JPS6031097B2 - Method for firing semiconductor porcelain for capacitors - Google Patents

Method for firing semiconductor porcelain for capacitors

Info

Publication number
JPS6031097B2
JPS6031097B2 JP52021909A JP2190977A JPS6031097B2 JP S6031097 B2 JPS6031097 B2 JP S6031097B2 JP 52021909 A JP52021909 A JP 52021909A JP 2190977 A JP2190977 A JP 2190977A JP S6031097 B2 JPS6031097 B2 JP S6031097B2
Authority
JP
Japan
Prior art keywords
capacitors
semiconductor porcelain
pod
firing
reducing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52021909A
Other languages
Japanese (ja)
Other versions
JPS53106500A (en
Inventor
鉉 板倉
孝之 黒田
義郎 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP52021909A priority Critical patent/JPS6031097B2/en
Publication of JPS53106500A publication Critical patent/JPS53106500A/en
Publication of JPS6031097B2 publication Critical patent/JPS6031097B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Thermistors And Varistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明は、複数個の成型体をサャの上に載せ、還元ガス
雰囲気中で焼成するコンデンサ用半導体磁器の焼成方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for firing semiconductor porcelain for capacitors, in which a plurality of molded bodies are placed on a shell and fired in a reducing gas atmosphere.

磁器半導体の粒界を絶縁化させることにより得られるコ
ンデンサ材料として、チタン酸バリウムやチタン酸スト
ロンチウムを主体とする材料がある。
As a capacitor material obtained by insulating the grain boundaries of a ceramic semiconductor, there are materials mainly containing barium titanate and strontium titanate.

これらの材料はそのままでは電気抵抗が極めて高く絶縁
体であるが、5価の金属化合物、たとえば酸化ニオブ(
Nb2Q)や酸化タンタル(Ta205)などを少量添
加して焼成すると原子価制御の原理により半導体化する
。しかしながら通常これだけでは半導体化は不十分であ
り、還元雰囲気中、たとえば水素と窒素の混合雰囲気中
で焼成することが一般的である。このようにして得られ
た半導体磁器の電気抵抗はIQ−cの以下の導電性の高
いものである。したがって、このままではコンデンサに
はなり得ないので、焼成後、空気中で熱処理して表面や
粒界近傍を再酸化するか、酸化銅や酸化マンガンなどを
粒界に熱拡散させることにより、コンデンサ用の半導体
磁器が得られ、電極を設けると見掛議電率20000〜
7000晩華度の半導体コンデンサが得られる。上述の
ごとき半導体コンデンサの製造過程における還元ガス雰
囲気中での焼成工程は電気特性を左右する極めて重要な
要因である。
These materials have extremely high electrical resistance and are insulators as they are, but they can be mixed with pentavalent metal compounds such as niobium oxide (
When a small amount of Nb2Q) or tantalum oxide (Ta205) is added and fired, it becomes a semiconductor based on the principle of valence control. However, this alone is usually insufficient to convert the material into a semiconductor, and it is common to sinter it in a reducing atmosphere, for example, a mixed atmosphere of hydrogen and nitrogen. The electrical resistance of the semiconductor porcelain thus obtained has a high conductivity below IQ-c. Therefore, it cannot be used as a capacitor as it is, so after firing, heat treatment is performed in air to re-oxidize the surface and near the grain boundaries, or copper oxide, manganese oxide, etc. are thermally diffused into the grain boundaries. Semiconductor porcelain with an apparent voltage of 20,000~
A semiconductor capacitor having a temperature of 7000 degrees Fahrenheit is obtained. The firing step in a reducing gas atmosphere in the manufacturing process of semiconductor capacitors as described above is an extremely important factor that influences electrical characteristics.

すなわち、還元ガス雰囲気は炉内で一定にする必要があ
り、たとえば窒素及び水素等の混合気体を一定速度で炉
内に流入させ、一定速度で流出させる方法がとられてい
る。従釆、成型体を箱型のサヤに載せて焼成炉内に設置
するのが普通である。
That is, the reducing gas atmosphere must be kept constant within the furnace, and for example, a method is used in which a mixed gas of nitrogen, hydrogen, etc. is caused to flow into the furnace at a constant rate and flow out at a constant rate. Usually, the molded body is placed on a box-shaped pod and placed in the firing furnace.

ところがこの方法で雰囲気焼成を行なった場合、成型体
のサャ詰量が多くなると電気特性にサャ内位置によるバ
ラツキが生じ、工程歩蟹りが悪くなる欠点があった。特
に、誘電率の高い材料程その傾向が著しかった。この原
因として、従来の箱型のサャを炉内に設置した場合、気
体の流速が部分的に異なり還元ガス雰囲気に位置的な差
異を生ずることが考えられる。本発明の方法は上記の従
来の欠点をサャの形状を変えることによりなくし、多量
の成型体を一度に雰囲気中で焼成しても、均一な電気特
性が得られる製造方法を提供するものである。
However, when the atmosphere firing is carried out using this method, there is a drawback that when the amount of the molded body packed in the mold increases, the electrical characteristics vary depending on the position within the mold, resulting in poor process accuracy. In particular, this tendency was more pronounced for materials with higher dielectric constants. The reason for this is thought to be that when a conventional box-shaped shell is installed in a furnace, the gas flow velocity differs locally, causing a positional difference in the reducing gas atmosphere. The method of the present invention eliminates the above-mentioned conventional drawbacks by changing the shape of the shell, and provides a manufacturing method in which uniform electrical characteristics can be obtained even when a large number of molded products are fired in an atmosphere at once. .

第1図Aは従来の半導体磁器素子製造用のサャを示して
おり、底板1の4つの側部に側板2,2′,3,3′を
形成した形状をしている。
FIG. 1A shows a conventional sheath for manufacturing semiconductor ceramic elements, and has a shape in which side plates 2, 2', 3, and 3' are formed on four sides of a bottom plate 1.

第1図Bは本発明の製造方法を用いるサヤを示しており
、底板1の両側部に上方に突出する側板2,2′を形成
したものである。第1図Cは本発明の製造方法に用いる
他のサャを示しており、第1図Bに示すサャの側板2,
2′間に、さらに上記側板2,2′と平行な仕切板4,
4′を形成した形状であり、上記サャ内には第2図に示
すように例えば3列1の『こ複数個の成型体5を配置し
、このサャを炉内に入れ、還元ガス(例えば窒素と水素
の混合気体)を上記サャの側板2,2′と平行な方向に
一定速度で流入および流出させながら成型体5を焼成す
るものである。(実施例) チタン酸ストロンチウム(SrTi03)に酸化ビスマ
ス(Bi203)0.1〜2モル%及び酸化ニオブ(N
Q05)0.1〜2モル%の範囲で添加し、十分に混合
した後、15側め×0.7側tの円板状に加圧成形する
FIG. 1B shows a sheath using the manufacturing method of the present invention, in which side plates 2 and 2' projecting upward are formed on both sides of the bottom plate 1. FIG. 1C shows another sheath used in the manufacturing method of the present invention, and the side plate 2 of the sheath shown in FIG. 1B,
2', a partition plate 4 parallel to the side plates 2, 2',
As shown in FIG. The molded body 5 is fired while a mixed gas of nitrogen and hydrogen is caused to flow in and out at a constant speed in a direction parallel to the side plates 2 and 2' of the shell. (Example) Strontium titanate (SrTi03) was added with 0.1 to 2 mol% of bismuth oxide (Bi203) and niobium oxide (N
Q05) Add in a range of 0.1 to 2 mol %, mix thoroughly, and then press-form into a disc shape of 15th side x 0.7th side.

この成型体を第1図BまたはCに示すサャにのせ、この
サャを炉内に入れこの後、水素1〜10%、窒素99〜
90%からなる還元ガス雰囲気中で1370oo〜14
60ooで2〜4時間焼成する。しかる後に、焼結体の
片面に拡散用物質を公知の適当なバインダー(たとえば
ポリビニルアルコール)を用いて塗布し、1050CO
〜1200こCで2時間程度熱処理する。このようにし
て得られた焼結体の両面に銀電極を設ける。第3図A,
B,Cはそれぞれ第1図A,B.Cに示すサャを用いて
製造した半導体磁器素子の特性とその変動状況を示した
図である。
This molded body is placed on the pod shown in Fig. 1 B or C, and the pod is placed in a furnace.
1370oo~14 in a reducing gas atmosphere consisting of 90%
Bake at 60 oo for 2-4 hours. Thereafter, a diffusion substance is applied to one side of the sintered body using a known suitable binder (for example, polyvinyl alcohol), and 1050CO
Heat treatment at ~1200 C for about 2 hours. Silver electrodes are provided on both sides of the sintered body thus obtained. Figure 3A,
B and C are respectively A and B in FIG. It is a figure showing the characteristic of the semiconductor ceramic element manufactured using the saw shown in C, and the state of its fluctuation.

第3図から明らかなように従来法Aでは位置による特性
変動が大であり、特に還元ガスの流出方向において誘電
率の小さい素子が多く、従って焼成可能な量が限られ、
また、工程歩蟹りが小さい欠点がある。
As is clear from FIG. 3, in conventional method A, the characteristics vary greatly depending on the position, and there are many elements with a small dielectric constant, especially in the direction of the reducing gas outflow. Therefore, the amount that can be fired is limited.
Another disadvantage is that the process step is small.

これに対して本発明の方法B,Cによれば、素子の位置
にほとんど関係なく、均一な特性をもつ素子が得られ、
焼成可能な量が増大し、工程歩留りが向上するものであ
る。この原因として、従来のサャでは還元ガスがサャ内
に均一に供給されなかったことが考えられ、本発明の方
法によって還元ガスが均一に供給されるためと考えられ
る。以上のように、本発明の方法は、還元ガス流を遮ぎ
る側板を除去したサャを用いるだけで、特性の変動が少
ない多量の半導体磁器素子を製造することができる利点
を有するものである。
On the other hand, according to methods B and C of the present invention, elements with uniform characteristics can be obtained almost regardless of the position of the element,
The amount that can be fired is increased and the process yield is improved. The reason for this is considered to be that the reducing gas was not uniformly supplied into the shell in the conventional shell, and it is thought that the reducing gas was uniformly supplied by the method of the present invention. As described above, the method of the present invention has the advantage that a large quantity of semiconductor ceramic elements with little variation in characteristics can be manufactured by simply using a sheath with side plates that block the flow of reducing gas removed.

尚、実施例において、還元ガスとして、水素1〜10%
、窒素99〜90%からなる混合気体を用いたが、還元
ガスとしては試料が十分に半導体化されうる雰囲気中で
あればよいことはいうまでもない。
In addition, in the examples, hydrogen 1 to 10% was used as the reducing gas.
Although a mixed gas consisting of 99 to 90% nitrogen was used, it goes without saying that the reducing gas may be any atmosphere that can sufficiently convert the sample into a semiconductor.

また、実施例ではチタン酸ストロンチウム系を例として
示したが、チタン酸バリウム系やそれらの複合化合物を
主体とする系においても、本発明の方法によって同様の
効果が得られるものである。
In addition, although strontium titanate is used as an example in the examples, similar effects can be obtained by the method of the present invention in systems mainly based on barium titanate or composite compounds thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aは従来のコンデンサ用半導体磁器を製造するた
めのサャの斜視図、第1図B,Cはそれぞれ本発明のコ
ンデンサ用半導体磁器を製造するためのサャの斜視図、
第2図は第1図Aに示すサャに成型体を載せた状態を示
す上面図、第3図A,B,Cはそれぞれ第1図A,B,
Cに示すサャを用いて焼成した素子の敦直位置と誘電体
との関係を示す図である。 1・・・・・・底板、2,2′・・・・・・側板、4,
4′・・・・・・仕切板、5・・・・・・成型体。 第1図 第2図 第3図
FIG. 1A is a perspective view of a conventional sheath for manufacturing semiconductor porcelain for capacitors, and FIGS. 1B and C are perspective views of a sheath for manufacturing semiconductor porcelain for capacitors of the present invention, respectively.
Figure 2 is a top view showing the molded body placed on the shell shown in Figure 1A, and Figures 3A, B, and C are the views of Figure 1A, B, and C, respectively.
FIG. 4 is a diagram showing the relationship between the mounting position and the dielectric material of the element fired using the shavings shown in FIG. 1...Bottom plate, 2, 2'...Side plate, 4,
4'... Partition plate, 5... Molded body. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 底板の両側部に上方に突出する側板を設けたサヤの
上記底面上に複数個の成型体を載置し、このサヤを炉内
に収納し、上記炉内の上記サヤの側板に平行な方向に還
元ガスを供給して上記成型体を焼成することを特徴とす
るコンデンサ用半導体磁器の焼成方法。 2 特許請求の範囲第1項記載のコンデンサ用半導体磁
器の焼成方法において、側板に対して平行な仕切板を側
板間に設けたサヤを用いることを特徴とするコンデンサ
用半導体磁器の焼成方法。
[Claims] 1. A plurality of molded bodies are placed on the bottom surface of a pod having upwardly protruding side plates on both sides of the bottom plate, the pod is housed in a furnace, and the pod is placed in a furnace. A method for firing semiconductor porcelain for capacitors, characterized in that the molded body is fired by supplying reducing gas in a direction parallel to the side plate of the pod. 2. A method for firing semiconductor porcelain for capacitors as set forth in claim 1, characterized in that a sheath is used in which partition plates parallel to the side plates are provided between the side plates.
JP52021909A 1977-02-28 1977-02-28 Method for firing semiconductor porcelain for capacitors Expired JPS6031097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52021909A JPS6031097B2 (en) 1977-02-28 1977-02-28 Method for firing semiconductor porcelain for capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52021909A JPS6031097B2 (en) 1977-02-28 1977-02-28 Method for firing semiconductor porcelain for capacitors

Publications (2)

Publication Number Publication Date
JPS53106500A JPS53106500A (en) 1978-09-16
JPS6031097B2 true JPS6031097B2 (en) 1985-07-20

Family

ID=12068210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52021909A Expired JPS6031097B2 (en) 1977-02-28 1977-02-28 Method for firing semiconductor porcelain for capacitors

Country Status (1)

Country Link
JP (1) JPS6031097B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319873B2 (en) 2019-05-09 2022-05-03 Mitsubishi Heavy Industries, Ltd. Turbo cluster gas turbine system and activation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046763B (en) * 2017-12-07 2021-01-26 中国西电电气股份有限公司 Sintering method for preventing high-temperature deformation of dry-method hollow porcelain bushing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319873B2 (en) 2019-05-09 2022-05-03 Mitsubishi Heavy Industries, Ltd. Turbo cluster gas turbine system and activation method thereof

Also Published As

Publication number Publication date
JPS53106500A (en) 1978-09-16

Similar Documents

Publication Publication Date Title
JPH0524646B2 (en)
SE432097B (en) SINTERED BODY OF SEMI-CONDUCTIVE CERAMIC MATERIAL, PROCEDURE FOR MANUFACTURING THE BODY AND ANY USE OF THE BODY
JPS6031097B2 (en) Method for firing semiconductor porcelain for capacitors
US2496078A (en) Method of making saggers
US5453907A (en) Composition and method for making an intergranular insulation type semiconductive ceramic capacitor
JPS606535B2 (en) porcelain composition
JPH02246105A (en) Manufacture of ceramic element assembly
JPH05262570A (en) Production of sintered piezoelectric ceramic
JP2612247B2 (en) Manufacturing method of NTC thermistor
JP2838249B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain
JPH0797450B2 (en) Ceramic manufacturing method and ceramic substrate manufacturing method
JP3057989B2 (en) Manufacturing method of ceramic electronic components
JPS5828726B2 (en) Porcelain for semiconductor capacitors
JPS6217368B2 (en)
JP2808758B2 (en) Method for firing barium titanate-based semiconductor porcelain
JP2984115B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain capacitor
JP3419285B2 (en) Manufacturing method of ceramic electronic components
JPH07120597B2 (en) Method for forming grain boundary layer of semiconductor porcelain
JPS6148245B2 (en)
JPS61240622A (en) Semiconductor ceramic composition and semiconductor ceramicsand capacitor using the same
JP2605332B2 (en) Method for forming grain boundary layer of semiconductor porcelain
JPH0135488B2 (en)
JP2948826B2 (en) Sintering method of ceramic piezoelectric element
KR830000439B1 (en) Sintered Body of Semiconductor Ceramic Material
JPH11106256A (en) Production of barium titanate-based semiconductor material