JPS6031202A - Resistance element - Google Patents

Resistance element

Info

Publication number
JPS6031202A
JPS6031202A JP13905983A JP13905983A JPS6031202A JP S6031202 A JPS6031202 A JP S6031202A JP 13905983 A JP13905983 A JP 13905983A JP 13905983 A JP13905983 A JP 13905983A JP S6031202 A JPS6031202 A JP S6031202A
Authority
JP
Japan
Prior art keywords
resistance element
resistance
electrode
conductive
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13905983A
Other languages
Japanese (ja)
Inventor
森 貞明
飯田 昌史
洋 橋本
稔 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
SWCC Corp
Original Assignee
Toshiba Corp
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Showa Electric Wire and Cable Co filed Critical Toshiba Corp
Priority to JP13905983A priority Critical patent/JPS6031202A/en
Publication of JPS6031202A publication Critical patent/JPS6031202A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、昇温時、特定の温度領域で急激に正の抵抗温
度係数が増大する特tel (以下P 1− C特性と
いう)を有する導電性ポリマー組成物からなる抵抗素子
に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a conductive material having a characteristic (hereinafter referred to as P 1-C characteristic) in which a positive temperature coefficient of resistance rapidly increases in a specific temperature range when the temperature is increased. The present invention relates to a resistance element made of a polymer composition.

[発明の技術的背景] 従来からPTC特性を有する抵抗素子(以下1〕TC素
子という)として、チタン酸バリウム系の金属酸化物か
らなる平板状の素子本体の両面に金属箔電極を被着して
なるものが一般に用いられCいる。
[Technical Background of the Invention] Conventionally, as a resistance element having PTC characteristics (hereinafter referred to as TC element), metal foil electrodes are coated on both sides of a flat element body made of barium titanate-based metal oxide. C is commonly used.

しかしながらこのような従来のl) I−C素子は、固
有抵抗が高く、がっ熱容量が大きいため限られた用途に
しか使用されていないのが実情である。
However, the reality is that such conventional I-C elements have a high specific resistance and a large heat capacity, so that they are used only for limited purposes.

これに対して、結晶性ポリマーに導電性粒子を均一に分
散さゼた導電性ポリマー組成物からなるPTC素子は、
固有抵抗も低く熱容儀も小さいことから近時チタン酸バ
リウム系の[]王C素子を使用することができない分野
への適用について検問がすすめられている。
On the other hand, a PTC element made of a conductive polymer composition in which conductive particles are uniformly dispersed in a crystalline polymer,
Due to its low specific resistance and small thermal mass, it has recently been investigated for application in fields where barium titanate-based [ ]O C elements cannot be used.

このような導電性ポリマー組成物のp −r c特性は
、ベースとなる結晶性ポリマーが、その融点におい−C
結晶買から非結晶質に変化する際に承り急激な体積膨張
のために、その中に分散させた導電性粒子間隔が広げら
れることにより発現される。
The p-rc characteristics of such conductive polymer compositions are such that the base crystalline polymer has -C at its melting point.
This phenomenon occurs when the conductive particles dispersed therein widen due to rapid volumetric expansion when changing from crystalline to amorphous.

そしてこのPTC素子は、導電性ポリマー組成物が急激
に電気抵抗を増大する温度(以下スイッチング温石と称
す)以下ひは同右抵抗も低く導電体となっているが、過
電流状態では自己発熱によって急激にその温度が上昇し
てスイッチング温度となり、電流を制限して機器を過電
流による破壊から保護する作用をし、また発熱体として
使用づる場合には加熱による自己損傷を防止する作用を
するのである。
This PTC element is a conductor with low resistance below the temperature at which the conductive polymer composition rapidly increases its electrical resistance (hereinafter referred to as a switching hot stone). The temperature rises to the switching temperature, which limits the current and protects equipment from destruction due to overcurrent, and when used as a heating element, prevents self-damage due to heating. .

第1図おJζび第2図は、導電性ボリン−からなる円板
状の素子本体1の両面に金属箔電極2.2を貼着し、こ
の金属箔電極2.2に半日13にJ、リリード線4.4
を接続させたP T’ C素子の一例を示しでいる。
Figures 1 and 2 show that metal foil electrodes 2.2 are pasted on both sides of a disk-shaped element body 1 made of conductive borine, and that the metal foil electrodes 2.2 are coated with Jζ for half a day. , relead wire 4.4
This figure shows an example of a P T'C element connected to the P T'C element.

しかしで上記素子本体1は、ポリエチレンのような結晶
性ポリマーに、接着性ポリマーと導電性カーボン等の導
電性粒子を配合した導電性組成物を板状に成形した後、
その両面に金属箔電極を加熱圧着して成形されるが、さ
らに金属箔電極上から電子線照射を行なうことにj;り
導電性組成物を架橋させC素子全体に耐熱性が付ちされ
−Cいる。
However, the element main body 1 is formed by forming a conductive composition into a plate shape, which is a mixture of a crystalline polymer such as polyethylene, an adhesive polymer, and conductive particles such as conductive carbon.
Metal foil electrodes are bonded under heat and pressure to both sides to form the C element, and by irradiating the metal foil electrode with an electron beam, the conductive composition is crosslinked and heat resistance is imparted to the entire C element. There is C.

[背景技術の問題点] このような従来の導電性ポリマー組成物を用いたPTC
素子においでは、素子本体の電子線照射架橋が、素子本
体1と金属箔電極2.2とを接着させた後に行なわれる
ため、第3図に示Jように、結晶性ポリマーの電子線照
射架橋時に発生Jる水素ガスその他のガスが金属熱電4
〜2ど素子本体1との界面に貯留して気泡5を形成し、
この気泡がヒートサイクルに伴い膨張、収縮を繰り返し
、膨張時の内圧P1が金属箔電極2に対しU !!I離
力となって作用し、金属箔電極2を素子本体1から剥離
させてしまうという難点があった。
[Problems with the background art] PTC using such conventional conductive polymer compositions
In the device, cross-linking of the crystalline polymer by electron beam irradiation is performed after bonding the device body 1 and the metal foil electrode 2.2, so as shown in FIG. When hydrogen gas and other gases are generated, metal thermoelectric
- 2nd layer accumulates at the interface with the element body 1 to form bubbles 5,
These bubbles repeatedly expand and contract as a result of the heat cycle, and the internal pressure P1 at the time of expansion is U! against the metal foil electrode 2. ! There is a problem in that the metal foil electrode 2 acts as a separation force and causes the metal foil electrode 2 to be peeled off from the element body 1.

また、金属箔電極2の線膨服係数は素子本体1のそれに
比べ約1/40と小さいため、ヒー1−」ノイクルに伴
ない両者の接着界面にぜん断ツノが作用し、このことも
金属箔電極の剥離を寸1める要因の一つとなっていた。
In addition, since the linear expansion coefficient of the metal foil electrode 2 is about 1/40 smaller than that of the element body 1, shear horns act on the adhesive interface between the two as a result of the heating noise. This was one of the factors that led to the peeling of the foil electrode.

さらに、かかる従来のPTC索子は、平板状ではあるが
表面が平坦であるため熱tliFll性は必ずしも良好
とは言い難り、通電容量の人ぎい用途においてはその熱
放散性の改善が要望されていた。
Furthermore, although such conventional PTC cords have a flat surface, their thermal tliFll properties cannot necessarily be said to be good, and improvements in their heat dissipation properties are desired in applications where current carrying capacity is limited. was.

[発明の目的J 本発明はかかる従来の事情に対処してなされたもので・
、電極と素子本体との接着性に優れ、かつ熱放散性を改
善して通電容量を向上さμだ抵抗素子を提供することを
目的とする。
[Object of the Invention J The present invention has been made in response to such conventional circumstances.
It is an object of the present invention to provide a resistive element which has excellent adhesiveness between an electrode and an element body, and which has improved heat dissipation and current carrying capacity.

[発明の概要] すなわち本発明の抵抗素子は、導電性ポリマー組成物か
らなる素子本体と、前記素子本体をはさんでその表面に
密接被着された電極とを備えてなる抵抗素子におい−C
1前記素子本体と電極との界面が凹凸面とされているこ
とを特徴としている。
[Summary of the Invention] That is, the resistance element of the present invention is a resistance element comprising an element body made of a conductive polymer composition and an electrode closely adhered to the surface of the element body, sandwiching the element body.
1. The device is characterized in that the interface between the element body and the electrode is an uneven surface.

[発明の実施例] 以下本発明の訂細を図面に示ず一実施例について説明す
る。
[Embodiment of the Invention] Hereinafter, one embodiment of the present invention will be described without showing the details in the drawings.

第4図は本発明のPTC素子の一実施例を示1斜視図、
第5図はそのV−v線に沿う切欠斜視図である。なd3
以下の各図においC第1図および第2図と共通ずる部分
には同一符号を付しである。
FIG. 4 is a perspective view showing one embodiment of the PTC element of the present invention;
FIG. 5 is a cutaway perspective view taken along line V-v. na d3
In each of the following figures, the same reference numerals are given to the same parts as in FIGS. 1 and 2.

第4図および第5図において、この実施例の抵抗素子は
、架橋可能な結晶性ポリマーに、導電性カーボン等の導
電性粒子と、必要に応じて接着性ポリマーを配合してな
るPrC特性を有づる導電性ポリマー組成物からなる円
板状の素子本体1ど、その両面に被着された電極2.2
およびその中央に半田3により接続されたリード線4.
4から構成されている。
In FIGS. 4 and 5, the resistance element of this example has PrC characteristics, which is made by blending a crosslinkable crystalline polymer with conductive particles such as conductive carbon and, if necessary, an adhesive polymer. A disk-shaped element body 1 made of a conductive polymer composition, and electrodes 2.2 coated on both sides thereof.
and a lead wire 4 connected to the center with solder 3.
It consists of 4.

しかしで、この実施例の抵抗素子においては、素子本体
1の両面には複数の断面台形状の環状凸部1aが同心円
状に形成され、その表面に同一形状の金属箔からなる電
極2.2が被着されC構成されている。
However, in the resistance element of this embodiment, a plurality of annular protrusions 1a having a trapezoidal cross section are formed concentrically on both sides of the element body 1, and electrodes 2. is deposited to form a C structure.

この実施例の導電性ポリマー組成物に用いられる結晶性
ポリマーとし“Cは、例えば111密度、中密度、低密
度のポリエチレンやポリプロピレン等のポリオレフィン
があり、まノこ必要に応じて配合される接着性ポリマー
としC【よ、例えばエチレン・エチルアクリレ−1へ共
重合体、エチレン・耐酸ビニル其重合体等のエチレン系
其重合体がある。
The crystalline polymer "C" used in the conductive polymer composition of this example is, for example, polyolefin such as 111 density, medium density, or low density polyethylene or polypropylene. For example, there are ethylene-based polymers such as ethylene/ethyl acrylate-1 copolymer, ethylene/acid-resistant vinyl polymer, etc.

また電極2.2は同形の金属箔以外に、例えば金属蒸着
、金属めっき等により形成することもできる。
Further, the electrode 2.2 can also be formed by, for example, metal vapor deposition, metal plating, etc. other than metal foil having the same shape.

このように構成された抵抗素子は、素子本体1両面に断
面台形状の環状凸部1aを有づるため、第6図に示1よ
うに照射架橋により発生した水素ガス等からなる気泡5
の熱膨張時の内圧P+による剥離力が、環状凸部1aの
立ち上がり角αによりp 1 cosα(<PI )に
軽減される。
Since the resistance element constructed in this manner has an annular convex portion 1a having a trapezoidal cross section on both sides of the element main body 1, bubbles 5 made of hydrogen gas etc. generated by irradiation crosslinking, as shown in FIG.
The peeling force due to the internal pressure P+ during thermal expansion is reduced to p 1 cos α (<PI) by the rising angle α of the annular convex portion 1a.

また、金属箔電極2.2と素子本体1との線膨服係数の
相違ににる素子の径方向に作用するせん断ノjも両者の
接着面積の増大により緩和され、ざらに熱放散性も表面
積の増加により改善される。
In addition, the shear no.j that acts in the radial direction of the element due to the difference in linear expansion coefficient between the metal foil electrode 2.2 and the element body 1 is alleviated by increasing the bonding area between the two, and the heat dissipation properties are also improved. Improved by increasing surface area.

第7図は、高密度ポリエチレン30重量部、エチレン・
エチルアクリレート共重合体30重量部、導電性カーボ
ン40重(6)部からなる」′導電性ポリマー組成物に
より製造された!!4図ないし第6図に示す構造の抵抗
素子(直径2o能)(実施例)と、第1図に示した従来
の抵抗素子(直径2oIll11)(比較例)のPTC
特性および演り電力特性を示づグラフである。
Figure 7 shows 30 parts by weight of high-density polyethylene, ethylene.
Manufactured with a conductive polymer composition consisting of 30 parts by weight of ethyl acrylate copolymer and 40 parts by weight (6) parts of conductive carbon! ! PTC of the resistance element (diameter 2o) (example) with the structure shown in Figs. 4 to 6 and the conventional resistance element (diameter 2oIll11) shown in Fig. 1 (comparative example)
It is a graph showing characteristics and performance power characteristics.

同図において、曲線Rはこれらの抵抗素子の半導電性ポ
リマー組成物の温度変化に対りる抵抗変化を示している
。この曲線からこれらの抵11′L素子が100〜12
0℃の転位温度のP T C特性を有していること−が
わかる。
In the same figure, a curve R shows the change in resistance of the semiconductive polymer composition of these resistance elements with respect to the change in temperature. From this curve, these resistor 11'L elements are 100 to 12
It can be seen that it has PTC characteristics with a dislocation temperature of 0°C.

また、Wi+〜Wi 3はそれぞれの抵抗素子に、一定
の電流を流したどきの、温度ど消費型ツノの関係を示づ
消費電力特性曲線である。ここでWi+は比較例の抵抗
素子にスイッヂング温度にまで至らない安全電流を流し
た場合の特性曲線、Wi 2は同じ抵抗素子に過電流を
負伺した場合の特性曲線、Wi 3はこの実施例の素子
にWi2よりさらに大きい電流を流した場合の特性曲線
ぐある。なお、Wc1、Wc2は抵抗素子の冷lJI能
を示し、WC+は比較例、Wc2は実施例の抵抗素子の
温度変化と消費型ノコの関係を示す曲線である。
Further, Wi+ to Wi3 are power consumption characteristic curves showing the relationship between temperature and consumption type horn when a constant current is passed through each resistance element. Here, Wi+ is the characteristic curve when a safe current that does not reach the switching temperature is passed through the resistance element of the comparative example, Wi 2 is the characteristic curve when an overcurrent is applied to the same resistance element, and Wi 3 is the characteristic curve of this example. There is a characteristic curve when a current larger than Wi2 is passed through the element. In addition, Wc1 and Wc2 indicate the cold lJI performance of the resistance element, WC+ is a comparative example, and Wc2 is a curve showing the relationship between the temperature change of the resistance element and the consumption type saw of the example.

第7図のグラフから明らかなj;うに、従来の抵抗素子
に安全電流を流した場合には、曲線Wi+どWC+どの
交点りで示1スイッチング温度より低い温度で安定状態
、すなわち抵抗素子が所定の消費電力で一定)品度を軒
1持しくりるが、過電流を流した場合には、曲線Wi 
2とWc+との交点すで示すスイッチング温度を越えた
高温かつ高抵抗の領域で安定状態となる。
It is clear from the graph in Figure 7 that when a safe current is passed through a conventional resistance element, the curve Wi + DoWC + Which intersection indicates that the resistance element reaches a stable state at a temperature lower than the switching temperature. (fixed at the power consumption of
A stable state is reached at the intersection of 2 and Wc+ in a high-temperature and high-resistance region that exceeds the switching temperature.

これに対して実施例の抵抗素子では、環状凸部1al、
:J:り熱放散性が向上しているので、曲線WC2で示
づように従来の抵抗素子が過電流状態どなる温度領域に
d3いても安定した電流が流れ、これにりさらに大きな
電流を負荷したどきに曲mwi3で示ずにうにスイッヂ
ング温度を越えた交点C以下の調度で安定となっている
On the other hand, in the resistance element of the example, the annular convex portion 1al,
:J: Since the heat dissipation properties have been improved, a stable current flows even if the conventional resistance element is in the temperature range d3 where it is in an overcurrent state, as shown by curve WC2, and this allows even larger current to be loaded. However, as shown in the song mwi3, the temperature is stable below the intersection point C, which exceeds the switching temperature.

第8図は上記した本発明の実施例の抵抗素子と比較例の
抵抗素子の回復特性曲線を示すグラフである。このグラ
フから明らかなようにこの実施例においては、環状凸部
の形成により熱放散性が]tjJ上し−Cいるので再使
用可能どなるまでの回復時間が比較例より短くなり、使
用頻度を高くづることができる。なお、第8図にa3い
て、横軸は高抵抗に作動している素子の回路電流を断っ
てからの時間(秒)、縦軸は素子の抵抗値(Ω)′cあ
る。
FIG. 8 is a graph showing the recovery characteristic curves of the resistance element of the embodiment of the present invention and the resistance element of the comparative example. As is clear from this graph, in this example, the heat dissipation is improved due to the formation of the annular convex portion, so it can be reused. can be written. In addition, at a3 in FIG. 8, the horizontal axis represents the time (seconds) after cutting off the circuit current of the element operating with high resistance, and the vertical axis represents the resistance value (Ω)'c of the element.

なお、以上の実施例では素子本体と電極との界面を台形
状としたものについ′C説明したが本発明はかかる実施
例に限らず、凸部101面は円弧状としてもよい。
In the above embodiment, the interface between the element body and the electrode is trapezoidal, but the present invention is not limited to such an embodiment, and the surface of the convex portion 101 may be arcuate.

また、第9図に示すような、シー1〜状の素子本体1に
平行する多数の平行する凸条1bを設+Jkものであっ
てもよい。
Further, as shown in FIG. 9, a large number of parallel protrusions 1b may be provided in parallel to the element body 1 in the shape of a sea 1.

[発明の効果] 以上説明したように本発明の抵抗素子によれは、素子本
体と電極との界面を凹曲面に形成したのC゛、電極と素
子本体との界面に生じた気泡による剥離力が軽減され耐
久性が向上づる。また、熱放散性が向上するので通電容
量が増大し、高頻度で使用が可能となる。
[Effects of the Invention] As explained above, the resistance element of the present invention has the advantage that the interface between the element body and the electrode is formed into a concave curved surface, and the peeling force due to bubbles generated at the interface between the electrode and the element body is reduced. is reduced and durability is improved. Furthermore, since the heat dissipation property is improved, the current carrying capacity is increased and it becomes possible to use it frequently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の抵抗素子を示づ斜視図、第2図はその一
部切欠斜視図、第3図はその架橋時に発生ずるガスによ
る電極の剥削を説明づる要部断面図、第4図は本発明の
抵抗素子の一実施例を示す斜視図、第5図はその一部切
欠斜視図、第6図はその架橋時に発生ずるガスにJこる
電極の剥離力が軽減される状況を示す要部断面図、第7
図は本発明の実施例と比較例の抵抗素子におけるPTC
特性および消費電力特性を示づグラフ、第8図はその回
復特性を示づグラフ、第9図は本発明の他の実施例を示
す斜視図である。 1・・・・・・・・・・・・素子本体 1a・・・・・・・・・環状凸部 1b・・・・・・・・・凸 条 2・・・・・・・・・・・・金属的 3・・・・・・・・・・・・半 田 4・・・・・・・・・・・・リード線 5・・・・・・・・・・・・気 泡 第1図 第2図 第3因 tMt+図 第5図 第6図 第7図 0 温 度(’C) 回イラ(崎e畠 (Sec)
Fig. 1 is a perspective view showing a conventional resistance element, Fig. 2 is a partially cutaway perspective view thereof, Fig. 3 is a sectional view of a main part illustrating the abrasion of the electrode by gas generated during crosslinking, and Fig. 4 5 is a perspective view showing an embodiment of the resistance element of the present invention, FIG. 5 is a partially cutaway perspective view thereof, and FIG. 6 shows a situation in which the peeling force of the electrode caused by the gas generated during crosslinking is reduced. Main part sectional view, No. 7
The figure shows PTC in resistance elements of an example of the present invention and a comparative example.
FIG. 8 is a graph showing the recovery characteristics, and FIG. 9 is a perspective view showing another embodiment of the present invention. 1...... Element body 1a...... Annular convex portion 1b...... Convex strip 2... ...Metallic 3...Solder 4...Lead wire 5...Bubble Fig. 1 Fig. 2 Fig. 3 Factor tMt+ Fig. 5 Fig. 6 Fig. 7 Fig. 0 Temperature ('C) Times (Sec)

Claims (5)

【特許請求の範囲】[Claims] (1)II性ポリマー組成物からなる素子本体と、前記
素子本体をはさんでその表面に密接被着された電極とを
備えCなる抵抗素子においC1前記素子本体と電極との
界面が凹凸面とされていることを特徴とする抵抗素子。
(1) In a resistance element C, which comprises an element body made of a polymer composition II and an electrode closely adhered to the surface of the element body, the interface between the element body and the electrode has an uneven surface. A resistance element characterized by:
(2)凹凸面の断面形状が台形もしくは円弧の繰返しか
らなる特許請求の範囲第1]J4記載の抵抗素子。
(2) The resistance element according to claim 1]J4, wherein the uneven surface has a cross-sectional shape of a trapezoid or repeated circular arcs.
(3)導電性ポリマー組成物は、結晶性ポリマーに導電
性粒子を分j1(させCなる組成物ぐある特許請求の範
囲第1項または第2項記載の抵抗素子。
(3) The resistive element according to claim 1 or 2, wherein the conductive polymer composition is a composition in which conductive particles are divided into a crystalline polymer.
(4)結晶性ポリマーはポリオレフィンである特許請求
の範囲第3項記載の抵抗素子。
(4) The resistance element according to claim 3, wherein the crystalline polymer is a polyolefin.
(5)導電性ポリマー組成物覧よ、照!)I架橋され(
いる特許請求の範囲第1項ないし第4項記載の抵抗素子
(5) Look at the conductive polymer composition! ) I cross-linked (
A resistance element according to claims 1 to 4.
JP13905983A 1983-07-29 1983-07-29 Resistance element Pending JPS6031202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13905983A JPS6031202A (en) 1983-07-29 1983-07-29 Resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13905983A JPS6031202A (en) 1983-07-29 1983-07-29 Resistance element

Publications (1)

Publication Number Publication Date
JPS6031202A true JPS6031202A (en) 1985-02-18

Family

ID=15236525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13905983A Pending JPS6031202A (en) 1983-07-29 1983-07-29 Resistance element

Country Status (1)

Country Link
JP (1) JPS6031202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445101A (en) * 1987-08-13 1989-02-17 Tdk Corp Conductive polymer ptc resistor element and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445101A (en) * 1987-08-13 1989-02-17 Tdk Corp Conductive polymer ptc resistor element and manufacture thereof

Similar Documents

Publication Publication Date Title
JP4664556B2 (en) Conductive polymer composition
JPS6025873B2 (en) self-regulating electrical device
JPS62230003A (en) Manufacture of ptc device
US20020093007A1 (en) Organic PTC thermistor
US4402004A (en) High current press pack semiconductor device having a mesa structure
JPS62230001A (en) Manufacture of ptc device
JP2000200704A (en) Organic positive temperature coefficient thermistor
US4801785A (en) Electrical devices
JPH11168005A (en) Organic positive temperature coefficient thermistor
JP4283803B2 (en) PTC element
JPS58139405A (en) Method of producing resistance element
JP3896232B2 (en) Organic positive temperature coefficient thermistor and manufacturing method thereof
JPS6031202A (en) Resistance element
JP2003347105A (en) Organic positive temperature coefficient thermistor
JP2007103526A (en) Thermistor
JPS6028195A (en) Heater
JPS63224103A (en) Manufacture of current collector film
JP4293558B2 (en) PTC element
JP2730062B2 (en) Positive resistance temperature coefficient heating element
JP3911455B2 (en) Organic positive temperature coefficient thermistor and manufacturing method thereof
JP2001052901A (en) Chip organic positive temperature coefficient thermistor and manufacturing method therefor
JPS6031203A (en) Resistance element
JP2638862B2 (en) Positive low temperature coefficient heating element
JPH07201516A (en) Thermistor
JPH0218902A (en) Positive temperature coefficient heater