley 15 is fixed to its upper end, and is connected to a drive motor (not shown) via a belt 14. Concatenated. In addition, this rotating shaft 11
The signal transmission device 17 and each probe 4a, 4b, . . .
・It has a hollow shaft to pass the cable between it and 4n.

上記探触子4a、4b、・・・4nを保持する手段たる
回転円環9は、被検材1に対して相対的に直線運動する
ように構成されている。その手段として、本実施例では
、例えば、図示しない巻取装置によシ、被検材1を巻取
って、長手方向に搬送する装置を備えている。もつとも
、巻取らずに、被検材1を単に送るだけでもよい。
A rotating ring 9, which is a means for holding the probes 4a, 4b, . . . 4n, is configured to move linearly relative to the specimen 1. As a means for this purpose, this embodiment includes, for example, a device that winds up the test material 1 using a winding device (not shown) and transports it in the longitudinal direction. However, it is also possible to simply send the test material 1 without winding it up.

次に、上記実施例の動作について第7図乃至第11図を
参照して説明する。なお、第10図は本発明走査方式眞
よる走査軌跡を示す説明図、第11図は上記走査軌跡と
被検材長手方向欠陥との関係を示す説明図である。
Next, the operation of the above embodiment will be explained with reference to FIGS. 7 to 11. Note that FIG. 10 is an explanatory diagram showing a scanning locus according to the scanning method of the present invention, and FIG. 11 is an explanatory diagram showing the relationship between the scanning locus and defects in the longitudinal direction of the inspected material.

本実施0例の走査方式により被検材を走査して探傷する
には、先づ、水槽3に媒質として水を供給して所定水位
とする。なお、媒質は、マシンオイル等の人以外のもの
を使用してもよい。
In order to scan and detect flaws on a material to be inspected using the scanning method of this embodiment, first, water is supplied as a medium to the water tank 3 and the water level is set to a predetermined level. Note that the medium may be a medium other than human, such as machine oil.

また、被検材1を水槽3の側壁部を貫通させて水槽3に
浸漬させておく。
Further, the test material 1 is penetrated through the side wall of the water tank 3 and immersed in the water tank 3.

ついで、各探触子4a、4b、・・・4nに超音波発振
素子励振用の信号を信号伝達装置17を介して供給する
。また、回転軸11を、ベルト14及びプーリ15を介
して図示しない駆動モータによレ一定角速度で回転させ
ると、これによシ、アームlOを介して回転円環9が第
7図矢印方向に回転し、該円環9に装着された各探触子
4a、4b、・・・4nが、各々が設けられている円周
に沿って定速円運動する。同時に、被検材1を、図示し
ない搬送手段によシ第7図矢印方向に、一定速度で連続
的に移動させる。
Next, a signal for exciting the ultrasonic oscillation element is supplied to each probe 4a, 4b, . . . 4n via the signal transmission device 17. Furthermore, when the rotating shaft 11 is rotated at a constant angular velocity by a drive motor (not shown) via the belt 14 and the pulley 15, this causes the rotating ring 9 to move in the direction of the arrow in FIG. 7 via the arm lO. The probes 4a, 4b, . . . , 4n mounted on the circular ring 9 rotate at a constant speed along the circumference of each probe. At the same time, the test material 1 is continuously moved at a constant speed in the direction of the arrow in FIG. 7 by a transport means (not shown).

このよう処して、被検材1の全面には、該被検側1の定
速直線運動と上記各探触子4a、4b、・・・4nの定
速円運動の合成による走査軌跡群が画かれ、この軌跡に
Ypiつて、各探触子4a、 4b、・・・4nが探傷
を行なう。
In this way, a group of scanning trajectories is formed on the entire surface of the specimen 1 by the combination of the constant speed linear motion of the specimen side 1 and the constant speed circular motion of each of the probes 4a, 4b, . . . 4n. Each probe 4a, 4b, . . . 4n performs flaw detection along this trajectory.

第10図に上記走査軌跡群を示す。同図に示すように、
各探触子4m、4b、・・・4nの走査軌跡は、サイク
ロイド曲線であり、探触子数に対応する複数のサイクロ
イド曲線が被検材1の全面に等ピッチで配列されている
。この結果、被検材1は、中央部、縁部のいかんによら
ず、全面が均等に走査探傷される。
FIG. 10 shows the above scanning locus group. As shown in the figure,
The scanning trajectory of each of the probes 4m, 4b, . As a result, the entire surface of the material 1 to be inspected is uniformly scanned and tested, regardless of whether it is in the center or at the edges.

上記サイクロイド曲線のピッチ、即ち、隣接するサイク
ロイド曲線間の長手方向距離は、被検材1に内在する長
手方向に伸長した欠陥の最小長さに対して、それと略同
−乃至はそれよシ短かくなるように設定する。第11図
はこの条件を示すものである。このピッチは、探触子数
回転速度、被検材搬送速度によシ決まる。
The pitch of the cycloidal curves, that is, the longitudinal distance between adjacent cycloidal curves, is approximately equal to or shorter than the minimum length of the longitudinally elongated defect inherent in the test material 1. Set it so that it looks like this. FIG. 11 shows this condition. This pitch is determined by the rotational speed of the probe and the conveyance speed of the test material.

例えば、検出すべき欠陥の最小長さを50調とした場合
のピッチ設定条件の1例を示すと、次の通シである。
For example, an example of pitch setting conditions when the minimum length of a defect to be detected is 50 tones is as follows.

探触子数 14個 回転速度 毎秒1回転 搬送速度 毎分40m 以上の説、明では、薄鋼板等の帯板状材料の探傷に、−
探反射透過法を用いる場合について説明したが、被検材
がある程度の板厚を有する場合は、本発明の走査方式の
構成のまま、−探反射法による探傷装置を構成すること
ができる。
Number of probes: 14 Rotating speed: 1 rotation per second Conveying speed: 40 m/min In the above explanation, for flaw detection of strip-shaped materials such as thin steel plates, -
Although the case where the probe-reflection transmission method is used has been described, if the material to be inspected has a certain thickness, it is possible to configure a flaw detection apparatus using the probe-reflection method without changing the configuration of the scanning method of the present invention.

この場合は、探傷装置の探傷ゲートの開閉タイミング設
定のみ変更すればよい。
In this case, it is only necessary to change the opening/closing timing settings of the flaw detection gate of the flaw detection device.

また、以上に説明した実施例では、被検材が連続的に搬
送されるとしたが、例えば、被検材が、一定長の切板な
どのように比較的短かい場合は、水槽を長くして、被検
材全体を醇水槽中に浸漬し、駆動ヘッド側を、円環を回
転させながら、被検材長手方向に一定速度で走行させる
ことによシ、被検材と駆動ヘッドとを相対的に直線運動
させ、サイクロイド曲線群を画かせる構成とすることも
できる。
In addition, in the embodiments described above, it is assumed that the material to be inspected is conveyed continuously, but if the material to be inspected is relatively short, such as a cut plate of a certain length, the water tank may be moved for a longer time. Then, the entire test material is immersed in a drinking water tank, and the driving head side is moved at a constant speed in the longitudinal direction of the test material while rotating the ring, thereby separating the test material and the drive head. It is also possible to have a configuration in which a group of cycloidal curves is drawn by relatively moving in a straight line.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、複数の探触子をその保持
部材と共に円運動させ、かつ、被検材を相対的に直線運
動させて、円運動の合成によりサイクロイド曲線群から
成る走査軌跡を形成する構成としたことによシ、探触子
の運動に、往復揺動の如き過大な加速度を生じさせず、
機構部にガタッキを生ずることがなく、機構上および動
作上において安定な探傷を行ない得る。
As explained above, the present invention moves a plurality of probes together with their holding members in a circular motion, moves a specimen to be tested in a relative straight line, and generates a scanning locus consisting of a group of cycloidal curves by combining the circular motions. This structure prevents the movement of the probe from causing excessive acceleration such as reciprocating rocking.
There is no wobbling in the mechanical part, and stable flaw detection can be performed both mechanically and operationally.

しかも、探触子の運動が連続的な円運動であるから、高
速回転しても、媒質の攪拌、振騰が少ないので、気泡の
巻込みが無く、超音波音場を乱されず、安定に探傷し得
る。効果がある。
Moreover, since the probe moves in a continuous circular motion, there is little stirring or shaking of the medium even when it rotates at high speed, so there is no entrainment of air bubbles, the ultrasonic sound field is not disturbed, and it is stable. flaws can be detected. effective.

また、本発明によれば、被検材のいずれの位置でも走査
軌跡のピッチが等しいので、全面を均等に探傷できる。
Further, according to the present invention, since the pitch of the scanning locus is the same at any position on the material to be inspected, the entire surface can be uniformly detected.

しかも、探触子を高速で回転させても気泡の影響を受け
・ないので、高密度の探傷が可能となる効果がある。
Furthermore, even if the probe is rotated at high speed, it is not affected by air bubbles, so it has the effect of enabling high-density flaw detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一探反射透過法の原理を示す説明図、第2図は
上記探傷法における反射波スペクトルを示す説明図、第
3図および第4図は従来の探触子走査方式を示す平面図
および断面図、第5図は上記従来方式による走査軌跡を
示す説明図、第6図は上記従来方式における走査軌跡と
欠陥最小長さとの関係を示す説明図、第7図および第8
図は本発明探触子走査方式の一実施例を示す平面図およ
び断面図、第9図は上記実施例において探触子を円運動
させる駆動ヘッドを示す断面図、第10図は上記実施例
による走査軌跡を示す説明図、第11図は上記実施例に
おける走査軌跡と欠陥最小長さとの関係を示す説明図で
ある。 1・・・被検材 2・・・反射板 3・・・水槽 4m、4b、・・・4n・・・探触子9
・・・回転円環 10・・・アーム 11・・・回転軸 12・・・駆動ヘッド1G・・・駆
動ヘッドハウジング 17・・・信号伝達装置 出願人 株式会社 東 京 計 器 代理人弁理士三品岩男 第1図 第2図 −し」− G 第3図− 第4図 第5図 第6図
Figure 1 is an explanatory diagram showing the principle of the single probe reflection transmission method, Figure 2 is an explanatory diagram showing the reflected wave spectrum in the above flaw detection method, and Figures 3 and 4 are planes showing the conventional probe scanning method. 5 is an explanatory diagram showing the scanning locus according to the conventional method, FIG. 6 is an explanatory diagram showing the relationship between the scanning locus and the minimum defect length in the conventional method, and FIGS.
The figures are a plan view and a sectional view showing an embodiment of the probe scanning method of the present invention, FIG. 9 is a sectional view showing a drive head for circularly moving the probe in the above embodiment, and FIG. 10 is a sectional view of the above embodiment. FIG. 11 is an explanatory diagram showing the relationship between the scanning trajectory and the minimum defect length in the above embodiment. 1...Test material 2...Reflector 3...Water tank 4m, 4b,...4n...Probe 9
...Rotating ring 10...Arm 11...Rotating shaft 12...Drive head 1G...Drive head housing 17...Signal transmission device Applicant Tokyo Co., Ltd. Keiki representative patent attorney Mishina Iwao Figure 1 Figure 2 - G Figure 3 - Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 帯板状材料から成る被検材の一部または全部を、超音波
を伝播する媒質中に浸漬保持し、該被検材上を、探触子
を走査して全面探傷する超音波探傷装置における探触子
走査方式において、(a) 複数の探触子を、同一円周
上に等ピッチで配置すると共に、上記媒質中にて上記被
検材と平行な面上に保持する手段と、 (b) 上記各探触子を、上記円周に沿って円運動させ
る回転手段と、 (c)上記被検材と上記探触子を保持する手段とを相対
的に直線運動させる手段と を備えて、被検材の全面に等ピッチの走査軌跡群を画か
せる構成としたことを特徴とする帯板材探傷用探触子走
査方式。
[Claims] Part or all of a material to be inspected made of a strip-like material is immersed and held in a medium that propagates ultrasonic waves, and a probe is scanned over the entire surface of the material to be inspected. In the probe scanning method of an ultrasonic flaw detection device, (a) a plurality of probes are arranged at equal pitches on the same circumference, and are placed on a surface parallel to the test material in the medium. (b) rotating means for circularly moving each of the probes along the circumference; and (c) a means for moving the sample to be inspected and the means for holding the probes in a relative straight line. 1. A probe scanning method for flaw detection of a strip material, characterized in that the probe is equipped with a means for moving the material and is configured to draw a group of scanning trajectories at an equal pitch over the entire surface of a material to be inspected.
JP58142877A 1983-08-04 1983-08-04 Scanning system for probe for flaw detection of hoop plate material Pending JPS6033048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58142877A JPS6033048A (en) 1983-08-04 1983-08-04 Scanning system for probe for flaw detection of hoop plate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142877A JPS6033048A (en) 1983-08-04 1983-08-04 Scanning system for probe for flaw detection of hoop plate material

Publications (1)

Publication Number Publication Date
JPS6033048A true JPS6033048A (en) 1985-02-20

Family

ID=15325669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142877A Pending JPS6033048A (en) 1983-08-04 1983-08-04 Scanning system for probe for flaw detection of hoop plate material

Country Status (1)

Country Link
JP (1) JPS6033048A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132958A (en) * 1987-11-18 1989-05-25 Hitachi Constr Mach Co Ltd Ultrasonic wave flaw detector
JP2010230539A (en) * 2009-03-27 2010-10-14 Takashima Giken Kk Ultrasonic flaw detector for hand-operated flaw inspection
JP2014010130A (en) * 2012-07-03 2014-01-20 Yutaka Hata Outer diameter measurement device for linear body using ultrasonic wave
US10302600B2 (en) 2016-01-19 2019-05-28 Northrop Grumman Innovation Systems, Inc. Inspection devices and related systems and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266485A (en) * 1975-11-30 1977-06-01 Shimadzu Corp Scar searching apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266485A (en) * 1975-11-30 1977-06-01 Shimadzu Corp Scar searching apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132958A (en) * 1987-11-18 1989-05-25 Hitachi Constr Mach Co Ltd Ultrasonic wave flaw detector
JP2010230539A (en) * 2009-03-27 2010-10-14 Takashima Giken Kk Ultrasonic flaw detector for hand-operated flaw inspection
JP2014010130A (en) * 2012-07-03 2014-01-20 Yutaka Hata Outer diameter measurement device for linear body using ultrasonic wave
US10302600B2 (en) 2016-01-19 2019-05-28 Northrop Grumman Innovation Systems, Inc. Inspection devices and related systems and methods
US10962506B2 (en) 2016-01-19 2021-03-30 Northrop Grumman Systems Corporation Inspection devices and related systems and methods

Similar Documents

Publication Publication Date Title
US5005417A (en) Detecting flaws formed in surfaces of rotating members with ultrasonic waves
US5736100A (en) Chemical analyzer non-invasive stirrer
JP4769423B2 (en) Liquid stirring device
JP3168886B2 (en) Chemical analyzer
GB2081118A (en) Non-invasive mixing
US3121324A (en) Ultrasonic inspection apparatus
US5684252A (en) Method and apparatus for ultrasonic inspection of electronic components
JP2009025248A (en) Automatic analyzer and dispensation method
US4969361A (en) Ultrasonic flaw detecting method and apparatus for structural balls
JP2009288031A (en) Stirrer and autoanalyzer using the same
JPS6033048A (en) Scanning system for probe for flaw detection of hoop plate material
US3107521A (en) Ultrasonic inspection apparatus
JP3607557B2 (en) Automatic analyzer
JPH07299066A (en) Ultrasonic probe
JPH10142207A (en) Ultrasonic probe
JPH0232249A (en) Ultrasonic flaw detection probe
JP3829237B2 (en) Interface measuring device
SU1387654A1 (en) Method and apparatus for determining anisotropy of elestic properties of material
US4565095A (en) Sound transducer apparatus system and method
JPH11326289A (en) Method and apparatus for ultrasonic flaw detection of cylindrical body
RU2037820C1 (en) Method for carrying out ultrasonic control of members having controllable surface and at least one inverse reflection created (versions)
JP6858096B2 (en) Chemical analyzer
JPH0377056A (en) Ultrasonic inspection device
JPH063455A (en) Ultrasonic inspection instrument
JP3050451B2 (en) Ultrasonic inspection equipment