JPS6030440A - Stratified charging engine - Google Patents

Stratified charging engine

Info

Publication number
JPS6030440A
JPS6030440A JP58138493A JP13849383A JPS6030440A JP S6030440 A JPS6030440 A JP S6030440A JP 58138493 A JP58138493 A JP 58138493A JP 13849383 A JP13849383 A JP 13849383A JP S6030440 A JPS6030440 A JP S6030440A
Authority
JP
Japan
Prior art keywords
fuel
engine
combustion
stratified
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58138493A
Other languages
Japanese (ja)
Other versions
JPH0639928B2 (en
Inventor
Takashige Tokushima
徳島 孝成
Hiroyuki Oda
博之 小田
Takeshi Matsuoka
松岡 孟
Haruo Okimoto
沖本 晴男
Masakimi Kono
河野 誠公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58138493A priority Critical patent/JPH0639928B2/en
Publication of JPS6030440A publication Critical patent/JPS6030440A/en
Publication of JPH0639928B2 publication Critical patent/JPH0639928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D33/00Controlling delivery of fuel or combustion-air, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To ensure the condition of an engine to be early warmed so as to obtain good performance of purifying its exhaust, by performing lean state stratified combustion in a range when the engine is low loaded while uniform combustion in a range when it is high loaded while decreasing an intake air amount so as to generate rich air-fuel ratio when the engine is cooled in a cold state. CONSTITUTION:A control device 16, when it is in low and intermediate loaded ranges by a load detecting means 17, stops supply of dispersed fuel by a fuel supply means 13, fully opens a throttle valve 14 by a means 21 to hold an intake air amount to a fixed level and supplies stratified fuel around an ignition device 8 from a fuel supply means 11, performing lean state stratified combustion. Next, the control device 16, if it advances to the range above a preset load, transfers the combustion to uniform combustion first by starting the supply of the dispersed fuel from the fuel supply means 13 next by decreasing supply of the stratified fuel. While the control device 16, in its low and intermediate loaded ranges when an engine is cooled in a cold state, decreases an opening of the throttle valve 14 smaller as a load decreases so as to reduce an intake air amount and generate a rich mixture, promoting the engine to be warmed. In this way, good stratified combustion is performed while a warming characteristic of the engine and purifying performance of its exhaust can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、層状給気エンジンに関するものである。[Detailed description of the invention] (Industrial application field) BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stratified air charge engine.

(従来技術) 従来より、エンジンの燃費性、エミッション性を改善す
る目的から、負荷に応じて燃焼室に供給する燃料のうち
着火に必要な燃料だtノを着火装置の近傍に偏在させて
、この部分のみの空燃比を濃くして着火性を向上した層
状燃焼を行うようにして、全体として希薄燃焼が実現で
きる層状給気エンジンが、例えば特開昭49−6280
7号、特開昭49−128109号に見られるように公
知である。
(Prior art) Conventionally, for the purpose of improving the fuel efficiency and emission performance of an engine, fuel necessary for ignition among the fuel supplied to the combustion chamber according to the load is unevenly distributed in the vicinity of the ignition device. A stratified air charge engine that can realize lean combustion as a whole by enriching the air-fuel ratio only in this part to perform stratified combustion with improved ignitability has been proposed, for example, in Japanese Patent Application Laid-Open No. 49-6280.
No. 7, JP-A-49-128109.

上記層状給気エンジンにおい°Cは、着火装置まわりに
供給する着火用燃料は負荷に関係なく一定とし、この着
火用燃料の供給と同時に負荷に応じた量の分散燃料を供
給するようにしているものであり、エンジン冷機時につ
いてもエンジン暖機時と同様に着火装置のまわりに偏在
した燃料を主体とした層状燃焼を行うと、排気温度が低
いことから、[!l!i機性、排気浄化性能に問題があ
る。
In the above-mentioned stratified air supply engine, the ignition fuel supplied around the ignition device is kept constant regardless of the load, and at the same time the ignition fuel is supplied, an amount of dispersed fuel corresponding to the load is supplied. However, when the engine is cold, if stratified combustion based on the fuel unevenly distributed around the ignition device is performed in the same way as when the engine is warm, the exhaust temperature will be low, so [! l! There are problems with the functionality and exhaust purification performance.

寸なわら、層状燃焼においては、希薄燃焼の実現によっ
て燃費性を向上するとともに、絞り弁の開度を大きくし
てボンピングロスの低減を図るようにしているものであ
るが、吸入空気mが多くなって冷却性が増大づるために
排気温度が低下する。
However, in stratified combustion, fuel efficiency is improved by achieving lean combustion, and the opening of the throttle valve is increased to reduce pumping loss. As a result, the cooling performance increases and the exhaust temperature decreases.

この層状燃焼をエンジンの冷機時においても行っている
と、エンジン温度が@機濡度にまで上昇するのに長時間
を要づるとともに、排気系に設けた触媒装dの温度が低
く触媒が活性化せず反応温度に達しないことから、十分
な浄化性能が得られず、エミッション性が低下する問題
を有する。
If this stratified combustion is performed even when the engine is cold, it will take a long time for the engine temperature to rise to @machine humidity, and the temperature of the catalyst device d installed in the exhaust system will be low enough to activate the catalyst. Since the reaction temperature is not reached, sufficient purification performance cannot be obtained and there is a problem that emission performance is reduced.

(発明の目的) そこで、本発明は上記事情に鑑み、少なくとも低負荷時
では着火装置のまわりに燃料を偏在して供給した層状燃
焼を行うとともに、高負荷域では燃焼室全体に燃料を分
散して供給した均一燃焼をf−1うようにして、9りT
な層状燃焼と均一燃焼を得るとともに、エンジン冷機時
における、暖機性、排気浄化性能を改善した層状吸気エ
ンジンを提供することを目的とづるものである。
(Object of the Invention) Therefore, in view of the above circumstances, the present invention performs stratified combustion in which fuel is unevenly distributed and supplied around the ignition device at least at low load times, and at the same time, in high load regions, the fuel is distributed throughout the combustion chamber. The uniform combustion supplied by
The purpose of this invention is to provide a stratified intake engine that achieves stratified combustion and uniform combustion, and also improves warm-up performance and exhaust purification performance when the engine is cold.

′(発明の構成) 本発明の層状給気エンジンは、燃焼室内の着火装置まわ
りに燃料を供給する燃料供給手段と、吸気通路の開口面
積を制御する吸気絞り手段とを備え、少なくとも低負荷
時には燃料供給手段から石火装置のまわりに偏在して燃
料を供給し着火することにより層状燃焼を行う一方、高
負荷時には燃焼室内に分散して燃料を供給し着火づるこ
とにより均一燃焼を行うようにしたものであって、エン
ジン冷機時には、エンジン暖機時より6吸気絞り手段に
より吸気通路の開口面積を減少づる一方、前記燃料供給
手段により燃料を燃焼室内に分散供給することにより、
空燃比をリッヂにりるとともに均一燃焼化することを特
徴とづるものぐある。
(Structure of the Invention) The stratified air supply engine of the present invention includes a fuel supply means for supplying fuel around the ignition device in the combustion chamber, and an intake throttle means for controlling the opening area of the intake passage, and at least at low load. Stratified combustion is achieved by supplying fuel from the fuel supply means unevenly distributed around the stone ignition device and igniting it, while at times of high load, uniform combustion is achieved by supplying fuel distributed within the combustion chamber and igniting it. When the engine is cold, the opening area of the intake passage is reduced by the intake throttle means compared to when the engine is warmed up, while the fuel is distributed and supplied into the combustion chamber by the fuel supply means.
It is characterized by increasing the air-fuel ratio to the ridge and achieving uniform combustion.

(発明の効果) 低負荷域においては、燃料供給手段によって燃焼室内の
着火装置まわりに偏在して燃料を供給して層状燃焼を行
い、希薄燃焼によって燃費性を向上する一方、高負荷運
転域においては、燃料供給手段によって供給した燃料を
分散して均一燃焼を行い、スモークの発生を伴うことな
く良好な高出力運転を確保することができる。
(Effect of the invention) In a low load range, the fuel supply means supplies fuel unevenly around the ignition device in the combustion chamber to perform stratified combustion, improving fuel efficiency through lean combustion, while in a high load operating range The fuel supplied by the fuel supply means is dispersed to perform uniform combustion, and it is possible to ensure good high-output operation without generating smoke.

また、エンジン冷機時には吸気絞り手段によってエンジ
ン@機時よりも吸入空気量を減少して空燃比をリッチ化
し、多聞な吸入空気による冷却を抑制するとともに、燃
料供給手段により燃焼室内に分散燃料を供給して均一燃
焼を行い、排気温度を上昇して早期に暖機状態を確保し
、触媒温度を上昇してぞの活性化を図り、良好な排気浄
化性能を得ることができる。
In addition, when the engine is cold, the intake air throttle means reduces the amount of intake air compared to when the engine is running, making the air-fuel ratio richer, suppressing excessive cooling due to intake air, and supplying dispersed fuel into the combustion chamber using the fuel supply means. It is possible to achieve uniform combustion by raising the exhaust temperature, ensuring early warm-up by raising the temperature of the catalyst, and activating the catalyst by raising the temperature of the catalyst, thereby achieving good exhaust purification performance.

(実施例) 以下、図面により本発明の実施態様を詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

実施例1 この実施例は第1図ないし第5図に示し、燃料供給手段
を、成層用の第1燃料供給手段と分散用の第2燃料供給
手段とにより構成した例を示すものである。
Embodiment 1 This embodiment is shown in FIGS. 1 to 5, and shows an example in which the fuel supply means is composed of a first fuel supply means for stratification and a second fuel supply means for dispersion.

第1図に示すエンジンにおいて、1はピストン2の上方
に形成された燃焼室、3は該燃焼室1に吸入空気を導入
する吸気通路、4は燃焼室1から排気ガスを導出する排
気通路、5は吸気弁、6は排気弁、7は排気通路4に介
装された触媒装置をそれぞれ示している。
In the engine shown in FIG. 1, 1 is a combustion chamber formed above a piston 2, 3 is an intake passage that introduces intake air into the combustion chamber 1, 4 is an exhaust passage that leads out exhaust gas from the combustion chamber 1; Reference numeral 5 indicates an intake valve, 6 an exhaust valve, and 7 a catalyst device installed in the exhaust passage 4, respectively.

上記燃焼室1には、点火プラグによる着火装置8が配設
されるとともに、この着火装置8のまわりに燃料を供給
する成層用燃料噴射ノズル9が配設され、この成層用燃
料噴射ノズル9には燃料噴射ポンプ10が接続されて第
1燃料供給手段11が構成されている。
The combustion chamber 1 is provided with an ignition device 8 using a spark plug, and a stratified fuel injection nozzle 9 for supplying fuel around the ignition device 8. A fuel injection pump 10 is connected to constitute a first fuel supply means 11 .

一方、上記吸気通路3には、燃焼室1内に燃料を分散供
給する分散用燃料噴射ノズル12による第2燃料供給手
段13が介装されている。さらに、この分散用燃料噴射
ノズル12の下流には絞り弁14が配設され、この絞り
弁14にはその開閉作動を行うアクチュエータ15(ア
クセル操作には連動していない)が設(プられて吸気通
路3のU1口面積を制御して吸入空気量を規制Jる吸気
絞り手段20が構成されている。
On the other hand, a second fuel supply means 13 is interposed in the intake passage 3 and includes a dispersion fuel injection nozzle 12 for distributing fuel into the combustion chamber 1 . Further, a throttle valve 14 is disposed downstream of the dispersion fuel injection nozzle 12, and an actuator 15 (not linked to accelerator operation) is disposed on the throttle valve 14 to open and close the throttle valve 14. An intake throttle means 20 is configured to regulate the amount of intake air by controlling the U1 opening area of the intake passage 3.

上記吸気通路3の下流側部分は第2図に示すように、湾
曲形成されて吸入空気を燃焼室1の接線方向からを人し
、燃焼室1内にその周方向゛に沿ったス「ノールSを生
成するスワールポートに形成され、このスワールにより
、第1燃料供給手段11の成層用燃料噴射ノズル9から
構成される装置8にて着火された着火燃料を空気と十分
に混合させるとともに、火炎を燃焼室1全体に伝播させ
て、噴射燃料全体を十分に燃焼さけるものである。
As shown in FIG. 2, the downstream portion of the intake passage 3 is curved to direct the intake air from the tangential direction of the combustion chamber 1, and to direct the intake air into the combustion chamber 1 along its circumferential direction. This swirl causes the ignited fuel ignited in the device 8 comprising the stratified fuel injection nozzle 9 of the first fuel supply means 11 to be sufficiently mixed with air, and also causes a flame to be generated. is propagated throughout the combustion chamber 1, and the entire injected fuel is sufficiently burned.

上記第1燃料供給手段11の燃料噴射ポンプ10、第2
燃利供給手段13の分散用燃料噴射ノズル12および吸
気絞り手段20のアクチュエータ15の作動は、制御手
段16によって制御される。
The fuel injection pump 10 of the first fuel supply means 11, the second
The operation of the dispersing fuel injection nozzle 12 of the fuel supply means 13 and the actuator 15 of the intake throttle means 20 is controlled by the control means 16.

、に2制御l+手段16は、エンジンの要求負荷を例え
ばアクセルセンサーによって検出する負荷検出手段17
からの負荷信号、および1ンジン冷機時を例えば冷却水
温度によって検出する水温センサー18からの検出信号
を受けるとともに、エンジン回転センザー19からのエ
ンジン回転信号等を受け、成層用燃料噴射ノズル9から
の燃料噴射量および燃料噴射時期、分散用燃料晴朗ノズ
ル12からの燃料噴射量をそれぞれ制御りるとともに、
絞り弁14の閉作動時期を制御Jるものである。
, the second control l+ means 16 includes a load detection means 17 for detecting the required load of the engine by, for example, an accelerator sensor.
and a detection signal from a water temperature sensor 18 that detects when one engine is cold by, for example, the cooling water temperature, as well as an engine rotation signal from an engine rotation sensor 19, Controls the fuel injection amount, fuel injection timing, and fuel injection amount from the dispersion fuel clear nozzle 12, and
It controls the closing timing of the throttle valve 14.

上記制御手段16は、水温センサー18の検出信号に応
じ、冷却水濃度が設定値以下のエンジン冷機時には吸気
絞り手段20を作動して絞り弁14を閉じ、吸入空気(
6)を減少Jるとともに、第2燃料供給手段13によっ
て所定量の分散燃料を供給するものである。
The control means 16 operates the intake throttle means 20 to close the throttle valve 14 in response to the detection signal of the water temperature sensor 18 when the engine is cold and the concentration of the cooling water is below a set value.
6), and a predetermined amount of dispersed fuel is supplied by the second fuel supply means 13.

また、この制御手段16による負荷に対応した燃料供給
量制御は、負荷検出手段17の信号を受け、設定負荷以
下の低・中負荷域における常用運転域では第2燃料供給
手段13による分散燃料の供給は停止し、第1燃料供給
手段11による成層燃料を供給して層状燃焼を行い、負
荷の増加に応じてその供給量を増加し、設定負荷を越え
ると成層燃料の供給量を減少させるものである。一方、
第2燃料供給手段13による分散燃料は、上記設定負荷
近傍の負荷以上において供給を開始し、第1燃判供給手
段11による成層燃料の減少量を補うとともに、負荷の
増加に応じて全供給量が増加づるよう分散用燃料の供給
量を増加して層゛状燃焼から均一燃焼に移行するもので
ある。その際、各噴射毎の噴射量、噴射回数はエンジン
回転数に対応して設定する。
Further, the control means 16 performs fuel supply amount control corresponding to the load by receiving a signal from the load detection means 17, and in the normal operating range in the low/medium load range below the set load, the second fuel supply means 13 controls the amount of distributed fuel. The supply is stopped, stratified fuel is supplied by the first fuel supply means 11 to perform stratified combustion, and the supply amount is increased as the load increases, and when the set load is exceeded, the supply amount of the stratified fuel is decreased. It is. on the other hand,
The distributed fuel by the second fuel supply means 13 starts to be supplied at a load equal to or higher than the above-mentioned set load, compensates for the decrease in the amount of stratified fuel by the first fuel supply means 11, and increases the total supply amount according to the increase in load. The amount of dispersion fuel supplied is increased so that the amount of fuel increases, thereby shifting from stratified combustion to uniform combustion. At this time, the injection amount and number of injections for each injection are set in accordance with the engine rotation speed.

すなわち、エンジンの負荷に対応した第1燃料供給手段
11、第2燃料供給手段13による燃料供給量制御は、
第3図に示づように行う。この第3図は負荷の変動に対
する燃料供給mQの変動を空気過剰率λの変動とともに
示すものであって、前記絞り弁14は基本的に全開状態
で吸入空気量は一定であり、負荷の増加に対し燃v1供
給moを増加して空気過剰率λを小さくし、すなわち空
燃比を濃クシて出ツノ制御を行うように144プられて
いる。燃料供給f21Qにおいて、領域工の燃料を第1
燃石供給手段11から供給し、領域1■の燃料を第2燃
料供給手段13から供給するものである。第1燃料供給
手段11による成層燃料の供給はA点の設定負荷以下で
は負荷の増加に応じて増大する一方、この設定負荷A点
を越えると、第1燃料供給手段11からの燃料供給を減
少し、B点を越えた高負荷時には、成層用燃料噴射ノズ
ル9のカーボンによる目詰まり防止と加熱防止のために
少量噴射を継続する。
That is, the fuel supply amount control by the first fuel supply means 11 and the second fuel supply means 13 corresponding to the load of the engine is as follows.
This is done as shown in Figure 3. This figure 3 shows the fluctuation of fuel supply mQ with respect to the fluctuation of the load, together with the fluctuation of the excess air ratio λ. 144, the fuel v1 supply mo is increased to reduce the excess air ratio λ, that is, the air-fuel ratio is enriched to perform output horn control. In the fuel supply f21Q, the fuel in the area is supplied to the first
The fuel stone is supplied from the fuel stone supply means 11, and the fuel of the area 12 is supplied from the second fuel supply means 13. The supply of stratified fuel by the first fuel supply means 11 increases as the load increases below the set load at point A, while when the set load exceeds point A, the supply of fuel from the first fuel supply means 11 decreases. However, when the load is high beyond point B, a small amount of fuel injection is continued in order to prevent the stratification fuel injection nozzle 9 from clogging with carbon and to prevent heating.

一方、上記第2燃料供給手段13による分散燃料の供給
はA点の設定負荷以上で供給を開始し、これより負荷が
増加す゛ると第1燃料供給手段11による成層燃料の供
給減少を補うとともに、全体として負荷の増加に対応し
て増加した燃料を供給するものである。
On the other hand, the supply of dispersed fuel by the second fuel supply means 13 starts at a load equal to or higher than the set load at point A, and when the load increases from this point on, it compensates for the decrease in the supply of stratified fuel by the first fuel supply means 11, and Overall, increased fuel is supplied in response to an increase in load.

上記A点の設定負荷は、その時点におりる空気過剰率λ
が均一混合気でも着火可能な着火限界の空気過剰率λ以
下となるような負荷状態に設定され、また、B点の負荷
は、その時点における空気過剰率λが層状燃焼によって
は空気利用率が低下してスモークが発生し始める空気過
剰率λ以上となるような負荷状態に設定される。
The set load at point A above is the excess air ratio λ at that point.
The load condition at point B is such that the excess air ratio λ is below the ignition limit at which even a homogeneous mixture can be ignited. The load condition is set such that the excess air ratio λ is lowered and smoke starts to occur.

よって、上記A点以下においては、燃料は燃焼室1の打
火装置8まわりに偏在して供給される層状燃焼領域であ
り、B点以上が燃焼室1全体に燃料が分散して供給され
る均一燃焼領域で、A−8間が層状燃焼領域から均一燃
焼領域への移イテ領域である。
Therefore, below the above point A, fuel is supplied in a stratified combustion region unevenly distributed around the ignition device 8 of the combustion chamber 1, and above point B, fuel is distributed and supplied throughout the combustion chamber 1. In the uniform combustion region, the area between A-8 is a transition region from the stratified combustion region to the uniform combustion region.

なお、第2燃料供給手段13による分散燃料の供給開始
時期は、第1燃料供給手段11による成層燃料の供給を
減少させる設定負荷A点と一致させることなく、このA
点近傍の相前後した負荷状態で供給を開始するようにす
ればよい。
Note that the timing at which the second fuel supply means 13 starts supplying the distributed fuel is not made to coincide with the set load point A at which the supply of stratified fuel by the first fuel supply means 11 is reduced.
The supply may be started at successive load conditions near the point.

また、第1燃料供給手段11による成層燃料供給と第2
燃料供給手段13による分散燃II供給の切換えは、上
記の如く徐々に減少、増大するようにJるほか、設定負
荷A点とB点との間の負荷状態において、オン・オフ的
に切換えるようにしてもよい。
Moreover, the stratified fuel supply by the first fuel supply means 11 and the second
The switching of the distributed fuel II supply by the fuel supply means 13 is performed so that it gradually decreases and increases as described above, and also is switched on and off in the load state between the set load points A and B. You can also do this.

次に、第4図は負荷変動に対し、第1燃料供給手段11
による成層燃料の噴射時期(噴Q(開始時期)と点火時
期を示づものであり、前記A点の設定負荷以Fの成層化
を行う領域では、噴射時期は圧縮上死点近傍の点火時期
より所定量早い時期に設定され、噴射燃料が着火H置8
まわりに有効に偏在した状態で着火を行う。上記A点を
越えてB点の分散化を行う領域に移行するのに従って、
噴射時期を進めて早い時期に噴射を行い、第1燃料供給
手段11から噴射された燃料の偏在を小さくして燃焼室
1全体に分散させるようにする。また・アイドル運転時
のような極低負荷時には燃料噴射時期および点火時期は
若干進めて安定性を向上している。
Next, FIG. 4 shows that the first fuel supply means 11
This indicates the injection timing (injection Q (start timing) and ignition timing) of stratified fuel according to The injected fuel is set a predetermined amount earlier, and the injected fuel reaches the ignition position H8.
Ignition is performed while being effectively unevenly distributed around the area. As we move beyond point A to the area where point B is decentralized,
The injection timing is advanced to perform injection at an earlier stage, thereby reducing uneven distribution of the fuel injected from the first fuel supply means 11 and dispersing it throughout the combustion chamber 1. Additionally, at extremely low loads such as during idling, the fuel injection timing and ignition timing are slightly advanced to improve stability.

なお、エンジン冷機時におい゛C1上記第2燃料供給手
段13による分散燃料の供給を行う代りに、第1燃利供
給手段11による燃料噴射時期を、上記高負荷時と同様
に進角させるこ左により、吸気行程から圧縮行程初期ま
での早い時JIIJに噴射を完了し、その後の燃焼室1
内の吸入空気の流れによって燃料が分散するようにして
、均一燃焼を1qるようにしてもよい。
Note that when the engine is cold, instead of supplying dispersed fuel by the second fuel supply means 13, the fuel injection timing by the first fuel supply means 11 may be advanced in the same way as when the load is high. As a result, injection is completed at JIIJ early from the intake stroke to the beginning of the compression stroke, and the subsequent combustion chamber 1
The fuel may be dispersed by the flow of intake air within the fuel tank to achieve uniform combustion.

また、第4図では点火時期は負荷変動に対して略一定に
設定しているが、これは負荷の増大に応じて点火時期を
進めるように変化させてもよい。
Further, in FIG. 4, the ignition timing is set to be substantially constant with respect to load fluctuations, but this may be changed to advance the ignition timing in accordance with an increase in the load.

一方、制御手段16による吸気絞り手段20の絞り弁1
4の開閉制御は、第5図に示すように、基本的には絞り
弁14を全開状態としてノ゛ンスロットル運転を行い、
エンジン始動時もしくはアイドル時のような極低負荷時
には開度を小さくして吸入空気量を減少するものである
On the other hand, the throttle valve 1 of the intake throttle means 20 by the control means 16
As shown in Fig. 5, the opening/closing control in step 4 basically performs non-throttle operation with the throttle valve 14 fully open.
When the load is extremely low, such as when starting the engine or idling, the opening degree is reduced to reduce the amount of intake air.

また、エンジン冷機時には、第5図中に鎖線で示すよう
に、低・中負荷域において広範囲に絞るものであり、負
荷が低下するほど開度を小さくして吸入空気量を減少す
ることにより、空気過剰率を小さくし空燃比をリッチに
するものである。
In addition, when the engine is cold, as shown by the chain line in Figure 5, the valve is narrowed over a wide range in the low and medium load ranges, and as the load decreases, the opening is made smaller and the amount of intake air is reduced. This reduces the excess air ratio and makes the air-fuel ratio rich.

その他、燃料供給が停止されている減速時に触ts温度
の低下を防止するとともにエンジンブレーキ性能を向上
(るために、絞り弁14を閉じるように制御するもので
ある。
In addition, during deceleration when fuel supply is stopped, the throttle valve 14 is controlled to be closed in order to prevent a drop in the engine temperature and improve engine braking performance.

よって、上記実施例の層状給気エンジンにJ:れば、設
定負荷A点以下の低・中負荷における常用運転領域では
、層状燃焼を行って良好な着火性を得るとともに、希薄
燃焼を可能として燃費性を向上すると同時に、この成層
領域においては、絞り弁14を閉じることなく吸入空気
量を一定として、第1燃料供給手段11による燃料供給
量によって出力制御を行うようにしたことにより、絞り
弁14の絞り作動に伴うボンピングロスを大幅に低減す
ることができ、燃費性がより一層向上する。
Therefore, if the stratified air charge engine of the above embodiment is used, in the normal operation range at low and medium loads below the set load point A, stratified combustion is performed to obtain good ignitability and lean combustion is possible. At the same time as improving fuel efficiency, in this stratified region, the intake air amount is kept constant without closing the throttle valve 14, and the output is controlled by the fuel supply amount by the first fuel supply means 11. Bumping loss associated with the throttling operation of No. 14 can be significantly reduced, further improving fuel efficiency.

また、上記設定負荷A点を越えた高負荷運転域では層状
燃焼から均一燃焼に移行して空気利用率を増大してスモ
ークの発生を伴うことなく高出力運転を行うものであり
、全領域において良好な運転性能と、ポンピングロスの
低減による燃費性の改善が行える。
In addition, in the high-load operation range exceeding the set load point A mentioned above, the system shifts from stratified combustion to uniform combustion to increase the air utilization rate and perform high-output operation without smoke generation. It provides good driving performance and improves fuel efficiency by reducing pumping loss.

さらに、エンジン冷機時には、燃焼室全体に燃料を分散
供給する第2燃料供給手段13により燃料を供給づ−る
か、第1燃料供給手段11にJ:る燃料噴射時期を進角
して燃焼室1内に供給した燃料が分散するようにして均
一燃焼を行うとともに、吸気絞り手段20により絞り弁
14を閉じて吸入空気量を減少して分散燃料の空燃比を
リッチ化し、これにより良好な暖機性を確保している。
Furthermore, when the engine is cold, fuel is supplied by the second fuel supply means 13 which distributes the fuel throughout the combustion chamber, or by advancing the fuel injection timing to the first fuel supply means 11 to supply fuel to the combustion chamber. The fuel supplied into the fuel tank 1 is dispersed for uniform combustion, and the intake throttle means 20 closes the throttle valve 14 to reduce the amount of intake air and enrich the air-fuel ratio of the dispersed fuel, thereby achieving good heating. We ensure availability.

なお、前記第2燃料供給手段13は、分散用燃料噴射ノ
ズル12による燃料噴射方式に代えて、気化器を使用し
て吸気通路3に分散燃料を供給するようにしてもよい。
Note that the second fuel supply means 13 may supply dispersed fuel to the intake passage 3 using a carburetor instead of the fuel injection method using the dispersion fuel injection nozzle 12.

また、上記実施例では第2燃料供給手段13の分散用燃
料噴射ノズル12は吸気通路3の途中に介装するように
しているが、この第2燃料供給手段130分散用燃料噴
射ノズル12を第1燃料供給手段11の成層用燃料噴射
ノズル9と同様に燃焼室1内に開口するように配設して
もよく、その場合、この第2燃料供給手段13により燃
焼室1に直接供給する分散燃料の噴射時期は、上記第1
燃料供給手段11による燃料噴射時期より早く、吸気行
程から圧縮行程初期の間に噴射を完了するように設定し
、第2燃料供給手段13による供給燃料が吸入空気との
混合によって燃焼室1内に均一分散するようにして、均
一燃焼を得るものであり、エンジン冷機時には、第2燃
料供給手段13によって燃料を供給するか、第1燃料供
給手段11による燃料噴射時期を第2燃料供給手段13
と同様に進角して均一燃焼を得るものである。
Further, in the above embodiment, the dispersion fuel injection nozzle 12 of the second fuel supply means 13 is interposed in the middle of the intake passage 3; Similarly to the stratified fuel injection nozzle 9 of the first fuel supply means 11, the stratified fuel injection nozzle 9 may be arranged to open into the combustion chamber 1. In that case, the second fuel supply means 13 may directly supply the distributed fuel to the combustion chamber 1. The fuel injection timing is determined by the first
The injection is set to be completed between the intake stroke and the early stage of the compression stroke, earlier than the fuel injection timing by the fuel supply means 11, and the fuel supplied by the second fuel supply means 13 is mixed with the intake air and flows into the combustion chamber 1. When the engine is cold, the fuel is supplied by the second fuel supply means 13, or the fuel injection timing by the first fuel supply means 11 is adjusted by the second fuel supply means 13.
This is to advance the angle in the same way as in the previous example to obtain uniform combustion.

実施例2 この実施例は第6図ないし第9図に示し、燃料供給手段
を吸気通路に設けた1つの燃料噴射ノズルにて構成した
例である。
Embodiment 2 This embodiment is shown in FIGS. 6 to 9, and is an example in which the fuel supply means is constituted by one fuel injection nozzle provided in the intake passage.

第6図および第7図に示すエンジンにおいて、22は燃
焼室1の1次吸気ボート23に間口した1次吸気通路、
24は同じく2次吸気ボート25に開口した2次吸気通
路、26は排気ポー1−27に開口した排気通路、28
は1次吸気弁、29は2次吸気弁、30は排気弁、8は
点火プラグによる着火装置をそれぞれ示している。
In the engine shown in FIGS. 6 and 7, 22 is a primary intake passage opening into the primary intake boat 23 of the combustion chamber 1;
24 is a secondary intake passage that opens to the secondary intake boat 25, 26 is an exhaust passage that opens to the exhaust port 1-27, and 28
29 is a primary intake valve, 29 is a secondary intake valve, 30 is an exhaust valve, and 8 is an ignition device using a spark plug.

上記1次吸気通路22の下流側部分は燃焼室1にスワー
ルを形成するスワールボートに設けられるとともに、上
流側は2次吸気痛路24と合流し、絞り弁14による吸
気絞り手段20の作動で吸入空気量が規制され、上記2
次吸気通路24にはスワールコントロールバルブ31が
介装されている。
The downstream portion of the primary intake passage 22 is provided in a swirl boat that forms a swirl in the combustion chamber 1, and the upstream side merges with the secondary intake passage 24. The amount of intake air is regulated, and the above 2
A swirl control valve 31 is interposed in the secondary intake passage 24 .

また、上記1次吸気通路22には、1次吸気弁28が開
作動したときに、弁隙間から燃焼室1内の着火装M8近
傍に向けて燃料を噴射する燃料噴射ノズル32が配設さ
れて燃料供給手段33が構成されている。
Further, a fuel injection nozzle 32 is disposed in the primary intake passage 22, which injects fuel from the valve gap toward the vicinity of the ignition device M8 in the combustion chamber 1 when the primary intake valve 28 is opened. A fuel supply means 33 is configured.

上記燃料供給手段33および吸気絞り手段20は、前例
と同様の制御手段(図示せず)によって、燃わ1噴例ノ
ズル32からの燃料噴射量、噴射時期および較り弁14
のvn度が制御される。燃料供給手段33は、負荷に応
じて燃料供給量を増加することによって出力制御を行い
、その噴射時期の制illによって層状燃焼と均一燃焼
との切換えを行うようにしている。
The fuel supply means 33 and the intake throttle means 20 control the amount of fuel injection from the fuel injection nozzle 32, the injection timing, and the comparison valve 14 by the same control means (not shown) as in the previous example.
The vn degree of is controlled. The fuel supply means 33 performs output control by increasing the amount of fuel supplied according to the load, and switches between stratified combustion and uniform combustion by controlling the injection timing.

りなわら、燃料Illll用は、第8図に示すように行
うものであって、Sは噴射開始時期を、Eは11711
JJ終り時期をそれぞれ示している。実施例1の第3図
におけるA点に相当する設定負荷以下の成層領域にお番
ノる燃料噴射R期は、吸気行程の終期にJ3いて1次吸
気通路22が閉じる直前の遅い時期に噴射して燃料が1
次吸気弁28の開弁隙間がら燃焼室1内に流入し、着火
装置8のまわりに偏在するように供給し、圧縮行程にお
いてピストン2が上昇したときにも、燃料を燃焼室1の
上部に偏在させて成層燃焼を行うようにづるものである
However, for fuel Illll, it is performed as shown in Fig. 8, where S indicates the injection start time and E indicates 11711.
Each shows the end of JJ. In the R period of fuel injection in the stratified region below the set load, which corresponds to point A in FIG. and the fuel is 1
Fuel flows into the combustion chamber 1 through the opening gap of the secondary intake valve 28 and is supplied unevenly around the ignition device 8, so that even when the piston 2 rises during the compression stroke, fuel is supplied to the upper part of the combustion chamber 1. It is designed to cause stratified combustion by unevenly distributing the fuel.

その際、燃料噴射路りを一定時期とし、噴射始めを早く
し、負荷の増大に応じて噴射量を増加するようにしてい
る。
At this time, the fuel injection path is set at a fixed time, the injection start is made early, and the injection amount is increased in accordance with the increase in load.

また、A点の設定負荷を越えると、噴射時期を大きく進
角して早くし、8点を越えた高負荷時には噴射路りを一
定にして、噴射始めを進角して負荷の増大に応じて噴射
時間を増加づるものであって、吸気行程初期からの燃料
供給により、燃焼室1内に流入した燃料は吸入空気の流
れによっ【燃焼室1全体に分散し、均一燃焼を行うもの
Cある。
In addition, when the set load at point A is exceeded, the injection timing is greatly advanced to make it earlier, and when the load exceeds 8 points, the injection path is kept constant and the start of injection is advanced to respond to the increase in load. The injection time is increased by increasing the injection time, and by supplying fuel from the beginning of the intake stroke, the fuel that flows into the combustion chamber 1 is dispersed throughout the combustion chamber 1 by the flow of intake air, resulting in uniform combustion. be.

さらに、エンジン冷機時には、第8図中に鎖線で示づよ
うに、低負荷時においても噴射時期(開始時期)を大き
く進角して早くし、吸気行程初期からの燃料供給に伴う
燃料の分散化によって均一燃焼化を図り、噴射量の増加
は噴射始めを一定とし負荷の増大に応じて噴射路りを遅
らせることによって行っている。
Furthermore, when the engine is cold, the injection timing (start timing) is greatly advanced even under low load, as shown by the chain line in Fig. 8, to advance it, and the fuel is dispersed as fuel is supplied from the beginning of the intake stroke. The injection amount is increased by keeping the injection start constant and delaying the injection path as the load increases.

なお、2次吸気通路24に介装されているスヮ−ルコン
トロールバルブ31は、前記設定点Aから開いて2次吸
気通路24からも吸入空気を供給し、1次吸気通路22
により供給される吸入空気のスワールの強さが過大にな
るのを阻止し一1燃焼速度の異常上昇にもとづく燃焼騒
音、ノッキングの発生を抑制するとともに、吸気抵抗を
軽減して吸気効率を向上するものである。
Note that the swell control valve 31 installed in the secondary intake passage 24 opens from the set point A to supply intake air from the secondary intake passage 24 as well.
This prevents the swirl strength of the intake air supplied by the engine from becoming excessive, suppressing combustion noise and knocking caused by an abnormal increase in combustion speed, and reducing intake resistance to improve intake efficiency. It is something.

この実施例における絞り弁14の開度の制御は、第9図
に示すように行う。本例では成層領域におりる燃料の成
層化が、前例のものに比べて着火装置8まわりへの偏在
割合が少なくなって低下するため、絞り弁14は吸入空
気量を低減するように絞る必要があるが、鎖線で示づ如
き従来の気化器方式エンジンのように混合気充5uit
で出力制御を行うものに比べて、その絞り開度は小さく
、ボンピング【」スの低減が行えるものである。
The opening degree of the throttle valve 14 in this embodiment is controlled as shown in FIG. In this example, the stratification of the fuel that falls into the stratification region is reduced because the proportion of uneven distribution around the ignition device 8 is lower than in the previous example, so the throttle valve 14 needs to be throttled to reduce the amount of intake air. However, like the conventional carburetor engine as shown by the chain line, the mixture is filled with 5 units.
The aperture opening is smaller than that in which the output is controlled by the control, and the pumping effect can be reduced.

この絞り弁開度は、エンジン冷機時においては、鎖線で
示4開度程度にまで絞り、吸入空気量を減少させて空燃
比のリッチ化を行う。
When the engine is cold, the opening degree of the throttle valve is reduced to about 4 degrees as indicated by the chain line, thereby reducing the amount of intake air and enriching the air-fuel ratio.

よって、この実施例においても、低負荷時には層状燃焼
による希薄燃焼を行って燃費性の向上を図る一方、高角
WJ時には均一燃焼によってスモークの発生を伴うこと
なく高出力運転を行うことができる。
Therefore, in this embodiment as well, at low loads, lean combustion is performed by stratified combustion to improve fuel efficiency, while at high angle WJ, uniform combustion allows high output operation without smoke generation.

また、エンジン冷機時には、吸入空気量の減少による空
燃比のリッチ化と、噴射時期の進角による燃料の分散化
とにより、良好な暖機性を得るものであり、早期に温度
上昇を図り、触媒の活性化を行う。
In addition, when the engine is cold, the air-fuel ratio is enriched by reducing the amount of intake air, and the fuel is dispersed by advancing the injection timing, thereby achieving good warm-up performance and raising the temperature quickly. Activate the catalyst.

なお、この実施例におりるIIJ機俊の噴射時期の制、
御は、第8図に示す如く噴射路りを一定(基準)にして
噴射始めを進角して負荷に応じて噴射量を増加するのに
代えて、噴射開始時期を一定(基準)にして噴射路りを
負荷の変動に応じて進角するようにしてもよい。
In addition, the injection timing control of IIJ Kishu in this example,
As shown in Fig. 8, instead of keeping the injection path constant (standard) and advancing the injection start to increase the injection amount according to the load, the injection path is kept constant (standard) and the injection amount is increased according to the load. The injection path may be advanced in accordance with changes in load.

さらに、上記両実施例においC1冷に1水渇′?lなわ
らエンジン冷機状態の程度に応じて、吸気絞り手段20
による吸入空気量の減少量、もしくは噴射時期の進角等
による均一化傾向度合を変更調整づるようにしてもよく
、温度が上昇覆るのに伴っC吸入空気量を増加さゼると
ともに、層状燃焼に戻1ものである。
Furthermore, in both of the above embodiments, 1 water thirst' for C1 cold? Depending on the degree of coldness of the engine, the intake throttle means 20
It is also possible to change and adjust the amount of decrease in the amount of intake air due to C, or the degree of uniformity tendency by advancing the injection timing. This is the first thing to return to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明の第1の実施例を示し、 第1図は層状給気エンジンの概略構成図、第2図は燃焼
室を模式的に示した平面図、第3図は負荷に対する燃料
供給間の制御を空気過剰率とともに承り特性図、 第4図は負荷変動に対し第1燃料供給手段による成層燃
料の噴射時期と点火時期を示す゛特性図、第5図は負荷
変動に対ジる較り弁の開度を示づ特性図、 第6図ないし第9図は本発明の第2の実施例を示し、 第6図は層状吸気エンジンにおけるシリンダヘッドを一
部断面にして示1底面図、 第7図は第6図のVl −Vl線に沿う断面図、第8図
は負荷に対する燃料噴射時期制御を示す特性図、 第9図は負荷に対する絞り弁の開度制御を示ず特性図で
ある。 1・・・・・・燃焼室 3・・・・・・吸気通路8・・
・・・・着火装置 9・・・・・・成層用燃料噴射ノズル 10・・・・・・燃料噴射ポンプ 11・・・・・・第1燃料供給手段 12・・・・・・分散用燃料噴射ノズル13・・・・・
・第2燃料供給手段 14・・・・・・絞り弁 15・・・・・・アクチュエ
ータ16・・・・・・制御手段 17・・・・・・負荷
検出手段18・・・・・・水温センサー 20・・・・
・・吸気絞り手段32・・・・・・燃料噴射ノズル 33・・・・・・燃料供給手段 L− 婁膚一 第6図 9 第7図
1 to 5 show a first embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a stratified air charge engine, FIG. 2 is a plan view schematically showing a combustion chamber, and FIG. 4 is a characteristic diagram showing the injection timing and ignition timing of stratified fuel by the first fuel supply means in response to load fluctuations, and FIG. Figures 6 to 9 show a second embodiment of the present invention, and Figure 6 is a partial cross-section of a cylinder head in a stratified intake engine. Figure 7 is a sectional view taken along the line Vl-Vl in Figure 6, Figure 8 is a characteristic diagram showing fuel injection timing control with respect to load, and Figure 9 is a diagram showing the opening of the throttle valve with respect to load. It is a characteristic diagram that does not show control. 1... Combustion chamber 3... Intake passage 8...
..... Ignition device 9 ..... Fuel injection nozzle for stratification 10 ..... Fuel injection pump 11 ..... First fuel supply means 12 ..... Fuel for dispersion Injection nozzle 13...
・Second fuel supply means 14... Throttle valve 15... Actuator 16... Control means 17... Load detection means 18... Water temperature Sensor 20...
...Intake throttle means 32...Fuel injection nozzle 33...Fuel supply means L- Figure 6 9 Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1) 燃焼室内へ燃料を供給する燃料供給手段と、燃
焼室内に配設された着火装置と、吸気通路の開口面積を
制御する吸気絞り手段とを備え、少なくとも低負荷時に
は燃料供給手段から着火装置のまわりに偏在して燃料を
供給し着火することにJこり層状燃焼を行う一方、高負
荷時には燃焼室内に分散して燃料を供給し着火すること
により均一燃焼を行うようにした層状給気エンジンであ
って、エンジン冷機時には、エンジン暖機時よりも吸気
絞り手段により吸気通路の開口面積を減少する一方、前
記燃料供給手段により燃料を燃焼室内に分散供給し°C
均一燃焼するようにしたことを特徴とづ゛る層状給気エ
ンジン。
(1) It is equipped with a fuel supply means for supplying fuel into the combustion chamber, an ignition device disposed inside the combustion chamber, and an intake throttle means for controlling the opening area of the intake passage, and at least when the load is low, the fuel supply means ignites the fuel. Stratified combustion is performed by supplying fuel unevenly around the device and igniting it, while at high loads, stratified air supply is distributed within the combustion chamber to supply fuel and ignite it to achieve uniform combustion. In the engine, when the engine is cold, the opening area of the intake passage is reduced by the intake throttle means compared to when the engine is warm, while the fuel is distributedly supplied into the combustion chamber by the fuel supply means.
A stratified air supply engine characterized by uniform combustion.
JP58138493A 1983-07-28 1983-07-28 Stratified charge engine Expired - Lifetime JPH0639928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58138493A JPH0639928B2 (en) 1983-07-28 1983-07-28 Stratified charge engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58138493A JPH0639928B2 (en) 1983-07-28 1983-07-28 Stratified charge engine

Related Child Applications (5)

Application Number Title Priority Date Filing Date
JP7178376A Division JP2896757B2 (en) 1995-07-14 1995-07-14 Stratified charge engine
JP17837795A Division JP2689100B2 (en) 1995-07-14 1995-07-14 Stratified charge engine
JP8321915A Division JP2840603B2 (en) 1996-12-02 1996-12-02 Stratified charge engine
JP8321914A Division JP2818934B2 (en) 1996-12-02 1996-12-02 Stratified charge engine
JP32191696A Division JP2732050B2 (en) 1996-12-02 1996-12-02 Stratified charge engine

Publications (2)

Publication Number Publication Date
JPS6030440A true JPS6030440A (en) 1985-02-16
JPH0639928B2 JPH0639928B2 (en) 1994-05-25

Family

ID=15223394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58138493A Expired - Lifetime JPH0639928B2 (en) 1983-07-28 1983-07-28 Stratified charge engine

Country Status (1)

Country Link
JP (1) JPH0639928B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752267A1 (en) * 1996-08-08 1998-02-13 Bosch Gmbh Robert CONTROL SYSTEM FOR A DIRECT INJECTION INTERNAL COMBUSTION ENGINE
EP0824188A3 (en) * 1996-08-09 1999-06-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection internal combustion engine
EP0905360A3 (en) * 1997-09-29 2000-08-09 Mazda Motor Corporation Direct fuel injection engine
EP0943793A3 (en) * 1998-03-17 2001-03-21 Nissan Motor Company, Limited Control for direct fuel injection spark ignition internal combustion engine
WO2002014668A1 (en) * 2000-08-14 2002-02-21 Robert Bosch Gmbh Method, computer program and control device and/or regulating device for operating an internal combustion engine
JP2016180328A (en) * 2015-03-23 2016-10-13 マツダ株式会社 Fuel injection control device for direct-injection engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704106B2 (en) * 2012-03-30 2015-04-22 トヨタ自動車株式会社 Lubricating device for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447924A (en) * 1977-09-26 1979-04-16 Toyota Motor Corp Fuel injection device for internal combustion engine with sub chamber
JPS56151213A (en) * 1980-04-24 1981-11-24 Nissan Motor Co Ltd Spark ignition type internal combustion engine
JPS5762915A (en) * 1980-10-03 1982-04-16 Toyota Motor Corp Fuel injection control for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447924A (en) * 1977-09-26 1979-04-16 Toyota Motor Corp Fuel injection device for internal combustion engine with sub chamber
JPS56151213A (en) * 1980-04-24 1981-11-24 Nissan Motor Co Ltd Spark ignition type internal combustion engine
JPS5762915A (en) * 1980-10-03 1982-04-16 Toyota Motor Corp Fuel injection control for internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752267A1 (en) * 1996-08-08 1998-02-13 Bosch Gmbh Robert CONTROL SYSTEM FOR A DIRECT INJECTION INTERNAL COMBUSTION ENGINE
US6092507A (en) * 1996-08-08 2000-07-25 Robert Bosch Gmbh Control arrangement for a direct-injecting internal combustion engine
EP0824188A3 (en) * 1996-08-09 1999-06-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection internal combustion engine
EP0905360A3 (en) * 1997-09-29 2000-08-09 Mazda Motor Corporation Direct fuel injection engine
EP0943793A3 (en) * 1998-03-17 2001-03-21 Nissan Motor Company, Limited Control for direct fuel injection spark ignition internal combustion engine
US6340014B1 (en) 1998-03-17 2002-01-22 Nissan Motor Co., Inc. Control for direct fuel injection spark ignition internal combustion engine
WO2002014668A1 (en) * 2000-08-14 2002-02-21 Robert Bosch Gmbh Method, computer program and control device and/or regulating device for operating an internal combustion engine
JP2016180328A (en) * 2015-03-23 2016-10-13 マツダ株式会社 Fuel injection control device for direct-injection engine
CN107429619A (en) * 2015-03-23 2017-12-01 马自达汽车株式会社 The fuel injection control system of direct fuel-injection engine
US10480438B2 (en) 2015-03-23 2019-11-19 Mazda Motor Corporation Fuel injection control device for direct injection engine
CN107429619B (en) * 2015-03-23 2020-08-18 马自达汽车株式会社 Fuel injection control device for direct injection engine

Also Published As

Publication number Publication date
JPH0639928B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
US6330796B1 (en) Control device for direct injection engine
US6877464B2 (en) Spark-ignition engine controller
JP3881243B2 (en) Premixed charge compression ignition engine with variable speed SOC control and method of operation
EP0978643B1 (en) Control device for direct injection engine
US6899089B2 (en) Control apparatus for internal combustion engine and control method for internal combustion engine combustion method for internal combustion engine and direct injection engine
EP1377740B1 (en) Control device for supercharged engine
JPH0512537B2 (en)
JPH0658067B2 (en) Stratified charge engine
JPS6030440A (en) Stratified charging engine
JPH0583730B2 (en)
JPH0480207B2 (en)
JP2896757B2 (en) Stratified charge engine
JPS6030417A (en) Stratiform charging engine
JP2689100B2 (en) Stratified charge engine
JP2818934B2 (en) Stratified charge engine
JPS6030439A (en) Stratified charging engine
JPS6030438A (en) Strafified charaging engine
JPH0559272B2 (en)
JP2732050B2 (en) Stratified charge engine
JPS6030437A (en) Stratified charging engine
JP2873574B2 (en) Stratified charge engine
JP2840603B2 (en) Stratified charge engine
JPS6030435A (en) Stratified charging engine
JP4070377B2 (en) Premixed compression auto-ignition engine and its operation method
JPS6030436A (en) Stratified charging engine