JP2717874B2 - Open caisson construction method and device - Google Patents

Open caisson construction method and device

Info

Publication number
JP2717874B2
JP2717874B2 JP17614090A JP17614090A JP2717874B2 JP 2717874 B2 JP2717874 B2 JP 2717874B2 JP 17614090 A JP17614090 A JP 17614090A JP 17614090 A JP17614090 A JP 17614090A JP 2717874 B2 JP2717874 B2 JP 2717874B2
Authority
JP
Japan
Prior art keywords
caisson
cutting edge
ground
along
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17614090A
Other languages
Japanese (ja)
Other versions
JPH0464620A (en
Inventor
清 田岡
克彦 伊藤
啓内 福岡
修三 福本
克洋 森山
豊 中島
善友 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP17614090A priority Critical patent/JP2717874B2/en
Publication of JPH0464620A publication Critical patent/JPH0464620A/en
Application granted granted Critical
Publication of JP2717874B2 publication Critical patent/JP2717874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、従来の水中掘削を前提としたオープンケー
ソンの欠点であった不確実性や施工精度の悪さを改善
し、地盤条件に拘らず確実で精度良い施工を可能にする
ことのほか、掘削排土と躯体構築を同時に進行させて、
工期を短縮させることにより、水中掘削を前提とした大
深度への沈設に適するように改良された、オープンケー
ソンの施工方法及びその装置に関するものである。
[Detailed Description of the Invention] [Industrial application field] The present invention improves the uncertainty and the poor construction accuracy, which were the drawbacks of the conventional open caisson premised on underwater excavation, regardless of the ground conditions. In addition to enabling reliable and accurate construction, excavation and earth removal and building of the skeleton are advanced simultaneously,
TECHNICAL FIELD The present invention relates to an open caisson construction method and apparatus improved by shortening the construction period so as to be suitable for submerging at a large depth on the premise of underwater excavation.

〔従来の技術〕[Conventional technology]

地下空間の有効利用を図るための大深度立坑や、大深
度大型基礎に適用する従来の施工技術としては、地下連
続壁工法、ニューマチックケーソン工法、オープンケー
ソン工法の3つがある。
Conventional construction techniques applied to large-scale shafts for deep utilization of underground space and large-scale large-scale foundations include the underground continuous wall method, the pneumatic caisson method, and the open caisson method.

地下連続壁工法は、泥水中でコンクリートを打設する
ため、躯体の品質が他工法に比べて落ちることや、全体
をエレメントに分割して施工せざるをえないため、工期
が長くかかること、また、掘削底面下に被圧水を有する
地盤においては、床付下に非常に長い根入れ長を必要と
するなどの欠点がある。
The underground diaphragm wall method involves placing concrete in muddy water, so the quality of the skeleton is lower than other methods, and the construction time must be longer because the entire structure must be divided into elements. In addition, the ground having pressurized water below the bottom of the excavation has a drawback such that an extremely long rooting depth is required under the floor.

ニューマチックケーソン工法は、圧気をかけた作業室
内での掘削となり、作業員が作業室内に立ち入ることの
できる圧気圧に限界があるため、地下水位が高い地盤に
おいては掘削深さが制約されるほか、排土のための開口
を大きくとれないため、排土能率が悪く、地下連続壁工
法と同様、工期が長くかかるなどの欠点がある。
In the pneumatic caisson method, excavation is carried out in a pressurized working room, and there is a limit to the pressure and pressure at which workers can enter the working room. However, since the opening for discharging the soil cannot be made large, the efficiency of discharging the soil is poor, and as with the underground continuous wall method, there are drawbacks such as a long construction period.

オープンケーソン工法は、前記二工法と比べて一般的
に工期が短くて安価な工法であるが、水中掘削を行う場
合、刃口部の掘削に不確実さがあるため、周辺地盤の沈
下を招いたり、姿勢制御が困難となって、傾斜が直せず
に、場合によっては沈下不能となることもあって、次第
に適用例が減少する傾向があり特に水中掘削を前提とし
た大深度施工に際しては、不確実さや精度の悪さから採
用に問題があった。しかし最近では、刃口下の掘削を確
実に行えるオープンケーソン工法も実用化されてきてい
る。
The open caisson method is generally an inexpensive method with a shorter construction period than the two methods described above.However, when underwater excavation is performed, there is uncertainty in the excavation of the cutting edge, which causes settlement of the surrounding ground. Or, it is difficult to control the attitude, the inclination can not be fixed, in some cases it may not be possible to sink, the application examples tend to decrease gradually, especially for deep construction under the assumption of underwater excavation, There was a problem in adoption due to uncertainty and poor accuracy. However, recently, an open caisson method that can reliably excavate below the cutting edge has been put into practical use.

従来の水中掘削を前提としたオープンケーソンの施工
方法を概観してみると次のようである。
An overview of the construction method of open caisson based on conventional underwater excavation is as follows.

最も一般的な施工方法は揚土を兼用したクラムシェ
ル、ハンマグラブ等のバケットで水中掘削を行いなが
ら、躯体の自重あるいは自重に鋼材等の載荷重の付加を
行って、沈下荷重を沈下抵抗より大きくすることにより
沈設する工法(第1の工法)がある。
The most common construction method is to add a load such as a steel material to the body's own weight or its own weight while performing underwater excavation with a bucket such as a clam shell, hammer grab, etc. There is a construction method (first construction method) in which the slab is laid.

上記工法より一歩進んだ工法としては、周辺地盤の沈
下防止や施工精度の確保のため、アースアンカー等を反
力とした圧入装置をケーソン天端に備え、この装置によ
りケーソン刃口部をあらかじめ地山に貫入させながら、
揚土を兼用したクラムシェル、ハンマクラブ等のバケッ
トで水中掘削揚土を行って沈設する工法(第2の工法)
がある。
As a step forward from the above method, a caisson top is equipped with a press-fitting device using a ground anchor or other reactive force at the top of the caisson to prevent settlement of the surrounding ground and ensure construction accuracy. While penetrating the mountains,
Underwater excavation and digging with buckets such as clamshells and hammer clubs that also serve as digging (second construction method)
There is.

また、近年では圧入装置を天端に備えると共に、回転
式カッタを有し土砂を水と共にエアリフト方式で揚土す
る掘削機(アーム式水中掘削機)を用いて掘削し、沈設
する工法(第3の工法)がある。
In recent years, a method of excavating and submerging using an excavator (arm-type underwater excavator) that includes a press-fitting device at the top end and has a rotary cutter and excavates earth and sand together with water by an airlift method (arm type underwater excavator) (third method) Method).

また、プレキャスト製品を躯体に用いた小型のオープ
ンケーソンにおいては、遊星駆動型の拡底ビットを備え
た特殊掘削機により、ケーソン天端に設けられた圧入支
持桁により圧入掘削を計る他、ケーソン刃口外径より大
きめに掘削した後、懸吊支持装置によりケーソン躯体を
一時的に支持し、掘削完了後徐々に沈設する工法(第4
の工法)がある。
In the case of a small open caisson using a precast product as the body, a special excavator equipped with a planetary-drive type bottoming bit measures the press-in excavation by the press-in support girder provided at the top end of the caisson, After excavation to a diameter larger than the diameter, the caisson frame is temporarily supported by the suspension support device, and is gradually laid down after completion of the excavation (No. 4
Method).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記の従来のオープンケーソン施工法においては、第
1から第4のいずれの工法を取りあげても、鉄筋組立、
型枠組立、コンクリート打設等の躯体構築時は、掘削揚
土は停止しており、互いに作業が干渉しないように作業
の一工程ずつ順次行う必要があった。このため工期が長
くかかる欠点があり、特にその手順の繰り返しが多くな
る大深度ケーソンにおいて、工程的にも経済的にも大き
な問題となる。
In the above-mentioned conventional open caisson construction method, no matter which of the first to fourth construction methods is used, rebar assembly,
When building a frame such as formwork assembly and concrete casting, excavation and unloading were stopped, and it was necessary to perform the work one step at a time so that the work did not interfere with each other. For this reason, there is a disadvantage that the construction period is long, and particularly in a deep caisson where the procedure is repeated frequently, it becomes a serious problem in terms of process and economy.

また、ケーソンを大深度に施工するに際しては、地下
水位が高い地点で比較的硬質の地層(砂礫、シルト岩
等)に対してケーソンを沈設しなければならないが、前
記第1の工法はもちろんのこと、第2の工法において
も、この様な刃口部の地盤反力が大きい地盤への沈設に
際して問題がある。例えば、砂礫への沈設の場合、刃口
直下の土砂を除去しないと圧入力のみで沈設不可能とな
るため、刃口近傍をクラムシェルで余掘りし、刃口部の
砂礫地盤を余掘り部へ崩壊させながら沈設せざるをえ
ず、このため掘削面の安定管理が困難となってケーソン
外周地山の崩壊をまねき、周辺地盤を著しく沈下させる
ことがある。また、泥岩等の比較的硬質で自立性の高い
地山では、クラムシェル等のバケットによる掘削そのも
のが困難であるばかりでなく、たとえ刃口近傍を余掘り
できたとしても、刃口直下の地盤を余掘り部へ崩壊させ
るには至らず、沈下不能といった状態を招く。
When constructing a caisson at a large depth, the caisson must be laid in a relatively hard stratum (sand, gravel, siltstone, etc.) at a point where the groundwater level is high. In the second method, too, there is a problem in submerging the cutting edge into the ground where the ground reaction force is large. For example, in the case of sinking in sand and gravel, it is impossible to settle only by pressing in if the soil just below the cutting edge is not removed.Therefore, the area near the cutting edge is dug with a clamshell, and the gravel ground at the cutting edge is dug out It has to be laid down while collapsed, which makes it difficult to stably manage the excavated surface, leading to the collapse of the caisson's surrounding ground and causing the surrounding ground to sink significantly. In addition, in a relatively hard and highly self-sustaining ground such as mudstone, it is not only difficult to excavate with a bucket such as a clamshell or the like, but even if it is possible to excavate the vicinity of the cutting edge, the ground directly below the cutting edge is difficult. Cannot be collapsed into the digging part, and the sinking is impossible.

これらの理由により、刃口部の正確な掘削ができない
第1、第2のような工法は大深度ケーソンに適用するに
は問題がある。
For these reasons, there is a problem in applying the first and second construction methods, which cannot accurately excavate the cutting edge, to a deep caisson.

また、前記第3、第4の工法では掘削機やその取付架
台が大掛かりとなるため、大型のケーソンへの適用には
問題があり、第3の工法では外径10mまで、第4の工法
では外径4mまでの比較的小径のケーソンの実績しか有し
ていない。
In the third and fourth construction methods, since the excavator and its mounting base are large, there is a problem in application to a large caisson. The third construction method has an outer diameter of up to 10 m, and the fourth construction method has a problem. It has only a track record of caisson of relatively small diameter up to 4m in outer diameter.

さらに、従来のオープンケーソンでは、傾斜しはじめ
ると修正が難しく、そのために特に地層構成の複雑な場
合には施工可能深度に限界があった。大深度施工の場合
はこの問題を克服することが必須条件となるが、これに
は早期にケーソンの傾きをキャッチしてそれに対してす
ばやく姿勢を制御する必要があり、従来のオープンケー
ソンではこのような制御は行っていない。
Further, in the conventional open caisson, it is difficult to correct the slope when the slope starts to be inclined, and therefore, there is a limit to the depth of work that can be performed, particularly when the stratum configuration is complicated. In the case of deep construction, it is essential to overcome this problem.However, it is necessary to catch the inclination of the caisson at an early stage and quickly control the posture against it. Control is not performed.

以上のような問題点のほかにも、オープンケーソンを
大深度に沈設するに際して次の様な課題がある。
In addition to the above problems, there are the following problems when laying an open caisson at a large depth.

まず、シルト岩、固結砂等の低固結地山に対してオー
プンケーソンを大深度に沈設する際には、特にフリクシ
ョンカットより下部刃口背面と地山との間に作用する周
面摩擦が非常に大きくなり、沈設に支障をきたし、スム
ーズな沈設が不可能になる場合があり、この部分の周面
摩擦を確実に低減させる手段を備えておくことが必要で
ある。
First, when submerging an open caisson at a large depth against low consolidated ground such as silt rock and consolidated sand, the peripheral friction acting between the back of the lower cutting edge and the ground, especially by friction cut May become very large, hindering the subsidence and making the subsidence impossible, and it is necessary to provide a means for reliably reducing the peripheral friction of this portion.

また、大深度の沈設を確実にするために、フリクショ
ンカットより上部のケーソン外周部と地山との間に作用
する周面摩擦の低減も行う必要があり、このためベント
ナイト溶液等の滑材をケーソン外周部と地山との間隙に
確実に充填することが必要である。
In addition, in order to ensure the deep sedimentation, it is necessary to reduce the peripheral friction acting between the outer periphery of the caisson and the ground above the friction cut. It is necessary to reliably fill the gap between the outer periphery of the caisson and the ground.

しかしながら、ケーソン刃口背面土砂は、下部水中掘
削機械の施工により、刃口部より外側に掘削されたり、
ジェットによる刃口背面の周面摩擦低減のための薄層掘
削により削り取られることがあり、これにより刃口背面
に空隙ができる場合があるが、ケーソンと地山との間に
介在させたベントナイト液等の滑材が上記空隙から漏出
し、周面摩擦の低減効果や、周辺地盤の沈下防止効果が
十分に発揮できないという問題もある。
However, the caisson blade back earth and sand is excavated outside of the blade,
In some cases, a thin layer is excavated by the jet to reduce the peripheral friction on the back side of the cutting edge, which may create a gap on the back side of the cutting edge.Bentonite liquid interposed between the caisson and the ground There is also a problem that the sliding material such as leaks from the above-mentioned gap, and the effect of reducing the peripheral surface friction and the effect of preventing the settlement of the surrounding ground cannot be sufficiently exhibited.

本発明は、これらの問題を解決することによって、大
深度施工に適したオープンケーソンの施工方法及びその
装置を提供することを目的とする。
It is an object of the present invention to provide an open caisson construction method and apparatus suitable for deep construction by solving these problems.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は前記問題を解決し、目的を達成するためにな
したものである。
The present invention has been made to solve the above problems and to achieve the object.

まず大深度施工に対する工期短縮という課題に対して
は、コンクリート打設後十分な養成期間を経たケーソン
躯体の外周部に移動可能にケーソン押下げ装置を設け、
このケーソン押下げ装置によりケーソンを所定の位置ま
で押下げた後、ケーソン躯体の下部内壁に設けた水中掘
削機を用いて刃口下を地上から操作することにより掘削
し、この掘削土砂を排出手段にて順次排出しながら、ケ
ーソン上部では鉄筋の組立、滑動型枠装置を用いた型枠
の組立及びその後のコンクリート打設工事を同時になす
ものとする。
First, to solve the problem of shortening the construction period for deep construction, a caisson depressing device was installed to be able to move around the outer periphery of the caisson body after a sufficient training period after concrete placement,
After the caisson is pushed down to a predetermined position by the caisson pushing device, the underwater excavator provided on the lower inner wall of the caisson body is used to excavate by operating below the cutting edge from the ground. The assembly of rebar, the assembling of formwork using a sliding formwork device, and the subsequent concrete casting work are to be performed simultaneously at the upper part of the caisson.

上記の工事は、ケーソン押下げ装置をケーソン躯体の
外周部に順次上方に継ぎ足し築造されるケーソン躯体に
移動可能に配設することにより可能となるが、このケー
ソン押下げ装置は直線状の鋼桁数本をケーソンを取囲む
ように設置して、個々の鋼桁間接続部や鋼桁のスパン中
央部に、アースアンカーや反力杭等を反力としたセンタ
ーホールジャッキを配設するか、直線状の鋼桁の代わり
に同形の反力桁を用いて、センターホールジャッキを等
間隔に配設する。また、全体を継いだ上記のような抱持
枠方式とせずにセンターホールジャッキ位置で個別に反
力架台を設ける方式を採ることもできる。
The above works can be achieved by arranging the caisson depressing device on the outer periphery of the caisson frame sequentially and movably on the caisson frame to be built.This caisson depressing device is a straight steel girder. Install several so as to surround the caisson, and install a center hole jack with a reaction force such as an earth anchor or reaction force pile at the connection between the steel girders or the center of the span of the steel girder, Center hole jacks are arranged at equal intervals using the same reaction girder instead of straight steel girder. Further, instead of using the holding frame system as described above, a system in which reaction force stands are individually provided at the center hole jack positions can be adopted.

次に、刃口部土砂の正確で確実な水中掘削という課題
に対して、ケーソン躯体の下部内壁に横方向に設置した
レールに移動自在に設置した取付架台にバックホウ等の
公知手段の掘削機を取付け、掘削機先端位置をセンサー
で常時確認しながら地上から操作することにより、刃口
部やケーソン中央部の土砂を掘削するものとする。これ
により刃口部土砂を確実に取り除くことができるほか、
場所により掘削形状を変化させることもできる。
Next, in order to solve the problem of accurate and reliable underwater excavation of the cutting edge soil, an excavator of a known means such as a backhoe is mounted on a mounting base movably installed on a rail horizontally installed on a lower inner wall of the caisson body. By excavating the excavator tip and operating it from the ground while constantly checking the excavator tip position with the sensor, the earth and sand at the cutting edge and the central part of the caisson shall be excavated. This makes it possible to reliably remove the soil at the cutting edge,
The excavation shape can be changed depending on the location.

ケーソンの沈設は、刃口部先端を地山にあずけながら
沈下荷重と沈下抵抗のバランスを取りつつ、ジャッキの
圧入力により行う。
The caisson is laid down by pressing the jack while maintaining the balance between the squatting load and the squatting resistance while leaving the tip of the cutting edge close to the ground.

さらに、ケーソンの施工精度の確保は以下の手段によ
るものとする。
Furthermore, caisson construction accuracy shall be ensured by the following means.

沈設中のケーソンには、ケーソンの傾きや深さを検知
するセンサーを配置し、各々の数値をコンピュータ処理
することによりケーソンの姿勢、位置を迅速に把握する
と共に、ケーソン躯体に設けた各種センサーによる計測
値を用いて、ケーソンの沈下荷重と沈下抵抗をできるだ
け正確に把握することにより、ケーソン押下げ装置に配
設された個々のジャッキの圧入力や刃口下の掘削形状を
決定して沈設と同時にその姿勢制御を行う。
The caisson that is being laid is equipped with sensors that detect the inclination and depth of the caisson.The values of the caisson are processed by computer to quickly grasp the attitude and position of the caisson. By using the measured values to determine the caisson's settlement load and settlement resistance as accurately as possible, the pressure input of each jack installed in the caisson press-down device and the excavation shape under the cutting edge are determined, and At the same time, the attitude is controlled.

この姿勢制御は、側面に設けたジャッキの個々の圧入
力を変化させることや刃口部の掘削形状を場所によって
変化させることにより行うものとする。
This attitude control is performed by changing the individual press input of the jack provided on the side surface or by changing the excavation shape of the blade opening portion depending on the location.

また、姿勢や位置の修正をさらに効果的に行う場合
は、次の手段をとるものとする。すなわち、ケーソン下
部の刃口背面フリクションカット上部に、外周部に沿っ
て横方向に複数個のジャッキを配設し、個々のジャッキ
の圧力を変化させることによって、ケーソン下部の水平
移動を起こさせる。これを地上部のジャッキによる偏圧
載荷と併用したり、水中掘削機による刃口部の掘削形状
の場所的変化と合わせて用いたりもできる。
When the posture and position are corrected more effectively, the following means shall be used. That is, a plurality of jacks are arranged in the lateral direction along the outer peripheral portion on the upper part of the cutting back surface of the caisson, and the pressure of each jack is changed to cause horizontal movement of the lower part of the caisson. This can be used in combination with biased loading by a jack on the ground, or in conjunction with a change in the excavation shape of the cutting edge by an underwater excavator.

上記に用いるケーソン下部刃口背面のジャッキは、ケ
ーソン壁体の有効断面積を減少させないよう、できるだ
け偏平な形状で、しかも構造が複雑でなく、ケーソンの
沈下に伴い損傷しないものが必要である。そのための手
段としては、金属、ゴムあるいは高強度繊維を材料とし
て、偏平で膨張可能な袋体とし、当袋体に注入する注入
材の量を制御することによりジャッキの機能を持たせる
ものとする。また当ジャッキがケーソンの沈下に伴い損
傷のないように、ケーソン刃口鉄板から継げた薄鉄板で
カバーするものとする。
The jack on the back side of the caisson lower cutting edge used above must be as flat as possible so as not to reduce the effective cross-sectional area of the caisson wall body, must have a simple structure, and must not be damaged by the sinking of the caisson. As a means for that, a flat, expandable bag body made of metal, rubber or high-strength fiber is used, and the function of a jack is provided by controlling the amount of the injection material injected into the bag body. . The jack shall be covered with a thin steel plate connected to a caisson blade so that the jack will not be damaged by the sinking of the caisson.

ケーソンを大深度に沈設する場合のその他の課題、刃
口背面の周面摩擦の増大、刃口背面からの滑材の漏出に
対しては、各々以下の手段を用いるものとする。
The following measures shall be used for other problems when the caisson is laid at a large depth, an increase in circumferential friction on the back of the cutting edge, and leakage of the sliding material from the back of the cutting edge.

刃口背面の周面摩擦の増大に対しては、ケーソン下部
内壁にレールに沿って移動自在に取付けた架台に、刃口
に沿って伸縮機構を有し、パイプ先端ノズルの上方への
屈折機構を有することにより、刃口背面上方に正確にノ
ズルを向けることができる高圧水ジェット周面摩擦除去
装置を係合させる。
To increase the circumferential friction on the back side of the cutting edge, a gantry movably mounted along the rail on the lower inner wall of the caisson has a telescopic mechanism along the cutting edge, and a bending mechanism above the pipe tip nozzle. , The high-pressure water jet peripheral friction removing device capable of accurately directing the nozzle above the back surface of the cutting edge is engaged.

ケーソンのフリクションカットより上部の周面摩擦の
低減や周辺地盤の沈下防止のために用いる滑材の漏出に
対しては、滑材注入パイプ直下でフリクションカット直
上に下端を刃口金物あるいはコンクリートにボルト等で
係止し、上端が外周部地山と同径だけ広がることを特徴
とした滑材漏出防止部材を設ける。
For leakage of lubricating material used to reduce the peripheral friction above the caisson's friction cut and to prevent the settlement of the surrounding ground, the lower end immediately above the friction cut pipe immediately below the lubricating material injection pipe and the lower end bolted to the blade fitting or concrete And the like, and the upper end is widened by the same diameter as the ground at the outer peripheral portion.

この滑材漏出防止部材は、薄鉄板やワイヤ等高強度の
ものを用いて、下端を刃口金物あるいはコンクリートに
ボルトで係止して、上端が注入液圧により地山に追従す
るようにし、ケーソン外周上に隙間なく配置するものと
する。
This lubricating material leakage prevention member uses a high-strength material such as a thin iron plate or wire, and the lower end is bolted to the blade fitting or concrete with a bolt, so that the upper end follows the ground by the injection liquid pressure, It shall be arranged on the outer periphery of the caisson without any gap.

〔作 用〕(Operation)

ケーソン押下げ装置をコンクリート打設後十分な養成
期間を経たケーソン躯体の外周部に移動可能に設置する
ため、ケーソン押下げ装置によるケーソンの沈設作業
が、上部に継ぎ足していくケーソン躯体構築の作業及び
設備(鉄筋組立作業、型枠組立作業、作業用の足場等)
に支障を及ぼすことがない。
In order to install the caisson depressing device movably on the outer periphery of the caisson skeleton after a sufficient training period after casting the concrete, the caisson depressing device is used to set up the caisson siding work, and the caisson skeletal construction work to be added to the upper part and Equipment (rebar assembly work, formwork assembly work, scaffolding for work, etc.)
Does not hinder

したがって、ケーソンの沈設や掘削揚土と躯体構築作
業を同時に行うことができる。さらに、ケーソン押下げ
装置と躯体との接続部のコンクリートは打設後十分養成
期間を経ているため、従来のように上部コンクリート打
設後養成期間を確保した後に押下げ装置をセットして押
下げる必要がない。したがって、作業性が向上し、工期
が大幅に短縮できる。
Therefore, the caisson can be settled, excavated and excavated, and the frame can be constructed at the same time. Furthermore, since the concrete at the connection between the caisson press-down device and the skeleton has passed a sufficient training period after casting, the push-down device is set and pushed down after securing the training period after placing the upper concrete as in the past. No need. Therefore, workability is improved and the construction period can be significantly reduced.

また、ケーソン躯体の下部内壁に横方向に延設したレ
ールに沿って移動自在に取付けた架台に係止した掘削機
械により刃口下の土砂を確実に取り除くことができ、固
結地盤に対しても大深度に確実にケーソンを沈設でき
る。
In addition, the excavation machine, which is movably mounted along the rail extending horizontally to the lower inner wall of the caisson frame, can securely remove the soil under the cutting edge by using an excavating machine. The caisson can be reliably laid down at a large depth.

沈設中のケーソンの姿勢や位置及び沈下抵抗要因(刃
口反力、周面摩擦、浮力)は、センサーの数値をコンピ
ュータ処理することにより迅速に把握し、押下げ装置に
配設されたジャッキの圧入力や刃口の掘削形状を決定す
ることができるので、姿勢が大きく変化する前に修正す
ることが可能で、ケーソンの施工精度の向上が計れる。
さらに、ケーソン刃口背面側フリクションカット上部に
設けたジャッキによってケーソン下端を動かし、これを
上部押下げ装置に配設されたジャッキによる偏圧の載荷
と併用したり、刃口部地盤の場所的に変化させ掘削と合
わせて用いれば、より効果的な姿勢や位置の修正効果が
得られる。以上の姿勢制御機構により、従来のオープン
ケーソンの欠点である施工精度の悪さが克服されるばか
りでなく、大深度の施工を可能にすることができる。
The posture and position of the caisson during subsidence and the factors of subsidence resistance (cutting edge reaction force, peripheral surface friction, buoyancy) can be quickly grasped by computer processing of the sensor values, and the jack installed in the push-down device Since the press input and the excavation shape of the cutting edge can be determined, it is possible to correct the posture before the posture is largely changed, and the construction accuracy of the caisson can be improved.
In addition, the lower end of the caisson is moved by the jack provided at the upper part of the friction cut on the back side of the caisson blade, and this is used together with the partial pressure loading by the jack arranged in the upper pressing device, or the location of the ground at the blade opening If it is changed and used together with excavation, a more effective posture and position correction effect can be obtained. With the above attitude control mechanism, not only the poor construction accuracy, which is a drawback of the conventional open caisson, can be overcome, but also construction at a large depth can be performed.

また、刃口背面の周面摩擦が大きく沈設に支障となる
場合は、ケーソン躯体の下部内壁に取付けた前述の横方
向に移動自在な架台に取付けた、伸縮機構、屈折機構を
有する高圧水ジェット周面摩擦除去装置を用い、刃口背
面土砂を薄く削り取ることにより確実に低減できる。
If the peripheral friction of the back of the cutting edge is large and hinders the settlement, a high-pressure water jet with a telescopic mechanism and a bending mechanism attached to the above-mentioned horizontally movable frame attached to the lower inner wall of the caisson body By using a peripheral friction removing device, the soil at the back of the cutting edge can be reduced by thinly shaving off the sand.

漏材の刃口背面からの漏出は、フリクションカット直
材に設けた滑材漏出防止部材により防止することがで
き、周面摩擦の確実な低減がはかれると共に、周辺地盤
の沈下防止効果を十分に期待できるものとなる。
Leakage of the leaked material from the back of the cutting edge can be prevented by the slippery leakage prevention member provided on the friction cut straight material, ensuring a reduction in peripheral friction and sufficiently preventing the settlement of the surrounding ground. It can be expected.

このように沈下抵抗を確実に低減し、姿勢制御を行い
ながら掘削揚土と躯体構築作業を同時に行うことによ
り、大深度においてもスムーズな沈設が可能となり、精
度が高く、確実な大深度オープンケーソンが施工でき
る。
In this way, the sinking resistance is reliably reduced, and the excavation and construction work are carried out at the same time while controlling the attitude, enabling smooth submersion even at large depths. Can be constructed.

〔実施例〕〔Example〕

以下、本発明のオープンケーソンの施工方法及びその
装置を図示の実施例にもとづいて説明する。
Hereinafter, a method and an apparatus for constructing an open caisson according to the present invention will be described based on the illustrated embodiment.

第1図は本発明施工方法の全体図を示す。 FIG. 1 shows an overall view of the construction method of the present invention.

図においてKは所要の径と高さを有するコンクリート
製のケーソン躯体で、この下部ケーソン1には刃口1aが
形成される。
In the figure, K is a concrete caisson frame having a required diameter and height. The lower caisson 1 has a cutting edge 1a.

この下端に刃口1aを有する下部ケーソン1は、従来の
工法で築造するか、その他の方法で製する。ケーソン躯
体Kの下部内壁1bには、水平方向にレールRを延設す
る。
The lower caisson 1 having the cutting edge 1a at the lower end is built by a conventional method or manufactured by another method. A rail R extends horizontally on the lower inner wall 1b of the caisson skeleton K.

第2図に示すようにレールRは、ケーソン躯体Kに対
してアンカー31で固定され、このレールRには水平方向
に移動自在な架台21を数台係合し、当架台には地上より
操作するバックホウ等の公知の手段による掘削機2を設
置して、刃口部やケーソン下端中央部の土砂を掘削す
る。
As shown in FIG. 2, the rail R is fixed to the caisson skeleton K by an anchor 31, and a plurality of horizontally movable frames 21 are engaged with the rail R, and the rail R is operated from the ground. An excavator 2 by a known means such as a backhoe is installed to excavate earth and sand at a cutting edge portion and a central portion of a lower end of a caisson.

上記掘削機2で掘削集土された土砂は、クラムシェル
又は土砂バケツ等の公知の手段で上部開口部より排出す
る。
The earth and sand excavated and collected by the excavator 2 is discharged from the upper opening by a known means such as a clam shell or an earth and sand bucket.

第3図は本発明施工方法の基本的構成(刃口部水中掘
削機、滑動型枠装置、ケーソン押下げ装置)のうち滑動
型枠装置の詳細を示す。
FIG. 3 shows the details of the sliding formwork device in the basic configuration of the construction method of the present invention (the underwater excavator at the cutting edge, the sliding formwork device, and the caisson pressing device).

下部ケーソン1周囲方向に定間隔で樹立される鋼棒10
には、昇降機能を有する滑動型枠装置4を支持せしめ
る。この滑動型枠装置4はサイロ等の築造に採用される
ものと同種のもので、鋼棒10を挟持する挟持手段41及び
鋼棒10に沿って荷重を支持しつつ滑動型枠装置全体を上
昇せしめる上昇手段42及び築造するケーソンの内外径に
あわせて対設した内型枠43、外型枠44、作業床47を備え
ている。そして、必要に応じ滑動型枠装置を支持し、上
昇せしめるための鋼棒に嵌合するさや管45を用いる。ま
た、鋼棒挟持、上昇手段、内外型枠を下部に垂吊したヨ
ーク46に設けられている。
Lower caisson 1 Steel bars 10 established at regular intervals around the circumference
, A sliding form device 4 having a lifting function is supported. The sliding form device 4 is of the same kind as that used for building silos and the like, and the entire sliding form device is raised while supporting the load along the steel bar 10 and the clamping means 41 for clamping the steel bar 10. An inner formwork 43, an outer formwork 44, and a work floor 47 are provided opposite to each other in accordance with the inner and outer diameters of the caisson to be built. Then, if necessary, a sheath tube 45 that is fitted to a steel rod for supporting and raising the sliding form device is used. Further, the yoke 46 is provided with a steel bar clamping and lifting means, and inner and outer molds suspended from the lower part.

また、下部ケーソン1の上部に順次継ぎ足し築造され
るケーソン躯体Kの外周位置には、アースアンカーや反
力杭を反力としたケーソン押下げ装置8が配設される。
このケーソン押下げ装置8は、ケーソン躯体Kの外周面
を抱持する抱持枠81と、この抱持枠81がケーソン躯体K
外周と近接する位置に設けられるブラケット82又はくさ
び85と、当抱持枠を押下げるために所定の位置に設けら
れるセンタホールジャッキ83により構成される。押下げ
装置は、アースアンカや反力杭等と接続したロッド84を
センターホールジャッキ中空部で把握し、ジャッキの油
圧シリンダを伸ばすことにより抱持枠全体を押下げ、ブ
ラケット又はくさびを介してか、あるいは抱持枠を締付
けることによる外周面との摩擦力によりケーソン躯体K
を押下げるようになす。ケーソン躯体Kと共に押下げら
れた抱持枠は、次回押下げに必要な所定の位置まで上げ
て設置しなおす。
A caisson depressing device 8 having a ground anchor or a reaction force pile as a reaction force is disposed at an outer peripheral position of the caisson frame K which is sequentially added to the upper part of the lower caisson 1.
The caisson pressing device 8 includes a holding frame 81 for holding the outer peripheral surface of the caisson frame K, and the holding frame 81 is
It is composed of a bracket 82 or a wedge 85 provided at a position close to the outer periphery, and a center hole jack 83 provided at a predetermined position for pushing down the holding frame. The push-down device grasps the rod 84 connected to the earth anchor, reaction force pile, etc. in the center hole jack hollow part, extends the hydraulic cylinder of the jack, pushes down the entire holding frame, and uses the bracket or wedge. Or caisson body K by frictional force with the outer peripheral surface by tightening the holding frame
Press down. The holding frame depressed together with the caisson skeleton K is raised to a predetermined position required for the next depressing and re-installed.

ケーソンの押下げ装置の例を第4図〜第6図に示す。 An example of a caisson pressing device is shown in FIGS.

第4図に示す実施例は直線状の鋼桁数本をケーソンを
取囲むように設置して抱持枠81とし、個々の鋼桁間接続
部のピン支承上にセンターホールジャッキ83を設け、抱
持枠とケーソン躯体K間の力の伝達は、ブラケット82に
よったものである。第5図の実施例は、鋼桁支間を短く
して接続部を連結ピン86で継いで、同形に近い多角形の
抱持枠とし、センターホールジャッキ83を等間隔に鋼桁
スパン中央部に設け、抱持枠とケーソン躯体K間の力の
伝達はくさび85によったものである。くさび85はねじ込
み方式又は圧入方式により、圧入前に効果が出る状態に
しておくことができる。第6図の実施例は抱持枠を円形
とし、抱持枠に取付けた締付けジャッキ87によりケーソ
ン躯体Kを締付け、抱持枠とケーソン外壁面間の摩擦力
により、ケーソンに押下げ力を伝達する方式である。
In the embodiment shown in FIG. 4, several straight steel girders are installed so as to surround the caisson to form a holding frame 81, and a center hole jack 83 is provided on the pin bearing at the connection between the individual steel girders. The transmission of the force between the holding frame and the caisson skeleton K is performed by the bracket 82. In the embodiment shown in FIG. 5, the span of the steel girder is shortened and the connecting portion is connected with the connecting pin 86 to form a polygonal holding frame having almost the same shape, and the center hole jacks 83 are arranged at equal intervals at the center of the span of the steel girder. The transmission of force between the holding frame and the caisson frame K is by wedge 85. The wedge 85 can be brought into a state where an effect is obtained before the press-fitting by a screw-in method or a press-fitting method. In the embodiment shown in FIG. 6, the holding frame is circular, and the caisson body K is tightened by the fastening jack 87 attached to the holding frame, and the pressing force is transmitted to the caisson by the frictional force between the holding frame and the outer wall of the caisson. It is a method to do.

ケーソン沈設中は、ケーソンに設けた固定式傾斜計9
1、沈下計92のデータをコンピュータ処理するか、地上
部固定点に設けたレーザー発進機とケーソン躯体K下部
に設置したターゲットを用いたりすることによりケーソ
ンの位置、発生を迅速に把握する。また、ケーソン躯体
Kに設けた刃口荷重93、周面摩擦計94、油圧ジャッキの
圧力計95等の各種センサーによる計測値及びその変化に
より、沈下荷重に占める自重と圧入力の割合や、沈下抵
抗に占める周面摩擦及び浮力と刃口反力の割合を正確に
把握して、姿勢修正のために最適の押下げ装置に配設さ
れたジャッキの個別の圧力や、刃口下の掘削形状の場所
的な変化を、コンピュータ処理により決定しながら掘削
と圧入を繰り返す。
While the caisson is being set, a fixed inclinometer 9
1. The position and occurrence of caisson can be quickly grasped by computer processing the data of the sinker 92 or by using a laser launcher provided at a fixed point on the ground and a target installed below the caisson body K. In addition, the ratio of the own weight and the pressure input to the sinking load and the change in the values measured by various sensors such as the cutting edge load 93 provided on the caisson body K, the peripheral surface friction meter 94, and the pressure gauge 95 of the hydraulic jack, Accurately grasp the ratio of peripheral friction and buoyancy and reaction force of the cutting edge to the resistance, and the individual pressure of the jack installed in the optimal press-down device for posture correction and the excavation shape under the cutting edge Excavation and press-fitting are repeated while determining the locational change of the computer by computer processing.

以上の方法により姿勢制御を行いつつケーソンを沈設
する。
The caisson is laid down while controlling the attitude by the above method.

姿勢や位置の修正を更に効果的に行いたい場合は、第
7図に示すようにフリクションカット11の上部に設けた
金属、ゴム又は高強度繊維を偏平で膨張可能な袋状にし
た袋体14に液体をポンプで注入することによりふくらま
せたりしぼめたりさせ、これをジャッキとして用いるこ
とによって下部刃口の位置を動かせる下部刃口位置修正
ジャッキ12をケーソン側面の地上部ジャッキと併用す
る。この下部ジャッキは、ケーソン沈設中に破壊しない
ように刃口鉄板から継げた薄板で防護する。
If it is desired to correct the posture or position more effectively, as shown in FIG. 7, a metal, rubber or high-strength fiber provided on the upper part of the friction cut 11 is formed into a flat and inflatable bag body 14. A lower blade position correcting jack 12 which can inflate or deflate the liquid by pumping the liquid and use it as a jack to move the position of the lower blade is used in combination with a ground jack on the side of the caisson. This lower jack is protected by a thin plate connected to the blade iron plate so as not to be destroyed during the caisson laying.

フリクションカット下刃口背面の周面摩擦が非常に大
きく、ケーソン沈設に支障がある場合には、第8図に示
すような高圧水ジェット周面摩擦除去装置7を用いて、
刃口背面の土砂を薄く削り取ることによりフリクション
カット下の周面摩擦を除去する。これはケーソン下部内
壁に横方向に延設したレールに沿って移動自在な前述の
水中掘削機取付架台にガイド72を係合して、高圧水ジェ
ットパイプ71をガイド72に添って伸縮自在とし、油圧ジ
ャッキ装置73によりノズル74を上方に屈折させる機構を
有することにより刃口背面下に正確に位置させ、必要に
応じてフリクションカット下刃口背面の土砂を薄層に削
り取り、周面摩擦を除去する。
When the friction of the peripheral surface of the rear surface of the friction cut lower cutting edge is extremely large and hinders the caisson laying down, using a high-pressure water jet peripheral friction removing device 7 as shown in FIG.
The surface friction under the friction cut is removed by thinly shaving the earth and sand behind the cutting edge. This engages the guide 72 with the underwater excavator mounting base that is movable along the rail extending laterally on the lower wall of the caisson, making the high-pressure water jet pipe 71 extendable along the guide 72, Hydraulic jack device 73 has a mechanism to bend the nozzle 74 upward so that it can be accurately positioned under the back of the cutting edge, and if necessary, scrapes the sand and sand on the back of the cutting edge into a thin layer to remove peripheral friction I do.

前記高圧水ジェット周面摩擦除去装置7は、姿勢制御
や最終沈下時で微妙な薄層掘削が要求される場合は刃口
下掘削に用いることもできる。
The high-pressure water jet peripheral friction removing device 7 can be used for excavation under a cutting edge when delicate thin layer excavation is required during attitude control or final settlement.

また、前述の刃口背面側下部ジャッキと併用すること
により、刃口位置の修正をより効果的に行える。
In addition, the use of the above-described lower jack on the back side of the blade allows the blade position to be more effectively corrected.

フリクションカットより上部の周面摩擦低減や周辺の
地盤沈下防止のために注入したベントナイト等の滑材の
刃口下部から漏出を防止するため、ケーソンには、第9
図に示すように、滑材漏出防止部材13を設ける。この滑
材漏出防止部材13は、薄鉄板を短冊状にして重ね合わせ
たり、ワイヤーを密に束ねたりしたものを用いて、下端
をケーソンフリクションカット直上のコンクリート又は
刃口金物に係止し、上部を滑材の注入圧により地山に追
従するようにして、隙間なく配置することにより、滑材
の漏出防止に効果を発揮することができる。
In order to prevent leakage of the lubricating material such as bentonite injected from the lower part of the cutting edge to reduce the friction of the peripheral surface above the friction cut and to prevent the subsidence of the surrounding ground, the caisson has a ninth
As shown in the figure, a slip material leakage prevention member 13 is provided. The slipper leakage prevention member 13 is formed by stacking thin iron plates in a strip shape or using a tightly bundled wire, and the lower end is locked to concrete or blade fitting immediately above the caisson friction cut, and By following the ground by the injection pressure of the sliding material and arranging it without gaps, it is possible to exhibit the effect of preventing leakage of the sliding material.

上述のような施工装置を用いることにより、下部や側
部では掘削や圧入、姿勢制御を行いつつ、掘削された土
砂をクラムシェルや土砂バケツ等の従来の排出手段を用
いてケーソン外へ排出せしめると同時に、上部にて鉄筋
の組立を行った後、滑動型枠を所定位置まで上昇させ
て、この内外型枠間にコンクリートを打設する。このと
き鉄筋の組立が完了している高さのみコンクリートを打
設しつつ滑動型枠装置を順次上昇せしめる。
By using the construction device as described above, the excavated earth and sand is discharged to the outside of the caisson using a conventional discharging means such as a clamshell or a sediment bucket while performing excavation, press-fitting, and posture control in the lower part and the side part. At the same time, after assembling the rebar at the top, the sliding form is raised to a predetermined position, and concrete is poured between the inner and outer forms. At this time, the sliding form device is sequentially raised while pouring concrete only at a height where the rebar has been assembled.

このようにして、上下で異なる作業を同時に行うこと
ができるので、作業効率が極めて良くなるほか、その姿
勢制御機構や、周面摩擦低減機構などにより、確実で精
度の高い施工が可能となる。
In this way, different operations can be performed simultaneously in the upper and lower directions, so that the operation efficiency is extremely improved, and the posture control mechanism, the peripheral surface friction reducing mechanism, and the like enable reliable and highly accurate construction.

〔発明の効果〕〔The invention's effect〕

本発明によれば、下部ケーソンの刃口部の掘削やケー
ソンの沈設を行いながら、上部で鉄筋組立、コンクリー
トの打設作業等、ケーソンの上下部で異なる作業を同時
に行うことができ、しかも型枠の組立、解体作業が必要
でないので作業性が向上し、工期を大幅に短縮すること
ができる。
ADVANTAGE OF THE INVENTION According to this invention, while excavating the blade part of a lower caisson and laying a caisson, different works can be performed simultaneously at the upper and lower parts of the caisson, such as rebar assembly at the upper part, concrete placing work, and the like. Since frame assembling and dismantling operations are not required, workability is improved, and the construction period can be significantly reduced.

また、刃口下の確実な掘削、周面摩擦の低減とその姿
勢制御機構により、地盤の性状に拘らず確実で精度の高
い施工が確保される。
In addition, the reliable excavation under the cutting edge, the reduction of the peripheral friction, and the posture control mechanism ensure reliable and accurate construction regardless of the properties of the ground.

以上により、大深度施工に適した、工期が短く、確実
で精度の良いオープンケーソンが施工可能となる。
As described above, a reliable and accurate open caisson that is suitable for large depth construction, has a short construction period, and can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

図面は本発明のオープンケーソンの施工方法を示し、第
1図は全体の説明図、第2図は水中掘削機取付部の断面
図、第3図は滑動型枠装置の拡大断面図、第4図、第5
図及び第6図はそれぞれ異なるケーソン押下げ装置の説
明図で、第4図(A)は平面断面図、(B)は正面図、
第5図(A)は平面断面図、(B)は正面図、(C)は
拡大図、第6図(A)は平面断面図、(B)は正面図、
第7図はケーソン下部姿勢、位置制御装置の説明図、第
8図(A)、(B)は高圧水ジェット周面摩擦除去装置
の説明図、第9図(A)、(B)は滑材漏出防止部材の
説明図である。
The drawings show the construction method of the open caisson of the present invention, FIG. 1 is an overall explanatory view, FIG. 2 is a sectional view of an underwater excavator mounting portion, FIG. 3 is an enlarged sectional view of a sliding formwork device, FIG. Figure, fifth
FIG. 6 and FIG. 6 are explanatory views of different caisson pressing devices. FIG. 4 (A) is a plan sectional view, FIG. 4 (B) is a front view,
5 (A) is a plan sectional view, (B) is a front view, (C) is an enlarged view, FIG. 6 (A) is a plan sectional view, (B) is a front view,
FIG. 7 is an explanatory view of a caisson lower posture and position control device, FIGS. 8 (A) and (B) are explanatory diagrams of a high-pressure water jet peripheral surface friction removing device, and FIGS. 9 (A) and 9 (B) are slippers. It is explanatory drawing of a material leakage prevention member.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 E02D 23/14 102 E02D 23/14 102 E02F 3/30 E02F 3/30 Z E04G 11/20 E04G 11/20 (72)発明者 福本 修三 大阪府和泉市池田下町1779―3 ファミ リープラザ光明池1―301 (72)発明者 森山 克洋 埼玉県大宮市大字西遊馬1117―2 (72)発明者 中島 豊 神奈川県川崎市麻生区東百合ケ丘3―1 ―14―106 (72)発明者 谷 善友 埼玉県入間郡鶴ケ島町松ケ丘4―1―1 ―503 (56)参考文献 特開 昭48−19014(JP,A) 特開 昭63−44019(JP,A) 特開 平1−190876(JP,A) 実開 昭60−172896(JP,U) 特公 昭48−14087(JP,B1) 特公 昭61−27527(JP,B2) 特公 昭54−9809(JP,B2)──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location E02D 23/14 102 E02D 23/14 102 E02F 3/30 E02F 3/30 Z E04G 11/20 E04G 11 / 20 (72) Inventor Shuzo Fukumoto 1779-3 Ikeda Shitamachi, Izumi City, Osaka Prefecture 1-301 Familie Plaza Komeiike (72) Inventor Katsuhiro Moriyama 1117-2 Oishi Nishiyuma, Omiya City, Saitama Prefecture (72) Inventor Yutaka Nakajima Kanagawa 3-1-14-106, Higashi-Yurigaoka, Aso-ku, Kawasaki City, Japan (72) Inventor Yoshitomo Tani 4-1-1, 503-503, Tsurugashima-cho, Iruma-gun, Saitama Prefecture (56) References JP-A-48-19014 (JP, A) JP-A-63-44019 (JP, A) JP-A-1-190876 (JP, A) JP-A-60-172896 (JP, U) JP-B-48-14087 (JP, B1) JP-B-61 −27527 (JP B2) Tokuoyake Akira 54-9809 (JP, B2)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ケーソン躯体の下部内壁に横方向に延設し
たレールに沿って移動自在な地上より操作する水中掘削
機械を、ケーソン躯体の上部には作業床付滑動型枠を、
コンクリート打設後十分な養成期間を経たケーソン躯体
の外周部には移動可能にケーソン押下げ装置をそれぞれ
備え、ケーソン下部の刃口部では前記水中掘削機械によ
り水中掘削を行い、この掘削土砂を排出手段にて順次排
出し、前記ケーソン押下げ装置にてケーソンの沈設を行
いながら、ケーソン上部で鉄筋型枠の組立及びその後の
コンクリート打設を同時に行うことを特徴とするオープ
ンケーソンの施工方法。
An underwater excavation machine operable from the ground movably along a rail extending laterally on a lower inner wall of a caisson skeleton, a sliding formwork with a work floor on an upper part of the caisson skeleton,
A caisson presser is provided movably on the outer periphery of the caisson frame after a sufficient training period after concrete placement, and underwater excavation is carried out by the underwater excavation machine at the bottom of the caisson to discharge this excavated soil. A method for constructing an open caisson, comprising: simultaneously discharging the steel by means, assembling a reinforcing steel formwork on the upper part of the caisson, and subsequently placing concrete, while laying the caisson with the caisson pressing device.
【請求項2】沈設中のケーソンの姿勢や位置及びケーソ
ンに作用する刃口反力や周面摩擦、周面土圧を常時検出
し、ケーソン押下げ装置により偏荷重を作用させたり、
刃口下掘削形状を場所により変化させたりすることによ
って、沈設と同時にその姿勢、位置制御を行うことを特
徴とする請求項1記載のオープンケーソンの施工方法。
2. The attitude and position of the caisson during sinking and the reaction force of the cutting edge, peripheral friction, and peripheral earth pressure acting on the caisson are constantly detected, and an offset load is applied by a caisson pressing device.
2. The method for constructing an open caisson according to claim 1, wherein the posture and the position of the excavation are controlled simultaneously with the subsidence by changing the shape of the excavation under the cutting edge depending on the location.
【請求項3】ケーソン下部の刃口背面フリクションカッ
ト上部に、外周部に沿って横方向に複数個のジャッキを
配設し、個々のジャッキの圧力を変化させることによっ
てケーソン下部の水平移動を起こさせ、ケーソンの姿
勢、位置制御を行うことを特徴とする請求項2記載のオ
ープンケーソンの施工方法。
3. A plurality of jacks are arranged laterally along the outer periphery of the upper portion of the cutting edge rear surface friction cut at the lower part of the caisson, and the horizontal movement of the lower part of the caisson is caused by changing the pressure of each jack. 3. The method for constructing an open caisson according to claim 2, wherein the caisson attitude and position are controlled.
【請求項4】地上より操作する、ケーソンの下部内壁に
横方向に延設したレールに沿って移動自在な高圧水ジェ
ットパイプノズルを用い、ケーソン刃口直下より刃口背
面側の土砂を薄く削り取ることによって、ケーソン刃口
背面の周面摩擦を除去することを特徴とする請求項1又
は2記載のオープンケーソンの施工方法。
4. Using a high-pressure water jet pipe nozzle movable from the ground along a rail extending laterally to the lower inner wall of the caisson, thinly remove the earth and sand on the back side of the blade from immediately below the blade of the caisson. The method according to claim 1 or 2, wherein the friction of the peripheral surface of the back of the caisson blade is removed.
【請求項5】ケーソン下部の刃口背面フリクションカッ
ト上部に、上端が地山に追従するように広がる滑材漏出
防止部材の下端を、躯体外周部に沿って横方向に係止す
ることによって、ケーソン外周部と地山との間に介在さ
せた滑材の漏出を防止することを特徴とする請求項1又
は2記載のオープンケーソンの施工方法。
5. A lower end of a sliding material leakage prevention member, whose upper end spreads so as to follow the ground, is laterally locked along an outer peripheral portion of the skeleton on an upper portion of a cutting edge rear surface friction cut at a lower portion of the caisson. The construction method for an open caisson according to claim 1 or 2, wherein leakage of the sliding material interposed between the outer periphery of the caisson and the ground is prevented.
【請求項6】ケーソン躯体の下部内壁に横方向に延設し
たレールに沿って移動自在な地上より操作する水中掘削
機械と、ケーソン躯体の上部に設置した作業床付滑動型
枠と、コンクリート打設後十分な養成期間を経たケーソ
ン躯体の外周部に移動可能に設置したケーソン押下げ装
置と、ケーソンの位置や姿勢、沈下抵抗力の検出装置と
からなることを特徴とするオープンケーソンの施工装
置。
6. An underwater excavation machine operable from the ground movably along a rail extending laterally on a lower inner wall of a caisson body, a sliding formwork with a work floor installed on an upper part of the caisson body, and concrete casting An open caisson construction system, comprising a caisson depressing device movably installed on the outer periphery of the caisson frame after a sufficient training period after installation, and a device for detecting the position, posture, and settlement resistance of the caisson .
【請求項7】ケーソン下部の刃口背面フリクションカッ
ト上部に、金属、ゴムあるいは高強度繊維を材料とし
て、膨張可能な袋体とし、当袋体に注入する注入材の量
を制御することによりジャッキの機能を持たせた袋状ジ
ャッキを、ケーソン外周部に沿って複数個配設し、個々
のジャッキの圧力を地上から操作することにより変化さ
せ、ケーソン下部を水平移動させられる姿勢、位置制御
装置を有することを特徴とする請求項6記載のオープン
ケーソンの施工装置。
7. An inflatable bag made of metal, rubber or high-strength fiber is formed on the upper part of the cutting back surface of the caisson at the upper part of the cutting edge, and the jack is controlled by controlling the amount of the injection material injected into the bag. A plurality of sack-shaped jacks with the function of arranging them along the outer periphery of the caisson, changing the pressure of each jack from the ground, and moving the lower part of the caisson horizontally, a position control device The construction apparatus for an open caisson according to claim 6, comprising:
【請求項8】ケーソン下部内壁に、横方向に延設したレ
ールに沿って移動自在に取付けた架台に係合させた、刃
口に沿って伸縮自在で、先端ノズルが刃口背面直下にお
いて上方へ屈折自在な高圧水ジェット周面摩擦除去装置
を有することを特徴とする請求項6記載のオープンケー
ソンの施工装置。
8. An upper and lower end of the caisson is located just below the back surface of the caisson and is extendable and contractable along the blade opening engaged with a base movably mounted on a lower inner wall of the caisson along a rail extending laterally. The open caisson construction apparatus according to claim 6, further comprising a high-pressure water jet peripheral friction removing device that can be bent freely.
JP17614090A 1990-07-03 1990-07-03 Open caisson construction method and device Expired - Fee Related JP2717874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17614090A JP2717874B2 (en) 1990-07-03 1990-07-03 Open caisson construction method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17614090A JP2717874B2 (en) 1990-07-03 1990-07-03 Open caisson construction method and device

Publications (2)

Publication Number Publication Date
JPH0464620A JPH0464620A (en) 1992-02-28
JP2717874B2 true JP2717874B2 (en) 1998-02-25

Family

ID=16008363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17614090A Expired - Fee Related JP2717874B2 (en) 1990-07-03 1990-07-03 Open caisson construction method and device

Country Status (1)

Country Link
JP (1) JP2717874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027080A (en) * 2017-07-27 2019-02-21 株式会社安藤・間 Method and system for detecting subsoil unexcavated by caisson blade

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2935099B2 (en) * 1996-04-10 1999-08-16 古久根建設株式会社 Open caisson construction method
JP4504166B2 (en) * 2004-11-19 2010-07-14 靖子 長谷川 Reaction force device
JP2006207152A (en) * 2005-01-25 2006-08-10 Ps Mitsubishi Construction Co Ltd Open caisson press-fitting method
JP6076271B2 (en) * 2013-05-14 2017-02-08 Jfeシビル株式会社 Caisson press-fitting device and caisson press-fitting method
JP6552204B2 (en) * 2015-01-28 2019-07-31 大成建設株式会社 Caisson settling method and friction cut structure
JP2017218841A (en) * 2016-06-09 2017-12-14 鹿島建設株式会社 Submerging installation method for cylindrical body, and submerging installation support system
JP6995555B2 (en) * 2017-10-04 2022-01-14 オリエンタル白石株式会社 Caisson state prediction system and program
CN111719576B (en) * 2020-07-22 2024-10-15 陈静 Sinking guiding system suitable for underground shaft group construction and underground shaft group construction method
CN113062343B (en) * 2021-04-02 2024-10-11 北京中岩智泊科技有限公司 Open caisson deviation correcting device
CN113718757A (en) * 2021-08-28 2021-11-30 中铁时代建筑设计院有限公司 Bottom expanding device and method based on cast-in-place large-diameter tubular pile
CN114908789B (en) * 2022-06-22 2023-03-21 同济大学 Self-sinking and self-supporting device for edge foot of open caisson
CN114908788B (en) * 2022-06-22 2023-03-31 同济大学 Auxiliary sinking device for sunk well blade

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027080A (en) * 2017-07-27 2019-02-21 株式会社安藤・間 Method and system for detecting subsoil unexcavated by caisson blade

Also Published As

Publication number Publication date
JPH0464620A (en) 1992-02-28

Similar Documents

Publication Publication Date Title
JP2717874B2 (en) Open caisson construction method and device
CN110258582B (en) Inclined support foundation pit supporting structure based on steel pipe pile and Lassen steel plate and construction method
JP2022528743A (en) Wall subsidence construction method
CN109555116A (en) A kind of high density karst intense development area fully-sleeved filled pile construction method
CN106930321A (en) Underground structure novel construction method is built in a kind of pipe-jacking with large diameter combination hole stake
CN108316289A (en) Big grain size shiver stone Gao Tian area's pile foundation fast pore-creating structures and its construction technology
CN208088288U (en) The big areas grain size shiver stone Gao Tian pile foundation fast pore-creating structure
CN112064751A (en) Deep groove construction method for drainage pipeline
CN113026715A (en) High-fill roadbed dynamic compaction construction method
CN104264683A (en) Concave ultra-deep foundation pit zoned supporting method for three-side surrounded cultural protection building
CN109056763A (en) Combined type cofferdam structure and underwater work platform
CN111287194A (en) Recyclable foundation pit supporting structure using inclined steel sheet piles and supporting method thereof
CN217378907U (en) Deep soft soil pool foundation pit support system for complex land storage yard
CN108797609A (en) Environmentally protective steel pipe steel plate combination construction method for supporting
JP4313263B2 (en) Continuous underground wall and mountain retaining method
CN210621709U (en) Inclined support foundation pit supporting structure based on steel pipe pile and Larsen steel plate
CN114922195A (en) Construction method of soft soil deep and large foundation pit adjacent to protected object
JP4260448B2 (en) Connection method and structure of submerged shaft and horizontal shaft
CN212336065U (en) Guiding and sinking system suitable for underground shaft group construction
CN212248262U (en) Recoverable foundation pit supporting structure using inclined steel sheet piles
CN114657974A (en) Method for quickly splicing cast-in-place pile under complex geological condition
CN109098205B (en) Civil air defense underground passage and construction method thereof
CN112065433A (en) Pipe jacking working well supporting and water stopping assembly and construction method
CN209975535U (en) Supporting-free double-layer arc-shaped drilling and pouring deep foundation pit retaining structure
CN221053224U (en) Space attitude high-precision control device based on reverse construction method embedded column installation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees