JPS6144197B2 - - Google Patents

Info

Publication number
JPS6144197B2
JPS6144197B2 JP8878979A JP8878979A JPS6144197B2 JP S6144197 B2 JPS6144197 B2 JP S6144197B2 JP 8878979 A JP8878979 A JP 8878979A JP 8878979 A JP8878979 A JP 8878979A JP S6144197 B2 JPS6144197 B2 JP S6144197B2
Authority
JP
Japan
Prior art keywords
water
vertical
shaft
mud
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8878979A
Other languages
Japanese (ja)
Other versions
JPS5612496A (en
Inventor
Koichi Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kidoh Construction Co Ltd
Original Assignee
Kidoh Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kidoh Construction Co Ltd filed Critical Kidoh Construction Co Ltd
Priority to JP8878979A priority Critical patent/JPS5612496A/en
Publication of JPS5612496A publication Critical patent/JPS5612496A/en
Publication of JPS6144197B2 publication Critical patent/JPS6144197B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【発明の詳細な説明】 本発明は、鉛直方向の曲線を有する小口径管
(円型あるいは矩型ヒユーム管、鋳鉄管、合成樹
脂管であつて、φ400m/m〜φ1000m/m程度の
もの、以下これを単に曲管という。)を該曲線を
保持しつつ推進埋設する工法およびその装置に係
り、その要旨とするところは、立坑において、推
進用油圧ジヤツキの伸縮長作動とピンの着脱によ
り順次曲管を推進埋設する工程と、切羽地盤に選
択的に圧水して泥土化掘削し立坑外へ流体輸送す
る工程と、シールド機内に溜水タンクを設け立坑
外の貯水タンクへ配管し該溜水タンクにおける水
圧を検出して深度測定をする一方該シールド機内
に縦軸方向および横軸方向に各々水準器を設け且
つ電気的に水平偏位を検出するとともに上記2工
程の連続あるいは断続作業を行うことを特徴とす
る鉛直方向の曲線を有する小口径管を該曲線を保
持しつつ推進埋設する工法、であつてさらに該工
法に直接使用するものとして、電気的に縦軸方向
および横軸方向の水平レベルを検出する水準器と
選択的に水を噴射するべくした分流調節器と電気
的に水圧を測定する深度検出器をシールド機の内
室に設け且つ該機内に切羽面を閉塞し泥土掘削す
る後方に小さい閉塞部を設けるとともに後方管内
に泥土を排送する配管を施し、さらに上記各機器
装置を助成する泥水処理装置、圧水装置および集
中操作装置より成ることを特徴とする上記工法に
直接使用する装置にある。 従来、この種の工法およびその装置としては、
特開昭54−54408号をあげることができる。しか
し、この発明の従来技術は、(1)切羽掘削および排
土方法。(2)方向制御方法すなわち鉛直方向におけ
る深度測定および左右の偏向測定。(3)その他作業
能率の向上、精度を得る点等について種々技術的
に改良すべきところであり、従来技術のままでは
旋工上の難点を多く含んでいるものである。 本発明は、上記のような従来技術の欠陥に鑑み
て開発に至つたもので、次に本発明の1実施例を
第1図、第2図、第3図、第4図、第5図、第6
図、第7図、第8図および第9図に示し詳細に説
明する。 いま、第1図、第2図および第3図に示すよう
に、鉛直方向に曲率Rを有する曲管を推進用油
圧ジヤツキ35,35を用いて地盤中52に順次
推進理設するものとするならば、発進立坑1に該
曲率Rを有する発進装置30を設置する。該装置
30は補強部材31とともに曲率なる発進レー
ル32を主体として成り、該発進レール32上は
上記油圧ジヤツキ35,35の推力の反力受とし
てアンカー部材34を載荷し、該部材34は左右
に位置するピン構造37,37にて反力賦与され
るもので、且つ該レール32の後方より順次前方
へ移動し曲管5を前進させるものである。よつ
て、1本の曲管5の推進が終了すると、ウインチ
等36によつて油圧ジヤツキ35,35およびア
ンカー部材34を後方へ引き戻し、次に他の管5
を上記レール32上に据え付け、連結12し再度
繰り返し前進操作を行う。このようにして、地盤
中52に布設された管の立坑1,2における両
端は、その前後に位置する既設管3,4の口端の
近くに設置するべく推進埋設が容易である。しか
るに、例えば、河川やその他地上あるいは地下に
既設構造物が存在する場合、これらに影響しない
深さh3を求め正確に該位置に埋設し得、一方上記
の両端は地下の非常に浅い位置に設けること
ができ、よつて両立坑1,2も非常に浅くh1設け
ることによつて足り、掘削土量も極少とする等多
くの利点を有する工法である。 しかしながら、該工法をさらに実用的に改良し
た本発明工法およびその装置を提供するものであ
る。 まず、所定位置に設けた発進用立坑1内に発進
装置30を据え付け、しかるのちシールド機11
を冠着する曲管5−1を発進レール32上に設置
する。次に、油圧ジヤツキ35,35を作動し、
地盤中52へ前進させる。このとき、管列が設
計通りの曲率Rをもつて前進しているならば、シ
ールド機11において全部の噴射口15………,
16………より圧水し切羽地盤51を泥水化し
て、吸水口17より該泥土を排泥管18によつて
流動的に立坑1外へ搬送し泥土処理装置39へ運
び込み水と土を分離し他界へ処理する。この作業
は、管5………の前進、停止にともない連続ある
いは断続して行う。一方、管列が設計位置より
偏位しているときの作業例としては、圧水による
掘削の調整を行うものである。つまり、この圧水
の調整および操作は全て集中操作装置42を介し
観測あるいは操作され、分流調節器20には圧水
装置41から配管22されているとともに上記装
置42から電気的に連結21され、さらにシール
ド機11におけるカツテイングエツヂ13および
閉塞部14における噴射口15………,16……
…を上下、左右部を各区分(例えば、a,b,
c,d)毎に選択的に噴射する、且つ電気的な切
替弁機構(図示省略)の作動により圧水の強弱も
合せて行うように成つている。なお、該区分方法
は上記例以外に地盤状況、シールド機11のカツ
テイングエツヂ13あるいは閉塞部14の大き
さ、形状等によつて決定される。 このようにして、順次曲管5………を発進レー
ル32に据え置き前進させるにあたつて、次に該
曲管5………の先頭すなわちシールド機11の地
盤内52の位置あるいは姿勢がどうであるかを随
時確認しつつ作業を進める必要があり、しかるに
本発明では、シールド機11がどの深さhxにあ
るかを検出する装置を設けた。つまり、前述にも
したように該機11内に溜水タンク27を設け立
坑1外の貯水タンク38へ配管22を延長して成
り、該貯水タンク38には常に一定量の水48を
満し、さらにタンク27内には深度hxの変化を
測定する水圧検出器53を内蔵してあり上記操作
装置42へ電気的信号を送り表示される。 さらに、該シールド機11内には、管列に対
して、縦軸方向と横軸方向に平行に各々水準器2
3,25を直交して設けて成り、縦軸方向におけ
る水準器23はシールド機11の処定の曲率Rか
らの逸脱偏位の検出を司どり、一方横軸方向に平
行なる水準器25はいわゆる横振れの検出を司ど
る。この横振れは、シールド機11が管列に独
立して横振れする場合と管列に全体的なねじれ
を起している場合である。すなわち、第8図に示
すように設計のセンターおよびレベル軸をY1
Y0,X1−X0とし、いまθ角偏位したとするなら
ばY1−Y1,X1−X1となり、中心点はO−O1と移
行する。よつて、上記水準器25がこの偏位量を
検出し電気的に集中操作装置42に連絡するとと
もに表示した成る。なお、本工法の場合、鉛直方
向の曲線推進であるため上記X0−X0は水平の平
行な上下移動が正常な形であり、またY0−Y0
常に該一軸が正常である。 したがつて、集中操作装置42の位置にいるオ
ペレーターは、該装置42の計器観測をすること
によつてシールド機11の状態を把握できる。ま
た、切羽掘削状況および方向制御状況、圧水作
業、深度測定、センサーおよびレベル測定を計器
(図示省略)観測しつつ各操作を行うものであ
る。 上記系統図を、第9図に示し、いまBブロツク
は立坑1外あるいはその周辺に、Cブロツクは立
坑1内に、さらにDブロツクは切羽地盤付近に位
置するものである。 以上にして成る本発明によれば、次のような有
用な効果を奏する。 すなわち、従来では、曲率を有する管を地盤中
に推進させる場合、精度を計測することなくいわ
ゆる盲状態で推進せざるを得なく、ましてシール
ド機11が回転(方向偏位)してもその対策方法
を得ないものであつた。一方、円型管では進路方
向が非常に不安定であるために多くは矩型断面の
ものが用いられる。何故ならば、4面が平面をな
しているために方向偏位しにくいものであるが、
いつたん方向偏位すると直りにくいという欠点が
ある。また、多くは管5−1,5−2………5−
Nは各連結部12………で強着されているために
全管列がいわゆるねじれという形で推進され
る。従来では、この現象を招来するとは修正は非
常に困難で、ましてこの発見すらも困難を呈して
いる。 ところが、本発明は従来技術の欠陥を解決し得
たもので、つまり切羽地盤を選択的に圧水掘削し
方向制御を容易にし、シールド機11の偏位を測
定するとともに深度測定を行い且つ流体搬出する
ようにしたので、シールド機11の地盤中におけ
る位置、姿勢、精度を確認し得さらに確実に切羽
掘削ができ、また高能率な排土を行うことができ
推進埋設作業が頻る速くなつた。一方、立坑が浅
くて良いので掘削土量が極少となり安全面はもち
ろん工事費も安価を呈する。さらに、地下障害物
を回避して施工し得るので、従来のように障害物
(既設構造物)に布設位置が左右される問題も少
なくなつた。 本発明は、上記1実施例をもつて説明したが、
他に特許法の精神を逸脱しない範囲で設計、施工
の改変を行いうるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides small-diameter pipes (circular or rectangular hump pipes, cast iron pipes, synthetic resin pipes, approximately φ400 m/m to φ1000 m/m) having vertical curves; (Hereinafter, this is simply referred to as a curved pipe.) This relates to a construction method and device for propulsion and burying a pipe while maintaining its curve. The process of moving and burying the curved pipe, selectively pressing water into the face ground to excavate it into mud and transporting the fluid outside the shaft, and installing a water tank inside the shield machine and piping it to a water storage tank outside the shaft. While measuring the depth by detecting the water pressure in the water tank, level gauges are provided inside the shield machine in the vertical and horizontal directions, and the horizontal deviation is electrically detected, and the above two steps can be carried out continuously or intermittently. A construction method in which a small-diameter pipe having a vertical curve is propelled and buried while maintaining the curve, and furthermore, as a method directly used in this construction method, it is electrically A spirit level for detecting the horizontal level of water, a diversion regulator for selectively injecting water, and a depth detector for electrically measuring water pressure are installed in the interior of the shield machine. The method described above is characterized in that a small blockage is provided at the rear of the excavation, and piping is installed to discharge mud into the rear pipe, and the method further comprises a mud water treatment device, a water pressure device, and a central operation device that assist each of the above equipment devices. It is located in the equipment used directly. Conventionally, this type of construction method and its equipment include:
I can cite JP-A No. 54-54408. However, the prior art of this invention is (1) face excavation and earth removal method. (2) Direction control method, namely depth measurement in the vertical direction and left and right deflection measurement. (3) Various other technical improvements are needed in terms of improving work efficiency and accuracy, and the conventional technology as it is has many difficulties in turning. The present invention was developed in view of the deficiencies of the prior art as described above. Next, one embodiment of the present invention is shown in FIGS. 1, 2, 3, 4, and 5. , 6th
7, 8 and 9 and will be described in detail. Now, as shown in FIGS. 1, 2, and 3, it is assumed that a bent pipe 5 having a curvature R in the vertical direction is successively propelled into the ground 52 using propulsion hydraulic jacks 35, 35. If so, the starting device 30 having the curvature R is installed in the starting shaft 1. the device
30 mainly consists of a starting rail 32 with a curvature R together with a reinforcing member 31. An anchor member 34 is loaded on the starting rail 32 as a reaction force receiver for the thrust of the hydraulic jacks 35, 35, and the member 34 is located on the left and right. A reaction force is applied by the pin structures 37, 37, which move sequentially from the rear of the rail 32 to the front to advance the curved pipe 5. Therefore, when the propulsion of one bent pipe 5 is completed, the hydraulic jacks 35, 35 and the anchor member 34 are pulled back rearward by the winch etc., and then the other pipe 5 is moved back.
is installed on the rail 32, connected 12, and repeatedly operated forward again. In this way, both ends of the pipe 5 laid in the ground 52 in the shafts 1 and 2 can be easily pushed and buried near the mouth ends of the existing pipes 3 and 4 located before and after the pipe 5. However, for example, if there are rivers or other existing structures on the ground or underground, it is possible to find a depth h3 that does not affect these structures and bury them precisely at the location, while both ends of the pipe 5 are buried underground at a very shallow depth. This construction method has many advantages, such as the fact that both shafts 1 and 2 only need to be very shallow and h1 , and the amount of soil excavated is extremely small. However, it is an object of the present invention to provide a construction method and an apparatus therefor, which are further practical improvements to the construction method. First, the launch device 30 is installed in the launch shaft 1 provided at a predetermined position, and then the shield machine 11
A bent pipe 5-1, which is to be crowned with a bent pipe 5-1, is installed on the starting rail 32. Next, operate the hydraulic jacks 35, 35,
Advance to 52 inside the ground. At this time, if the tube array 5 is moving forward with the designed curvature R, all the injection ports 15 in the shield machine 11 ...
16...Turns the face ground 51 into muddy water by applying pressure from the water intake port 17, fluidly transports the mud out of the shaft 1 through the mud removal pipe 18, and carries it to the mud treatment device 39 to separate water and soil. and process it in another world. This work is performed continuously or intermittently as the pipe 5 moves forward or stops. On the other hand, an example of work when the pipe array 5 is deviated from the designed position is to adjust excavation using pressurized water. That is, the adjustment and operation of this pressure water is all monitored or operated via the central operation device 42, and the branch flow regulator 20 is connected to the pressure water device 41 via piping 22 and electrically connected 21 from the device 42. Further, the cutting edge 13 in the shield machine 11 and the injection ports 15 in the closing part 14..., 16...
… into upper and lower sections, left and right sections (for example, a, b,
The pressure water is selectively injected for each of c and d), and the strength of the pressure water is also controlled by the operation of an electric switching valve mechanism (not shown). In addition to the above example, the classification method is determined by the ground condition, the size and shape of the cutting edge 13 or the closing part 14 of the shield machine 11 , etc. In this way, when the bent pipes 5 are placed on the starting rail 32 and moved forward, the next step is to determine the position or attitude of the beginning of the bent pipes 5, that is, the position or attitude of the ground 52 of the shield machine 11. It is necessary to proceed with the work while checking from time to time whether the shielding machine 11 is at a certain depth or not.However, in the present invention, a device is provided to detect at what depth hx the shield machine 11 is located. That is, as mentioned above, the water storage tank 27 is provided inside the machine 11 and the piping 22 is extended to the water storage tank 38 outside the shaft 1, and the water storage tank 38 is always filled with a certain amount of water 48. Furthermore, a water pressure detector 53 is built in the tank 27 to measure changes in depth hx, and an electrical signal is sent to the operating device 42 for display. Further, within the shield machine 11 , there are spirit levels 2 parallel to the tube row 5 in the vertical axis direction and the horizontal axis direction.
3 and 25 are provided perpendicularly to each other, and the level 23 in the vertical axis direction is in charge of detecting the deviation of the shield machine 11 from the predetermined curvature R, while the level 25 parallel to the horizontal axis is Controls the detection of so-called lateral shake. This lateral vibration occurs when the shield machine 11 laterally oscillates independently of the tube row 5 , and when the tube row 5 is entirely twisted. That is, as shown in Figure 8, the center and level axes of the design are set to Y 1
If Y 0 , X 1 -X 0 are now shifted by an angle of θ, then they become Y 1 -Y 1 , X 1 -X 1 , and the center point shifts to O-O 1 . Therefore, the level gauge 25 detects this amount of deviation, electrically communicates it to the central operation device 42, and displays it. In addition, in the case of this construction method, since the propulsion is in a curved line in the vertical direction, the above-mentioned X 0 - X 0 has a normal horizontal parallel vertical movement, and Y 0 - Y 0 is always normal in the one axis. Therefore, an operator located at the central operation device 42 can grasp the status of the shield machine 11 by observing the instruments of the device 42. In addition, each operation is performed while observing the face excavation status, direction control status, water pressure work, depth measurement, sensor, and level measurement using instruments (not shown). The above system diagram is shown in FIG. 9, where the B block is located outside or around the shaft 1, the C block is located inside the shaft 1, and the D block is located near the ground face. According to the present invention as described above, the following useful effects are achieved. In other words, in the past, when propelling a pipe with curvature into the ground, it had to be propelled in a so-called blind state without measuring its accuracy, and even if the shield machine 11 rotates (deviates in direction), there is no countermeasure. There was no way out. On the other hand, since the traveling direction of circular tubes is extremely unstable, those with a rectangular cross section are often used. This is because the four faces are flat, making it difficult to deviate in direction.
The disadvantage is that once the direction is deviated, it is difficult to correct it. Also, many tubes 5-1, 5-2...5-
Since the tubes N are firmly attached at each connecting portion 12, the entire tube array 5 is propelled in a so-called twisting manner. Conventionally, it has been extremely difficult to correct this phenomenon, let alone to discover it. However, the present invention has been able to solve the deficiencies of the prior art, namely, to selectively excavate the face ground with pressure water to facilitate directional control, measure the deflection of the shield machine 11 , perform depth measurement, and perform hydraulic excavation. Since it is carried out, the position, posture, and accuracy of the shield machine 11 in the ground can be confirmed, and face excavation can be performed more reliably. Also, highly efficient earth removal can be performed, and the propulsion burial work can be done more quickly. Ta. On the other hand, since the shaft can be shallow, the amount of excavated soil is minimal, which not only improves safety but also reduces construction costs. Furthermore, since the installation can be carried out while avoiding underground obstacles, there is no longer a problem that the installation position is influenced by obstacles (existing structures) as in the past. Although the present invention has been explained using the above-mentioned one embodiment,
Other modifications to the design and construction may be made without departing from the spirit of patent law.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、曲線推進工法の一般縦断説明図。第
2図は、立坑1付近の一般縦断説明図。第3図
は、第2図−矢視平面図。第4図は、本発明
によるシールド機11の部分断面説明図。第5図
は、第4図−矢視正面図。第6図は、第4図
−矢視縦断説明図。第7図は、第4図−
矢視断面図。第8図は、矩型シールド機11断面
の傾斜状況を表わす説明図。第9図は、本発明の
システムを表わす一般ブロツク説明図を示す。 なお、図中、Hは地表から曲線推進の管の最下
底までの深さ、h2は立坑底から曲線推進の管の最
下底までの深さ、6は従来埋設方法による管、
7,8は従来方法による掘削土量、9−1,9−
2は接続管、10−1,10−2は接続管、11
はシールド機、12は連結部、13はカツテイン
グエツヂ、14は閉塞部、15,16は噴射口、
17は吸入口、18は排泥管、19−1,19−
2は圧水用配管、20は分流調節器、21はケー
ブル、22は圧水用配管、23,25は水準器、
24,26はケーブル、27は溜水タンク、28
は水配管、29はケーブル、30は発進装置、3
3はピン孔、38は貯水タンク、39は泥土処理
装置、40は油圧ユニツト、41は圧水装置、4
2は集中操作装置、43,44,45,46はケ
ーブル、47は油圧ホース、48は水、50は内
室、51は切羽地盤、52は地盤、53は貯水タ
ンク38の水位、54は溜水タンク27の水位、
a,b,c,dは噴射口15,16の区分群を表
わす。
Figure 1 is a general longitudinal explanatory diagram of the curve propulsion method. FIG. 2 is a general longitudinal explanatory diagram of the vicinity of shaft 1. FIG. 3 is a plan view taken in the direction of the arrows in FIG. 2. FIG. 4 is a partial cross-sectional explanatory diagram of the shield machine 11 according to the present invention. FIG. 5 is a front view taken in the direction of the arrows in FIG. 4. FIG. 6 is a longitudinal cross-sectional view of FIG. 4; Figure 7 is the same as Figure 4-
Cross-sectional view in the direction of arrows. FIG. 8 is an explanatory diagram showing the inclination of the cross section of the rectangular shield machine 11. FIG. 9 shows a general block diagram representing the system of the present invention. In addition, in the figure, H is the depth from the ground surface to the bottom of the curved propulsion pipe, h2 is the depth from the bottom of the shaft to the bottom of the curved propulsion pipe, 6 is the pipe buried by the conventional method,
7 and 8 are the amounts of soil excavated by the conventional method, 9-1, 9-
2 is a connecting pipe, 10-1, 10-2 is a connecting pipe, 11
is a shield machine, 12 is a connecting part, 13 is a cutting edge, 14 is a blocking part, 15 and 16 are injection ports,
17 is the suction port, 18 is the mud drain pipe, 19-1, 19-
2 is a pressure water pipe, 20 is a branch flow regulator, 21 is a cable, 22 is a pressure water pipe, 23 and 25 are a level,
24, 26 are cables, 27 is a water tank, 28
is the water pipe, 29 is the cable, 30 is the starting device, 3
3 is a pin hole, 38 is a water storage tank, 39 is a mud treatment device, 40 is a hydraulic unit, 41 is a water pressure device, 4
2 is a central operation device, 43, 44, 45, 46 are cables, 47 is a hydraulic hose, 48 is water, 50 is an interior chamber, 51 is a face ground, 52 is a ground, 53 is a water level in a water storage tank 38, and 54 is a reservoir. Water level of water tank 27,
a, b, c, and d represent divided groups of injection ports 15 and 16.

Claims (1)

【特許請求の範囲】 1 立坑において、推進用油圧ジヤツキの伸縮長
作動と推進反力を得るためのピンの着脱により順
次曲管を推進埋設する工程。切羽地盤に推進刃口
内側に設けた複数列の注水孔の任意の孔から圧力
水を注入し、泥土化掘さくし、立坑外へ流体輸送
する工程。シールド機内に溜水タンクを設け立坑
外の貯水タンクへ配管し該溜水タンクにおける水
圧を検出して深度測定をする一方該シールド機内
に縦軸方向および横軸方向に各々水準器を設け且
つ電気的に水平偏位を検出するとともに上記2工
程の連続あるいは断続作業を行うことを特徴とす
る鉛直方向の曲線を有する小口径管を該曲線を保
持しつつ推進埋設する工法。 2 電気的に縦軸方向および横軸方向の水平レベ
ルを検出する水準器と縦軸方向および横軸方向の
レベルを検出する水準器の読みから切羽の掘さく
を多くする側面を知り推進刃口内側に設けた複数
条、複数列の注水孔からバルブの開閉により選択
的に水を噴射するべくした分流調節器と立坑外の
貯水タンクへ配管した貯水タンクおける水圧を電
気的に感知測定する感圧素子を備えた深度検出器
をシールド機の内室に設け且つ該機内は、注水孔
及び後端に泥土排出口を設け注水孔、泥土排出口
以外の機内刃口部は切羽に対し密閉閉塞構造と
し、泥土排出口は、後方管内に泥土を排送する配
管を施し、さらに上記各機器装置を用い、切羽地
盤に圧力水を噴射掘さくし、圧力水で流送し、水
と泥土を分離し、かつこれらの作業を集中運転す
る圧水装置、泥水処理装置及び集中操作装置より
成り、立坑において推進用油圧ジヤツキおよびこ
の推力の反力受となるアンカー部材を設ける一
方、発進レールに複数のピン孔を設け、このピン
孔にピンを挿通してアンカー部材を固定すること
により鉛直方向の曲線を有する小口径管を該曲線
を保持しつつ推進埋設する装置。
[Claims] 1. A process of sequentially propelling and burying bent pipes in a vertical shaft by operating a propulsion hydraulic jack to expand and contract its length and attaching and detaching pins to obtain a propulsion reaction force. A process in which pressurized water is injected into the ground face from any one of the multiple rows of water injection holes provided inside the propulsion blade mouth, which turns the ground into mud and transports the fluid to the outside of the shaft. A water tank is installed inside the shield machine, and the water pressure in the tank is detected by piping to the water tank outside the shaft to measure the depth. Level gauges are installed inside the shield machine in the vertical and horizontal directions, and electrical A construction method for moving and burying a small-diameter pipe having a vertical curve while maintaining the curve in the vertical direction, characterized by detecting horizontal deviation and performing the above two steps continuously or intermittently. 2. Know the aspect of increasing excavation of the face from the readings of the spirit level that electrically detects the horizontal level in the vertical and horizontal directions, and the level that detects the level in the vertical and horizontal directions. A shunt regulator that selectively injects water from multiple rows of water injection holes provided inside by opening and closing valves, and a sensor that electrically senses and measures water pressure in a water storage tank that is piped to a water storage tank outside the shaft. A depth detector equipped with a pressure element is installed in the inner chamber of the shield machine, and the inside of the machine has a water injection hole and a mud discharge port at the rear end, and the machine's blade opening other than the water injection hole and mud discharge port are sealed and closed against the face. The mud discharge port is equipped with piping for discharging mud into the rear pipe, and using the above-mentioned equipment, pressurized water is injected into the ground at the face, and the water and mud are separated. It consists of a water pressure system, a muddy water treatment system, and a central operation system for centrally operating these operations.A hydraulic jack for propulsion and an anchor member to receive the reaction force of this thrust are installed in the shaft, while multiple systems are installed on the starting rail. A device for propelling and burying a small diameter pipe having a vertical curve while maintaining the curve by providing a pin hole and inserting a pin into the pin hole to fix an anchor member.
JP8878979A 1979-07-12 1979-07-12 Method and device for progressively laying smallldiameter pipe underground while maintaining vertical curve of said pipe Granted JPS5612496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8878979A JPS5612496A (en) 1979-07-12 1979-07-12 Method and device for progressively laying smallldiameter pipe underground while maintaining vertical curve of said pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8878979A JPS5612496A (en) 1979-07-12 1979-07-12 Method and device for progressively laying smallldiameter pipe underground while maintaining vertical curve of said pipe

Publications (2)

Publication Number Publication Date
JPS5612496A JPS5612496A (en) 1981-02-06
JPS6144197B2 true JPS6144197B2 (en) 1986-10-01

Family

ID=13952598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8878979A Granted JPS5612496A (en) 1979-07-12 1979-07-12 Method and device for progressively laying smallldiameter pipe underground while maintaining vertical curve of said pipe

Country Status (1)

Country Link
JP (1) JPS5612496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350492A (en) * 1989-07-18 1991-03-05 Hekinan Tokushu Kikai Kk Baking furnace

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965199A (en) * 1982-10-06 1984-04-13 株式会社渡辺組 Small diameter pipe drilling apparatus
JPS6047198A (en) * 1983-08-24 1985-03-14 久保田 俊剛 Method of underground propulsive construction and device thereof
JPS6149100A (en) * 1984-08-13 1986-03-10 三井建設株式会社 Oval shield drilling machine
JP2008050810A (en) * 2006-08-23 2008-03-06 Kumagai Gumi Co Ltd Excavator for penetrating steel pipe
JP2008050809A (en) * 2006-08-23 2008-03-06 Kumagai Gumi Co Ltd Method of intruding steel pipe and excavating device for intruding steel pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350492A (en) * 1989-07-18 1991-03-05 Hekinan Tokushu Kikai Kk Baking furnace

Also Published As

Publication number Publication date
JPS5612496A (en) 1981-02-06

Similar Documents

Publication Publication Date Title
JPS6144197B2 (en)
US2656683A (en) Method of installing underground pipes or ducts
JP3891345B2 (en) Underground curve drilling device and drilling control method using the device
JPH01321309A (en) Method and apparatus for measuring relative height of driving long cylindrical body for cross hole excavation in movement
CN114412485A (en) Shield tunneling test platform suitable for various large-scale mechanical occasions and use method of platform
JP3698467B2 (en) Injection control device
JP3989624B2 (en) Position measuring device for submarine or submarine civil engineering machinery or cable burying machine
JP2991603B2 (en) Buried pipe propulsion type excavator and direction control method thereof
JPS6030838B2 (en) Direction correction method for propelled underground structures
JPH0492082A (en) Automatic directional control method of shield excavator
JP3515719B2 (en) Lubricant supply method
JP3292525B2 (en) Small diameter pipe thruster and control method thereof
CN218757413U (en) Multi-point combined grouting system for controlling displacement
JP3656061B2 (en) How to measure the position of an excavator
JPS6248040B2 (en)
JP2753558B2 (en) Small bore excavator and direction correction method in small bore propulsion method
JPH0248553Y2 (en)
JP3976195B2 (en) Small-diameter pipe propulsion method with one muddy water method
JPH06323851A (en) Method and equipment for measuring depth of tunnel and bubble removing method therefor
JP2001065287A (en) Pipe jacking method in curved line and jacking device
JP3055708U (en) Existing pipe position inspection device
JPS5931826Y2 (en) Inclination measuring device for leading pipe in pipe burying equipment
JPS6128080B2 (en)
JP3685329B2 (en) Travel distance measurement method
JP2003042707A (en) Excavation method