JPS63224103A - Manufacture of current collector film - Google Patents

Manufacture of current collector film

Info

Publication number
JPS63224103A
JPS63224103A JP62055325A JP5532587A JPS63224103A JP S63224103 A JPS63224103 A JP S63224103A JP 62055325 A JP62055325 A JP 62055325A JP 5532587 A JP5532587 A JP 5532587A JP S63224103 A JPS63224103 A JP S63224103A
Authority
JP
Japan
Prior art keywords
current collector
thermoplastic resin
weight
conductive
collector film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62055325A
Other languages
Japanese (ja)
Other versions
JPH07118228B2 (en
Inventor
古閑 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP62055325A priority Critical patent/JPH07118228B2/en
Publication of JPS63224103A publication Critical patent/JPS63224103A/en
Publication of JPH07118228B2 publication Critical patent/JPH07118228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、温度変化に対して安定な電気抵抗を保持し、
且つ耐薬品性に優れると共にフィルム表面の接触抵抗の
小さい集電体フィルムの製造方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention maintains stable electrical resistance against temperature changes,
The present invention also relates to a method for producing a current collector film that has excellent chemical resistance and low contact resistance on the film surface.

〔従来技術〕[Prior art]

一般に熱可塑性樹脂は絶縁体が多く、特にポリオレフィ
ン系樹脂は電気部品や電線の絶縁材料に使用されている
。これらの熱可塑性樹脂に導電性を付与する方法は、製
品に要求される導電性により種々の方法がある。一般的
には経時変化が少なく、且つ耐薬品性があり、ざらに安
価であることよりカーボン系フィラーが最も多く使用さ
れている。
In general, thermoplastic resins are often used as insulators, and polyolefin resins in particular are used as insulating materials for electrical parts and wires. There are various methods for imparting electrical conductivity to these thermoplastic resins, depending on the electrical conductivity required for the product. Generally, carbon-based fillers are most commonly used because they have little change over time, are resistant to chemicals, and are relatively inexpensive.

一方、ICの高集積化と高機能化は益々進み、エレクト
ロニクス機器の小型化により、デバイスに内蔵される各
部品も軽薄短小化が要求されている。ICメモリー素子
のバックアップ電源を始めとして、作動用電源として電
池が内蔵されている機器も多くみられるが、これらの電
池に対しても小型化の要求が強くなっている。しかし、
これらの電池部品である集電電極材料は、グラファイト
シートや、導電性ゴムシートが使われているため、厚み
を薄くするにも限界があった。
On the other hand, as ICs become increasingly highly integrated and highly functional, and electronic equipment becomes smaller, each component built into the device is required to be lighter, thinner, and smaller. Many devices are equipped with built-in batteries as operating power sources, including backup power sources for IC memory elements, but there is also a strong demand for miniaturization of these batteries. but,
Since graphite sheets and conductive rubber sheets are used as collector electrode materials for these battery parts, there is a limit to how thin they can be.

又、一般に使用されているカーボンブラックはカーポン
ストラクチャ−が充分に発達したものでなく、熱可塑性
樹脂中に分散させた場合、電導路密度が低く、温度上昇
による樹脂マトリックスの熱膨張により電導路密度の急
激な減少により電気抵抗が急激に増加するいわゆるPT
C特性が出現する。この現象は電池の性能に大きな影響
を及ぼすため、温度変化に対して電気抵抗の安定した導
電性フィルムが切望されていた。
In addition, commonly used carbon black does not have a sufficiently developed carbon structure, and when dispersed in a thermoplastic resin, the conductive path density is low, and the conductive path density decreases due to thermal expansion of the resin matrix due to temperature rise. The so-called PT, in which electrical resistance rapidly increases due to a rapid decrease in
Characteristic C appears. Since this phenomenon has a significant impact on battery performance, there has been a strong desire for a conductive film with stable electrical resistance against temperature changes.

ざらに一般にシートやフィルムを作る場合、押出ヤカレ
ンダーさらには溶液流延法により作られるが、これらの
方法では、通常作られるシートやフィルムの表面に流動
性の良いスキン層が形成されやすい。そのため、導電性
フィラーを高充填した導電性樹脂組成物をシーテイング
すると導電性フィラーの極端に少ない樹脂層がスキン層
を形成するため、組成上は高導電性が期待されても実際
はスキン層のために接触抵抗の大きなシートやフィルム
となってしまう。
Sheets and films are generally produced using an extrusion calender or a solution casting method, but these methods tend to form a skin layer with good fluidity on the surface of the normally produced sheets or films. Therefore, when sheeting a conductive resin composition highly loaded with conductive filler, the resin layer with extremely little conductive filler forms a skin layer, so even though high conductivity is expected from the composition, it is actually a skin layer. This results in a sheet or film with high contact resistance.

(発明の目的〕 本発明は従来の集電体フィルムでは到達できなかった温
度に対して安定な電気抵抗を保持し、更に耐薬品性に優
れると共にフィルム表面の接触抵抗の小さい集電体フィ
ルムを得んとして研究した結果、カーボンブラックの種
類とマトリックスとなる樹脂の種類を選択することによ
り温度に対して安定な電気抵抗を保持する導電性フィル
ムが得られるばかりでなくフィルム製造に共押出法を用
いるとカーボンブラックの分散がフィルム内部から表面
まで均一であり、一般の導電性フィルムにみられるスキ
ン層が全く存在しないとの知見を冑、更にこの知見に基
づき共押出の組み合わせ及び条件を種々検討した結果、
得られた導電性フィルムの表面に導電性フィラーが露出
した状態にすることができ、本発明を完成するに至った
ものである。
(Object of the invention) The present invention provides a current collector film that maintains stable electrical resistance at temperatures that cannot be reached with conventional current collector films, has excellent chemical resistance, and has low contact resistance on the film surface. As a result of our research, we have found that by selecting the type of carbon black and the type of matrix resin, we can not only obtain a conductive film that maintains stable electrical resistance over temperature, but also use the coextrusion method for film production. Based on this knowledge, we investigated various combinations and conditions for coextrusion. As a result,
The conductive filler can be exposed on the surface of the obtained conductive film, and the present invention has been completed.

〔発明の構成〕[Structure of the invention]

本発明は熱可塑性樹脂100重量部に対して粒子径が5
〜50μmであり、比表面積(窒素吸着法による)が3
00〜2000Td/gで、DBP吸油量が200〜4
00ml/1009であるカーボンブラックを20〜2
00重量部添加した導電性樹脂組成物を中間層とし、そ
の両面に剥離性の良好な熱可塑性樹脂層を共押出し、冷
却後両面の剥離性の良好な熱可塑性樹脂層を剥離して得
られた導電性フィルムよりなる集電体フィルムの製造方
法である。
The present invention has a particle size of 5 parts by weight based on 100 parts by weight of thermoplastic resin.
~50 μm, and the specific surface area (by nitrogen adsorption method) is 3
00-2000Td/g, DBP oil absorption 200-4
00ml/1009 carbon black from 20 to 2
A conductive resin composition containing 00 parts by weight is used as an intermediate layer, thermoplastic resin layers with good peelability are coextruded on both sides of the intermediate layer, and after cooling, the thermoplastic resin layers with good peelability on both sides are peeled off. This is a method for manufacturing a current collector film made of a conductive film.

本発明に用いられる熱可塑性樹脂はポリプロピレン、ポ
リエチレン、ポリブテン、エチレン酢酸ビニル共重合体
、エチレン・エチルアクリレート共重合体、エチレン・
プロピレン共重合体などのポリオレフィン系樹脂、ポリ
スチレン系樹脂、ポリアミド、ポリカーボネートさらに
はフッ素系樹脂などの各樹脂単体又は2種以上の混合体
などである。しかし耐薬品性やカーボン分散性などから
みてポリオレフィン系樹脂が好ましい。
Thermoplastic resins used in the present invention include polypropylene, polyethylene, polybutene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, and ethylene-vinyl acetate copolymer.
Examples of the resins include polyolefin resins such as propylene copolymers, polystyrene resins, polyamides, polycarbonates, and fluororesins, or mixtures of two or more of them. However, from the viewpoint of chemical resistance and carbon dispersibility, polyolefin resins are preferred.

本発明のカーボンブラックは導電性付与効果の大きなカ
ーポンストラクチャ−の発達したカーボンブラックであ
り、具体的には粒子径は50μm以下とし、充填の際の
接触密度を上げる。更に電導路密度を上げるため比表面
積(窒素吸着法)が300yf/9以上でDBP吸油量
が200rr11/100g以上であるカーボンブラッ
クを使用する。
The carbon black of the present invention is a carbon black with a developed carbon structure that has a large effect of imparting electrical conductivity, and specifically, the particle size is set to 50 μm or less to increase the contact density during filling. Furthermore, in order to increase the conductive path density, carbon black having a specific surface area (nitrogen adsorption method) of 300yf/9 or more and a DBP oil absorption of 200rr11/100g or more is used.

ざらにカーボンブラックの添加量は20重口部以上であ
る。20重口部以下では集電体フィルムとして必要な導
電性レベルが得られないばかりでなく、PTC特性が顕
著に現われてくる。
The amount of carbon black added is 20 parts by weight or more. If the weight is less than 20 parts, not only the conductivity level required as a current collector film cannot be obtained, but also the PTC characteristic becomes noticeable.

〔発明の効果〕〔Effect of the invention〕

本発明の集電体フィルムを用いることにより、従来の電
池で使用不可能であった高温領域でも使用可能なばかり
でなく、大型電池にも使用可能となり、エレクトロニク
スデバイスに大いに貢献すると確信している。
By using the current collector film of the present invention, it can not only be used in high-temperature regions where conventional batteries cannot be used, but also large-sized batteries, and we are confident that it will greatly contribute to electronic devices. .

〔実施例〕 ポリプロピレン(ノープレンFl−11015住友化学
工業製>100重量部に)1−ネスブラック(#375
0  三菱化成製比表面積800TIi/g、DBP吸
油最200Id/1009)45重量部を添加し、更に
老化防止剤1重量部を加えた導電性樹脂組成物を中間層
とし、両面にポリスチレン(9M−62住友化学工業製
)を共押出しざらに両性層のポリスチレン層を剥離して
、厚み50μmの導電性フィルムを得た。
[Example] Polypropylene (Noprene Fl-11015 manufactured by Sumitomo Chemical >100 parts by weight) 1-Nesblack (#375
0 A conductive resin composition prepared by Mitsubishi Kasei with a specific surface area of 800 TIi/g and DBP oil absorption maximum of 200 Id/1009) to which 45 parts by weight was added and an anti-aging agent of 1 part by weight was used as the intermediate layer, and polystyrene (9M- 62 (manufactured by Sumitomo Chemical Industries) was coextruded and the polystyrene layer of the amphoteric layer was roughly peeled off to obtain a conductive film with a thickness of 50 μm.

比較例 ポリエチレン(スミ力センF20B−1住友化学工業製
)100重量部にアセチレンブラック(デンカブラック
 電気化学、工業製比表面積65TIt/gDBP吸油
ti250m/100g)40重量部と老化防止剤1重
量部を加えで作った導電性樹脂組成物より実施例と同じ
方法で、厚み50μmの導電性フィルムを得たら これらのフィルムの常温(23℃)における体積抵抗及
び85℃雰囲気中に10分間敢直置後体積抵抗を4端子
法で測定し常温に対する変化率を求めた。表1に常温で
の体積抵抗及び85℃の変化率を示す。
Comparative Example 40 parts by weight of acetylene black (Denka Black Denki Kagaku, industrial product specific surface area 65TIt/g DBP oil absorption ti 250m/100g) and 1 part by weight of anti-aging agent were added to 100 parts by weight of polyethylene (Sumiyukisen F20B-1 manufactured by Sumitomo Chemical). Conductive films with a thickness of 50 μm were obtained from the conductive resin composition prepared in addition in the same manner as in the examples. The volume resistivity was measured by a four-terminal method, and the rate of change with respect to room temperature was determined. Table 1 shows the volume resistance at room temperature and the rate of change at 85°C.

第1表Table 1

Claims (2)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂100重量%に対して粒子径が5〜
50μmであり、比表面積(窒素吸着法)が300〜2
000m^2/gで、DBP吸油量が200〜400m
l/100gであるカーボンブラックを20〜200重
量部添加した導電性樹脂組成物を中間層とし、その両面
に剥離性の良好な熱可塑性樹脂層を共押出し、冷却後両
面の剥離性の良好な熱可塑性樹脂層を剥離して得られた
導電性フィルムよりなる集電体フィルムの製造方法。
(1) Particle size is 5 to 100% by weight of thermoplastic resin
50 μm, and the specific surface area (nitrogen adsorption method) is 300-2
000m^2/g, DBP oil absorption is 200-400m
A conductive resin composition to which 20 to 200 parts by weight of carbon black of l/100g is added is used as an intermediate layer, and thermoplastic resin layers with good releasability are coextruded on both sides of the intermediate layer, and after cooling, a thermoplastic resin layer with good releasability on both sides is formed. A method for producing a current collector film comprising a conductive film obtained by peeling off a thermoplastic resin layer.
(2)熱可塑性樹脂がポリオレフィン系である特許請求
の範囲第1項記載の集電体フィルムの製造方法。
(2) The method for producing a current collector film according to claim 1, wherein the thermoplastic resin is polyolefin-based.
JP62055325A 1987-03-12 1987-03-12 Method for manufacturing current collector film Expired - Lifetime JPH07118228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62055325A JPH07118228B2 (en) 1987-03-12 1987-03-12 Method for manufacturing current collector film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62055325A JPH07118228B2 (en) 1987-03-12 1987-03-12 Method for manufacturing current collector film

Publications (2)

Publication Number Publication Date
JPS63224103A true JPS63224103A (en) 1988-09-19
JPH07118228B2 JPH07118228B2 (en) 1995-12-18

Family

ID=12995389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62055325A Expired - Lifetime JPH07118228B2 (en) 1987-03-12 1987-03-12 Method for manufacturing current collector film

Country Status (1)

Country Link
JP (1) JPH07118228B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005765A (en) * 1996-01-12 1999-12-21 Nippon Zeon Co., Ltd. Collector and electric double layer capacitor
JP2014030900A (en) * 2012-08-01 2014-02-20 Okura Ind Co Ltd Production method of conductive film
WO2019078160A1 (en) * 2017-10-17 2019-04-25 日産自動車株式会社 Resin current collector, multilayer current collector and lithium ion battery
JP2019139915A (en) * 2018-02-08 2019-08-22 三洋化成工業株式会社 Positive electrode for lithium ion battery and lithium ion battery
JP2019216035A (en) * 2018-06-13 2019-12-19 三洋化成工業株式会社 Resin collector, lamination type resin collector, and lithium ion battery
JP2020061300A (en) * 2018-10-11 2020-04-16 日産自動車株式会社 Current collector for non-aqueous electrolyte secondary battery
WO2020085290A1 (en) * 2018-10-22 2020-04-30 三洋化成工業株式会社 Method for producing resin collector for negative electrodes, method for producing negative electrode for lithium ion batteries, and method for producing lithium ion battery
JP2020157651A (en) * 2019-03-27 2020-10-01 三菱ケミカル株式会社 Laminate film
WO2024122311A1 (en) * 2022-12-06 2024-06-13 三菱ケミカル株式会社 Laminate film, laminate film manufacturing method, conductive film, current collector, and battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144435A (en) * 1975-06-06 1976-12-11 Furukawa Electric Co Ltd:The Thermosetting electro-conductive paint composed ot resin and carbon
JPS61281402A (en) * 1985-06-07 1986-12-11 住友ベークライト株式会社 Manufacture of highly conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144435A (en) * 1975-06-06 1976-12-11 Furukawa Electric Co Ltd:The Thermosetting electro-conductive paint composed ot resin and carbon
JPS61281402A (en) * 1985-06-07 1986-12-11 住友ベークライト株式会社 Manufacture of highly conductive film

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005765A (en) * 1996-01-12 1999-12-21 Nippon Zeon Co., Ltd. Collector and electric double layer capacitor
JP2014030900A (en) * 2012-08-01 2014-02-20 Okura Ind Co Ltd Production method of conductive film
CN111247675A (en) * 2017-10-17 2020-06-05 日产自动车株式会社 Resin collector, laminated collector, and lithium ion battery
WO2019078160A1 (en) * 2017-10-17 2019-04-25 日産自動車株式会社 Resin current collector, multilayer current collector and lithium ion battery
JP2019075300A (en) * 2017-10-17 2019-05-16 三洋化成工業株式会社 Resin current collector, laminated current collector, and lithium ion battery
US11380901B2 (en) 2017-10-17 2022-07-05 Nissan Motor Co., Ltd. Resin current collector, multilayer current collector and lithium ion battery
JP2019139915A (en) * 2018-02-08 2019-08-22 三洋化成工業株式会社 Positive electrode for lithium ion battery and lithium ion battery
CN112292777A (en) * 2018-06-13 2021-01-29 日产自动车株式会社 Resin current collector, laminated resin current collector, and lithium ion battery provided with same
WO2019239916A1 (en) * 2018-06-13 2019-12-19 日産自動車株式会社 Resin current collector and laminated type resin current collector, and lithium ion battery comprising this
JP2019216035A (en) * 2018-06-13 2019-12-19 三洋化成工業株式会社 Resin collector, lamination type resin collector, and lithium ion battery
CN112292777B (en) * 2018-06-13 2024-04-05 日产自动车株式会社 Resin current collector, laminated resin current collector, and lithium ion battery provided with same
JP2020061300A (en) * 2018-10-11 2020-04-16 日産自動車株式会社 Current collector for non-aqueous electrolyte secondary battery
WO2020085290A1 (en) * 2018-10-22 2020-04-30 三洋化成工業株式会社 Method for producing resin collector for negative electrodes, method for producing negative electrode for lithium ion batteries, and method for producing lithium ion battery
JP2020068065A (en) * 2018-10-22 2020-04-30 三洋化成工業株式会社 Manufacturing method of resin collector for anode, manufacturing method of anode for lithium ion battery, and manufacturing method of lithium ion battery
US12015140B2 (en) 2018-10-22 2024-06-18 Sanyo Chemical Industries, Ltd. Method for producing resin collector for negative electrodes, method for producing negative electrode for lithium ion batteries, and method for producing lithium ion battery
JP2020157651A (en) * 2019-03-27 2020-10-01 三菱ケミカル株式会社 Laminate film
WO2024122311A1 (en) * 2022-12-06 2024-06-13 三菱ケミカル株式会社 Laminate film, laminate film manufacturing method, conductive film, current collector, and battery

Also Published As

Publication number Publication date
JPH07118228B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
US5955936A (en) PTC circuit protection device and manufacturing process for same
US7001538B2 (en) PTC composition and PTC device comprising the same
WO2018133288A1 (en) Lithium battery current collector having protection function
US7701322B2 (en) Surface-mounted over-current protection device
JP3073254B2 (en) Electrical equipment
US4849133A (en) PTC compositions
CN1230837C (en) Electrically conductive polymer composition
JP4188682B2 (en) Conductive polymer composition and device containing NNm-phenylene dimaleimide
JP4666760B2 (en) Electrical device using conductive polymer
US20100134942A1 (en) Surface-mounted over-current protection device
US9041507B2 (en) Surface mountable over-current protection device
JP2000516391A (en) Conductive polymer composition and device
JPH11502374A (en) Electrical device
WO2012003661A1 (en) Conductive composite material with positive temperature coefficient of resistance and over-current protection component
JP2000188206A (en) Polymer ptc composition and ptc device
JPS63224103A (en) Manufacture of current collector film
WO2024139788A1 (en) Surface mounted overcurrent protection element
US20060108566A1 (en) Conductive composition exhibiting PTC behavior and over-current protection device using the same
TW201120922A (en) Method for enhancing current-carrying ability of polymer thermistor.
TWI766724B (en) Radial-leaded over-current protection device
JP2007036230A (en) Overcurrent protection element
TWI766723B (en) Surface mountable over-current protection device
CN107141665A (en) A kind of high temperature modification resistive element and preparation method thereof
JPS6343257A (en) Film for cell collector
JP3028979B2 (en) Organic positive temperature coefficient thermistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term