JPS6030838B2 - Direction correction method for propelled underground structures - Google Patents

Direction correction method for propelled underground structures

Info

Publication number
JPS6030838B2
JPS6030838B2 JP10246977A JP10246977A JPS6030838B2 JP S6030838 B2 JPS6030838 B2 JP S6030838B2 JP 10246977 A JP10246977 A JP 10246977A JP 10246977 A JP10246977 A JP 10246977A JP S6030838 B2 JPS6030838 B2 JP S6030838B2
Authority
JP
Japan
Prior art keywords
excavation body
excavation
axis
ground
direction correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10246977A
Other languages
Japanese (ja)
Other versions
JPS5436013A (en
Inventor
宏一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kidoh Construction Co Ltd
Original Assignee
Kidoh Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kidoh Construction Co Ltd filed Critical Kidoh Construction Co Ltd
Priority to JP10246977A priority Critical patent/JPS6030838B2/en
Publication of JPS5436013A publication Critical patent/JPS5436013A/en
Publication of JPS6030838B2 publication Critical patent/JPS6030838B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【発明の詳細な説明】 本発明は、通常作業員が切羽掘削作業できないような小
口整地中構造物(中300m/m〜1,000m/仇程
度)を推進工法によって水平および上下方向に適確にし
かも遠隔式に方向修正し得る方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a propulsion method to accurately horizontally and vertically construct structures (about 300 m/m to 1,000 m/m) on small-edge land leveling, where normal workers cannot excavate the face. Furthermore, the present invention relates to a method that allows for remote direction correction.

その要旨とするところは、密閉型掘削構造にした方向修
正用掘削体4を地中静止させ、レベル検出器21によっ
て該掘削体4の姿勢を立て坑1側に表示させ、遠隔操作
式に、該掘削体4の各壁面に設けた複数の孔より水(ま
たは空気)を噴射するとともに同じく各壁面に設けた圧
援盤10,12で地盤を選択的に押圧し反力をとりある
いは間隙を形成して、強制的に水平および上下方向の調
整を行うようにした推進式地中構造物の方向修正方法に
ある。
The gist of this is that a direction correction excavation body 4 with a closed excavation structure is placed stationary underground, the attitude of the excavation body 4 is displayed on the shaft 1 side by a level detector 21, and a remote control system is used. Water (or air) is injected from a plurality of holes provided on each wall surface of the excavation body 4, and the ground is selectively pressed using pressure plates 10 and 12 similarly provided on each wall surface to take up a reaction force or fill a gap. The present invention provides a method for correcting the direction of a propulsion type underground structure in which horizontal and vertical adjustments are forcibly made.

従来、この種の小口径地中構造物を推進工法で推進埋設
するにあたりその方向修正の方法およびその装置による
と、刃沓(あるいは掘進体)と先頭管の円周方向の間隙
に小型の油圧ジャッキを袋着し推進管列の前進にともな
って該ジャッキを作動し、刃沓の先頭管に対する冠着角
度を変え、而して刃沓および管の軸心を設計中心軸に変
向させることが多く行われている。
Conventionally, when burying this kind of small-diameter underground structure by propulsion method, the method and device for correcting the direction were to install a small hydraulic pressure in the circumferential gap between the blade shoe (or excavation body) and the leading pipe. A jack is mounted in a bag, and the jack is operated as the propulsion tube row moves forward to change the crowning angle of the blade shoe with respect to the leading tube, thereby changing the axis of the blade shoe and the tube to the designed central axis. is being done a lot.

しかし、この方法の場合、管列の進行とともに方向修正
されるために、管軸が設計中心軸に復帰したとしても管
列全体的には、その修正部分で管列に蛇行部分を残すも
のである。したがって、下水管等の場合には流速逓減等
の支障を招来し、適正な地中構造物とはならない。さが
に、一方管列の進行とともに刃沓を変向して方向修正を
行うので、多くの場合進路変向を発見したとき、経験的
に刃沓の冠着角度を変えることが行われ、また設計中心
軸に復帰した時点で刃沓の冠着角度をもとに直すことが
行われるが、既に後方管列が蛇向しているためにこの蛇
向線に従い刃沓が流れ易い(特に軟弱地盤の場合)。よ
って、設計中心軸より戻り過ぎることが非常に多い。こ
のため再び逆方向に刃沓の冠着角度を修正変向しなけれ
ばならなくなり、すなわち蛇向の度合やその箇所が多く
なるという不都合を呈しているものである。まして、鞘
管として用いる場合には使用不可能となることもしばし
ばある。
However, in the case of this method, the direction is corrected as the tube row progresses, so even if the tube axis returns to the designed central axis, the modified portion of the tube row as a whole will leave a meandering part in the tube row. be. Therefore, in the case of sewage pipes, etc., problems such as a decrease in flow velocity are caused, and the underground structure is not suitable. On the other hand, as the tube row advances, the direction is corrected by changing the direction of the blade shoe, so in many cases, when a change in course is discovered, the angle at which the blade shoe is crowned is changed empirically. In addition, when the blade shoe returns to the designed center axis, it is corrected based on the crowning angle of the blade shoe, but since the rear tube row is already meandering, the blade shoe tends to flow along this meandering line (especially (for soft ground). Therefore, it very often returns too far from the design center axis. For this reason, it becomes necessary to correct and change the crowning angle of the blade shoe in the opposite direction again, resulting in an inconvenience that the degree of meandering and the number of meandering locations increase. Furthermore, when used as a sheath tube, it is often impossible to use it.

したがって、掘進体(刃沓)あるいは管軸の変向を発見
した時点で、管列を進行せず静止した状態でつまり変位
したその位置で刃沓軸を修正することが望ましい。
Therefore, when a change in direction of the excavating body (cutter) or tube axis is discovered, it is desirable to correct the blade shaft at the displaced position without advancing the tube row but in a stationary state.

本発明は、このような従来技術に鑑みて開発したもので
、安全確実にして水平および上下方向について自在に方
向修正を行い得るようにした画期的な発明で、以下本発
明の1実施例を第1図、第2図、第3図、第4図、第5
図および第6図に示し詳細に説明する。
The present invention was developed in view of such prior art, and is an epoch-making invention that allows for safe and reliable direction correction in the horizontal and vertical directions.One embodiment of the present invention will be described below. Figure 1, Figure 2, Figure 3, Figure 4, Figure 5
6 and 6 and will be described in detail.

なお、本発明の方法は、函型、円形の構造物にかかわら
ず使用できるものであるが、いま説明の明確上、函型構
造物を用いて説明する。
Although the method of the present invention can be used regardless of whether the structure is box-shaped or circular, for clarity of explanation, a box-shaped structure will be used for explanation.

第1図は一般縦断面図で、いま推進工法を用いて設計中
心軸L,に函列を推進埋設するものとし、先導の掘削体
4の軸心L2が角8度下向きに変向していることを表わ
す。
Figure 1 is a general longitudinal cross-sectional view, and it is assumed that a row of boxes is being propelled and buried at the design center axis L, using the propulsion method, and the axis L2 of the leading excavation body 4 is deflected downward by an angle of 8 degrees. It means that there is.

この状態で立て坑1に設けた油圧ジャッキ3を支圧鰹2
に反力をとるよう作動し函列を押進するとこのジャッキ
3の推力は管5と掘削体4の接点6だけで伝達され増々
下向きに函列は進行するので、この変向を発見した時点
で函列の進行を停止し、掘削体4だけを軸心L,に修正
することが行われる。すなわち、方向修正をする反対側
の圧援盤12を掘削体4の壁面より突出し地盤に押し付
け該掘削体4に反力を賦与し、而して強制的に掘削体4
の軸○を変位修正させる。このとき修正の促進方法とし
て、修正する側の掘削体4の壁面に設けた複数の孔24
・・・より圧力水または圧縮空気を射出し地盤と該壁面
との間に間隙を形成する。一方、レベル検出器21を該
掘削体4内に装着し、該掘削体4の水平および上下状態
を遠隔式に立て坑1側に表示させ、よって圧力水または
圧縮空気および圧援盤用の油圧ジャッキを遠隔操作して
該掘削体4の軸心を変向せしめるものである。なお、該
掘削体4の各壁面に対する圧薮盤10,12の面積が比
較的小さいが、例えば、圧嬢盤10,12が5〜10c
の程度地盤に喰い込んだとしても掘削体4の軸心が2〜
3cの修正されれば所期の目的は蓮つせられるものであ
る。実際には、数の/肌の車由心変位で修正が行われる
In this state, the hydraulic jack 3 installed in the shaft 1 is pressed against the bonito 2.
When the jack 3 is actuated to take a reaction force and push the row of boxes, the thrust of the jack 3 is transmitted only through the contact point 6 between the pipe 5 and the excavation body 4, and the row of boxes moves downward more and more, so when this change in direction is discovered. The progression of the box array is stopped at , and only the excavated body 4 is corrected to the axis L. That is, the pressure plate 12 on the opposite side for direction correction is projected from the wall surface of the excavation body 4 and pressed against the ground, imparting a reaction force to the excavation body 4, and forcing the excavation body 4.
Correct the displacement of axis ○. At this time, as a method of promoting correction, a plurality of holes 24 provided in the wall surface of the excavated body 4 on the side to be corrected are used.
...A gap is formed between the ground and the wall by injecting pressurized water or compressed air. On the other hand, a level detector 21 is installed inside the excavation body 4, and the horizontal and vertical states of the excavation body 4 are displayed remotely on the shaft 1 side. The axis of the excavation body 4 is changed by remotely controlling the jack. Although the area of the pressing plates 10 and 12 relative to each wall surface of the excavation body 4 is relatively small, for example, the area of the pressing plates 10 and 12 is 5 to 10 cm.
Even if the excavated body 4 digs into the ground to a certain extent, the axis of the excavated body 4
If 3c is corrected, the intended purpose will be achieved. In practice, corrections are made in terms of the number/skin of the vehicle's center of gravity displacement.

なお、本発明方法を採用する場合には、上記検出器21
おろし、は油圧ジャッキ13,14を装置している中空
部屋19に土砂や水が流入しない方法を採ることが望ま
しく、すなわち図示するような従来の閉鎖式の掘削方法
、例えば掘削体4の先端口を閉鎖し、そしてホースまた
は鋼管7を配設しバキュームあるいは空気圧送等により
立て坑1側へ排出する方法によると良い効果が得られる
Note that when the method of the present invention is adopted, the detector 21
For lowering, it is desirable to adopt a method that does not allow soil or water to flow into the hollow chamber 19 in which the hydraulic jacks 13 and 14 are installed. A good effect can be obtained by closing the pipe, disposing a hose or steel pipe 7, and discharging it to the shaft 1 side by vacuum or air pressure.

鋼管等7による場合は、掘削体4の斜面部29の末端関
口における接続はヒンジ構造30を設ければ良いo本発
明方法は以上にして成り、次にこの方法の具体例をあげ
て説明する。
In the case of using a steel pipe or the like 7, a hinge structure 30 may be provided to connect the slope portion 29 of the excavation body 4 at the terminal entrance. .

まず、掘削体4には、圧嬢盤10,12(上、下壁面に
ついてのみ図示する。
First, the excavation body 4 includes pressing plates 10 and 12 (only the upper and lower wall surfaces are shown).

)、孔24・・・、26・・・およびレベル検出器21
が設けてあり、該掘削体4は後続の函5と同じかもしく
は比較的短く構成してある。さらに、該掘削体4と先頭
の函5の接続部分は、水あるいは土砂の流入を防止でき
、且つ折れ曲り可能な構造としてある。なお、図中22
は、立て坑1側より連絡するケーブルを示す。上記圧接
盤10,12については、掘削体4の上、下壁面に開ロ
窓9,1 1が設けてあり、該窓9,11の面積よりや
)小さい面積を有す圧嬢盤10,12を装着するととも
に該掘削体4内に反力支持体を設けて小型の油圧ジャッ
キ13,14を介設する。
), holes 24..., 26... and level detector 21
is provided, and the digging body 4 is constructed to be the same as the following box 5 or to be relatively short. Further, the connecting portion between the excavating body 4 and the leading box 5 has a structure that can prevent water or earth from flowing in and can be bent. In addition, 22 in the figure
indicates the cable connecting from the shaft 1 side. Regarding the pressing plates 10 and 12, opening windows 9 and 11 are provided on the upper and lower walls of the excavation body 4, and the pressing plates 10 and 12 have an area smaller than that of the windows 9 and 11, respectively. 12, a reaction force support body is provided inside the excavation body 4, and small hydraulic jacks 13 and 14 are interposed.

而して、該ジャッキ13,14の各々の作動によって圧
薮盤10,12は地盤側へ突設するものである。
As a result, the pressure bushes 10 and 12 are projected toward the ground by the operation of the jacks 13 and 14, respectively.

いま、例えばいずれかの圧嬢盤10,12を突設すると
ともに選択的に圧力水を地盤にかけると部分的に地盤が
乱れ、よって掘削体4の鞠心L,は軸心−,Lを得る。
さらに、該圧薮盤10,12の取り付け方としては、第
3図に示すように中心軸を同じくして上下位置に設ける
か、あるいは第4図、第5図に示す如く上下を前後段違
いに設けるようにしても良い。前者の上下同軸的に取り
付ける方法の1例では、パイピング7に影響しないよう
中空形状の支持筒体15を構成し、その上、下に圧俵盤
IQ,12用の油圧ジャッキ13,14を定着するとと
もに該支持筒体15の左右に支持アーム16,16を掘
削体4の壁体を介しボルト等17,17で堅固に看設し
て成り、上記パイピング7の先端は斜面部29に閉口端
7−1を位置して切羽地盤18の土砂を吸い込み立て坑
1側へ排出する。
Now, for example, if one of the pressing discs 10, 12 is protruded and pressure water is selectively applied to the ground, the ground will be partially disturbed, and the center of the excavation body 4, L, will be shifted from the axis -, L. obtain.
Furthermore, the pressure bushing plates 10 and 12 can be installed in vertical positions with the same center axis as shown in FIG. It may also be provided. In one example of the former method of vertically coaxially mounting, a hollow support cylinder 15 is constructed so as not to affect the piping 7, and hydraulic jacks 13 and 14 for the bale pressing machines IQ and 12 are fixed below it. At the same time, support arms 16, 16 are firmly installed on the left and right sides of the support cylinder 15 with bolts 17, 17 through the wall of the excavation body 4, and the tip of the piping 7 has a closed end on the slope portion 29. 7-1 is positioned to suck in earth and sand from the face ground 18 and discharge it to the shaft 1 side.

また、後者のように上、下の圧後盤10−1、12−1
の位置を前後に段違いに取り付ける方法の1例としては
、同じくパイピング等7を貴設するに影響しないように
、ジャッキ反力を支持する台28−1,28一2を上記
掘削体4内に堅着してジャッキ13−1,14−1を介
して圧酸盤I0−1,12−1を装設する方法も行い得
る。また、上記パイピング7の中空27−2に小口径の
パイプ8を挿入配設し、このパイプ8の端部8−1は斜
面部29が構成するコーン形状の中空部にや)突設して
成る。このパイプ8は圧力水(または空気)を圧送する
もので、またパイピング7は土砂を立て坑1側へ圧送排
出させるためのものである。図中27−1はパイプ8の
中空である。なお、圧援盤の外側面は掘削体4の外側壁
面と同一または数m/肌凹面を形成する如く設けてある
。一方、該掘削体4は、鋼製、鉄筋コンクリート、コン
ポジット(鋼管あるいは塩ビ管20の外側をコンクリー
トで形成)で函の口径、現場の土質条件等を鑑みて製作
できる。
Also, like the latter, the upper and lower compression plates 10-1 and 12-1
One example of a method for installing the jacks 28-1 and 28-2 at different levels in the front and back is to install the stands 28-1 and 28-2 that support the jack reaction force inside the excavation body 4 so as not to affect the installation of the piping etc. 7. It is also possible to use a method in which the pressure acid discs I0-1 and 12-1 are firmly attached via jacks 13-1 and 14-1. Further, a small-diameter pipe 8 is inserted into the hollow 27-2 of the piping 7, and the end 8-1 of the pipe 8 is protruded into the cone-shaped hollow formed by the slope portion 29. Become. This pipe 8 is used to force-feed pressurized water (or air), and the piping 7 is used to force-feed and discharge earth and sand to the shaft 1 side. In the figure, 27-1 is the hollow part of the pipe 8. In addition, the outer surface of the compression plate is provided so as to be the same as the outer wall surface of the excavation body 4 or to form a concave surface of several meters/skin. On the other hand, the excavation body 4 can be made of steel, reinforced concrete, or composite (the outside of the steel pipe or PVC pipe 20 is made of concrete), depending on the diameter of the box, soil conditions at the site, etc.

以上にして掘削体4内に圧援盤装置を取り付けて成り、
さらに第6図に示すように圧嬢盤10,12が位置する
掘削体4の壁面に複数の孔24・・・、26・・・を設
けてあり、該孔24・・・、26・・・から圧力水また
は圧縮空気を地盤側に噴射し間隙を形成し掘削体4の変
向を則進させる。
As described above, the pressure plate device is installed inside the excavation body 4,
Furthermore, as shown in FIG. 6, a plurality of holes 24..., 26... are provided in the wall surface of the excavation body 4 where the pressing plates 10, 12 are located, and the holes 24..., 26... - Pressure water or compressed air is injected toward the ground side to form a gap and change the direction of the excavation body 4.

該孔24・・0、26・・・用の配管は掘削体4内およ
び函列5・・・内を通り立て坑1側へ導引してある。施
工要領の1例は、前述にもしたように、検出器21によ
って立て坑1側で検出表示を読み取り、掘削体4の変向
状態を検知する。
Piping for the holes 24...0, 26... is led to the shaft 1 side through the excavation body 4 and the box array 5.... As described above, one example of the construction procedure is to read the detection display on the side of the shaft 1 using the detector 21 and detect the direction change state of the excavation body 4.

次に、一方の圧姿盤10(または12)を作動させ地耐
反力を得るとともに配管23,25を介し孔26・・・
(または24・・・)より選択的に圧力水(または圧縮
空気)を噴出し、而して掘削体4の軸心を変位させる方
法が探られる。施工要領の池例は、掘削体4が変向して
いる状態で、上下の圧綾盤10,12を同時に作動し、
次に変向させる側の圧綾盤10(または12)を引っ込
めると同時にさらにこの反対側の圧接盤10(または1
2)を伸長作動させ変向を容易にする方法が採られる。
Next, one pressure plate 10 (or 12) is operated to obtain a ground reaction force, and the holes 26...
(or 24...) A method of more selectively ejecting pressurized water (or compressed air) and thereby displacing the axis of the excavation body 4 is being explored. In the pond example of the construction procedure, while the excavation body 4 is changing direction, the upper and lower pressing plates 10 and 12 are operated simultaneously,
Next, the pressing plate 10 (or 12) on the side to be changed is retracted, and at the same time, the pressing plate 10 (or 12) on the opposite side is further retracted.
2) A method is adopted in which the robot is extended and the direction is easily changed.

このとき上記と同様に圧力水(または圧縮空気)を噴出
することが行われる。このように立て坑1側における検
出表示を観測しつつ全く容易に掘削体4を上下自在に遠
隔操作して変向させることができるものである。そして
、この操作が終り、掘削体4が規定軸心に修正されると
、通常の方法により切羽の掘削、排士および函列の推進
が行われる。
At this time, pressurized water (or compressed air) is ejected in the same manner as above. In this manner, while observing the detection display on the side of the shaft 1, the excavation body 4 can be remotely controlled to freely move up and down to change its direction. When this operation is completed and the excavation body 4 is adjusted to the specified axis, excavation of the face, evacuation, and propulsion of the box array are performed in the usual manner.

以上にして成る本発明によれば、次のような有用な効果
を奏することができる。
According to the present invention as described above, the following useful effects can be achieved.

1 従来は、函列の進行とともに進路を修正するもので
あったから、いわゆる軸心の戻り過ぎ(修正しすぎ)や
終了後の函列全体の蛇向等を招釆していたが、本発明で
は函列を静止の状態にしその変向した位置において掘削
体を規定の軸0‘こ修正するようにしたので、つまり変
向したその地盤中で即座に完全修正するようにしたので
、終了後において全函列を完全な規定軸心に納めること
ができる。
1. Conventionally, the course was corrected as the row of boxes progressed, which resulted in the so-called axis returning too much (too much correction) and the entire row of boxes becoming meandering after completion, but the present invention Now, we set the box array to a stationary state and corrected the excavation body by the specified axis 0' at the position where the direction changed.In other words, we made a complete correction immediately in the ground where the direction changed, so after finishing In this case, the entire box array can be placed on a perfectly defined axis.

2 掘削体が変向したその時点(位置)で修正されるの
で、後続函は規定の直進(または曲進)を容易に保持す
ることができる。
2. Since the excavation body is corrected at the point (position) when it changes direction, the following box can easily maintain the prescribed straight (or curved) movement.

すなわち、蛇向したり、変向したりすることがないので
、函列における接続部は安全確実なものとなり漏水や破
損等は皆無となった。従来は、函列の進行にしたがい進
路修正を行っていたので、複数の接続部は間隙を招来し
水や泥の函内への流入あるいは端面の破損等を招来する
ことが多くあった。しかし、本発明によると接続部は所
期の完全な設計通りの安全確実なものを期待し得る。
That is, since there is no meandering or changing direction, the connections in the box array are safe and secure, and there is no leakage or damage. Conventionally, the course was corrected as the row of boxes progressed, and the multiple connections often created gaps that allowed water or mud to flow into the boxes or damage the end faces. However, according to the present invention, the connection can be expected to be perfectly designed and safe.

3 遠隔操作にしたので、例え小口錘構造物であっても
直進、曲進が自由自在に制御することができる。
3. Since it is remotely controlled, even if it is a small-mouthed structure, it can be freely controlled in straight and curved directions.

4 作用効果が非常に秀れている上に装置は簡易にして
制作できるので、工事費の小さい工事にも利用でき経費
は安価である。
4. In addition to being very effective, the device can be easily manufactured, so it can be used for construction projects with low construction costs, and the cost is low.

5 延長の長い工事において、途中直進部分や曲進(上
下方向、左右方向)部分が含まれている工事の場合に、
本発明によると容易に施工できる以上の本発明方法は、
上記1実施例に説明した以外に、特許法による精神を逸
脱しない範囲内で、例えば小口蚤構造物のものにもかか
わらず、設計施工できるものである。
5 In the case of long-extension construction work that includes straight sections or curved sections (in the vertical and horizontal directions),
According to the present invention, the method of the present invention which can be easily carried out includes:
In addition to what has been described in the first embodiment, it is possible to design and construct, for example, a small-mouthed flea structure within the spirit of the patent law.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般縦断説明図。 第2図は、本発明の1実施例を示す掘削体4の縦断説明
図。第3図は、第2図1−1矢視の1実施例の断面説明
図。第4図および第5図は第2図1−1矢視の他実施例
の断面説明図。第6図は第2図ロー0矢視平面説明図を
表わす。なお、図中2は支圧壁、3は推進用油圧ジャッ
キ、4は掘削体、7はパイピング、7一1は関口端、8
一1は端部、9,11は閉口窓、10,12,10−1
,12−1は圧接盤、13,14,13一1,14−1
は油圧ジャッキ、15は支持筒体、16は支持アーム、
17はナット、18は切羽地盤、19は中空、20−1
,20−2は鋼管あるいは塩ビ管、21はしベル検出器
、22はケーブル、23,25は配管、24,26は孔
、27−1,27一2は中空、28一1,28−2は台
座、29は斜面部、30はヒンジ接続部を表わす。 第1図 第2図 第3図 第4図 第5図 第6図
Figure 1 is a general longitudinal explanatory diagram. FIG. 2 is a longitudinal cross-sectional view of an excavation body 4 showing one embodiment of the present invention. FIG. 3 is an explanatory cross-sectional view of one embodiment as viewed from the arrow 1-1 in FIG. 4 and 5 are cross-sectional explanatory views of other embodiments taken along arrows 1-1 in FIG. FIG. 6 is an explanatory plan view as viewed from the row 0 arrow in FIG. In addition, in the figure, 2 is the bearing wall, 3 is the hydraulic jack for propulsion, 4 is the excavation body, 7 is the piping, 7-1 is the Sekiguchi end, 8
11 is the end, 9 and 11 are closed windows, 10, 12, 10-1
, 12-1 is a pressure welding board, 13, 14, 13-1, 14-1
is a hydraulic jack, 15 is a support cylinder, 16 is a support arm,
17 is nut, 18 is face ground, 19 is hollow, 20-1
, 20-2 is a steel pipe or PVC pipe, 21 is a bell detector, 22 is a cable, 23, 25 are piping, 24, 26 are holes, 27-1, 27-2 are hollow, 28-1, 28-2 29 represents a pedestal, 29 represents a sloped portion, and 30 represents a hinge connection portion. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1 密閉型掘削構造にした方向修正用掘削体■を地中静
止させ、レベル検出器21によつて該掘削体■の姿勢を
立て坑1側に表示させ、遠隔操作式に該掘削体4の各壁
面に設けた複数の孔より水(または空気)を噴射すると
ともに同じく各壁面に設けた圧接盤10,12で地盤を
選択的に押圧し反力をとりあるいは間隙を形成して、強
制的に水平および上下方向の調整を行うことを特徴とす
る推進式地中構造物の方向修正方法。
1. A direction correction excavation body (■) having a closed excavation structure is kept stationary underground, the attitude of the excavation body (■) is displayed on the shaft 1 side by the level detector 21, and the position of the excavation body (4) is controlled by remote control. Water (or air) is injected from multiple holes provided on each wall, and pressure plates 10 and 12 provided on each wall are used to selectively press the ground to create a reaction force or create a gap. A method for correcting the direction of a propulsion type underground structure, which is characterized by horizontally and vertically adjusting the structure.
JP10246977A 1977-08-25 1977-08-25 Direction correction method for propelled underground structures Expired JPS6030838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10246977A JPS6030838B2 (en) 1977-08-25 1977-08-25 Direction correction method for propelled underground structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10246977A JPS6030838B2 (en) 1977-08-25 1977-08-25 Direction correction method for propelled underground structures

Publications (2)

Publication Number Publication Date
JPS5436013A JPS5436013A (en) 1979-03-16
JPS6030838B2 true JPS6030838B2 (en) 1985-07-18

Family

ID=14328302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10246977A Expired JPS6030838B2 (en) 1977-08-25 1977-08-25 Direction correction method for propelled underground structures

Country Status (1)

Country Link
JP (1) JPS6030838B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539205Y2 (en) * 1988-03-10 1993-10-05

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047198A (en) * 1983-08-24 1985-03-14 久保田 俊剛 Method of underground propulsive construction and device thereof
JPS6078097A (en) * 1983-10-04 1985-05-02 機動建設工業株式会社 Control of propelling direcction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539205Y2 (en) * 1988-03-10 1993-10-05

Also Published As

Publication number Publication date
JPS5436013A (en) 1979-03-16

Similar Documents

Publication Publication Date Title
CN106761785B (en) A kind of subway tunnel shield originates construction technology
US4024721A (en) Method and apparatus for laying pipes in the ground
US8568059B2 (en) Method and device for laying pipelines in the ground
US4026371A (en) Pilot head for laying pipes in the ground
JPH11107686A (en) Long distance driving method in semishield method
CN112983450A (en) Tunnel rock burst control type TBM system and method
KR101289391B1 (en) The front structure for tunnel pressing method
JP2717874B2 (en) Open caisson construction method and device
JPH04343995A (en) Middle part covering structure of juxtaposed tunnels
KR100887189B1 (en) Head pipe device for shield and level control jacking
JPS6030838B2 (en) Direction correction method for propelled underground structures
CN111173549B (en) High-ground-stress roadway support device and construction method
JP3860143B2 (en) Excavator for pipe roof and pipe roof construction method using them
CN103161469A (en) Method for excavating vertical shaft to underground repair pipe-jacking tool pipe
JPS6144197B2 (en)
KR101023464B1 (en) Propulsion device using self- assembly structure
JP2534919B2 (en) Replacement device for buried pipes and correction device for traveling direction
JPS6117977B2 (en)
JPS5820898A (en) Method and apparatus for constructing small inner diameter pipe in ground
JP3086592B2 (en) Posture control device for drilling auger for piled hole
JP4071260B2 (en) Tunnel excavator
CN115419414A (en) Grouting method for simultaneously recovering tunnel settlement and horizontal deformation
JPH0468564B2 (en)
JPH0353431B2 (en)
JP4068766B2 (en) Pipe roof construction device and pipe roof construction method