JP2732050B2 - Stratified charge engine - Google Patents

Stratified charge engine

Info

Publication number
JP2732050B2
JP2732050B2 JP32191696A JP32191696A JP2732050B2 JP 2732050 B2 JP2732050 B2 JP 2732050B2 JP 32191696 A JP32191696 A JP 32191696A JP 32191696 A JP32191696 A JP 32191696A JP 2732050 B2 JP2732050 B2 JP 2732050B2
Authority
JP
Japan
Prior art keywords
fuel
combustion
load
combustion chamber
fuel supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32191696A
Other languages
Japanese (ja)
Other versions
JPH09310631A (en
Inventor
孝成 徳島
博之 小田
孟 松岡
晴男 沖本
誠公 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP32191696A priority Critical patent/JP2732050B2/en
Publication of JPH09310631A publication Critical patent/JPH09310631A/en
Application granted granted Critical
Publication of JP2732050B2 publication Critical patent/JP2732050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、層状給気エンジン
に関するものである。 【0002】 【従来の技術】従来より、エンジンの燃費性、エミッシ
ョン性を改善する目的から、負荷に応じて燃焼室に供給
する燃料のうち着火に必要な燃料だけを着火装置の近傍
に偏在させて、この部分のみの空燃比を濃くして着火性
を向上した層状燃焼を行うようにして、全体として希薄
燃焼が実現できる層状給気エンジンが、例えば特開昭4
9−62807号、特開昭49−128109号、特開
昭51−1816号に見られるように公知である。 【0003】 【発明が解決しようとする課題】しかして、上記層状給
気エンジンにおいては、低負荷時に層状燃焼を行うもの
であり、この層状燃焼においては、吸気通路の絞り量を
少なくして吸入空気量を多くし、混合気を着火装置まわ
りに偏在させて希薄混合気による安定燃焼の実現によっ
て燃費性を向上するようにしているが、この層状燃焼を
高負荷域まで行うと、燃料量が多くなって過濃混合気が
存在して空気利用率が低下しスモークが発生することに
なる。 【0004】この点、高負荷状態では燃焼室全体に燃料
を分散供給した均一燃焼を行うことで空気利用率も向上
し、全体として大きな出力を得ることができることにな
るが、低負荷時の層状燃焼と高負荷時の均一燃焼との燃
焼形態の移行を運転性能を損なうことなく滑らかに行う
必要がある。 【0005】すなわち、均一燃焼を開始する負荷次第で
は、噴射燃料が燃焼室全体に分散するため、空燃比から
見れば希薄化し過ぎて、均一混合気に対し、着火性、燃
焼性を損なうこととなる。 【0006】特に、燃費性向上の観点で、理論空燃比
(空気過剰率λ=1)より希薄な空燃比を低・中負荷域
に設定したエンジンでは、ポンピングロス低減による燃
費効果も兼ねて、燃料噴射量によって出力制御を行うこ
ととなるため、均一燃焼用の燃料供給を開始するに当た
って失火の発生が問題となる。 【0007】そこで、本発明は上記事情に鑑み、燃料噴
射量によりエンジン出力を制御し、希薄燃焼とポンピン
グロスの低減を広い運転領域で行いつつ、スモークの発
生と失火の発生の双方を防止して、全運転領域で滑らか
にエンジン出力を変化させ、良好な運転性能が得られる
ようにした層状吸気エンジンを提供せんとするものであ
る。 【0008】 【課題を解決するための手段】本発明の層状給気エンジ
ンは、燃焼室内への吸入空気の導入によって燃焼室内に
スワールを生成するスワール生成手段と、エンジンの負
荷を検出する負荷検出手段と、燃焼室内へ燃料を供給す
る燃料供給手段と、燃焼室内の混合気を着火させる着火
装置とを備え、低負荷時にはスワール生成手段と燃料供
給手段とにより着火装置のまわりに供給燃料を偏在させ
て着火することにより層状燃焼を行う一方、高負荷時に
は燃焼室全体に供給燃料を分散させて着火することによ
り均一燃焼を行うようにしたものであって、燃焼室内へ
供給する燃料供給量を負荷増大に応じて徐々に増加さ
せ、エンジン出力を制御するとともに、前記層状燃焼か
ら均一燃焼領域に移行する中間負荷域に、着火装置まわ
りに偏在させる燃料と燃焼室全体に分散させる燃料とを
供給する移行領域を設け、上記移行領域の全域にわたっ
て空気過剰率λが1よりも大きくなるよう設定するとと
もに、この移行領域では負荷の増大とともに空気過剰率
λが小さくなるように設定し、さらに、上記移行領域に
おいて空気過剰率λが小さくなるに伴って層状燃焼用の
燃料供給量を減少させ、かつ、移行終了時において均一
燃焼用の燃料供給量よりも少なくなるよう前記燃料供給
手段を制御する制御手段を備えたことを特徴とするもの
である。 【0009】また、前記制御手段は、前記移行領域終了
時点で層状燃焼用の燃料を少量供給させることが望まし
い。 【0010】一方、前記制御手段は、負荷の増大に伴う
燃焼室内への燃料供給量を、層状燃焼領域から移行領域
にかけて変化割合が一定で、連続して増加するように設
定するのが好適である。 【0011】 【発明の効果】上記のような本発明の層状給気エンジン
によれば、低負荷域においては、スワールの生成に伴っ
て燃焼室内の着火装置まわりに偏在して燃料を供給した
層状燃焼を行うことで、希薄燃焼によって燃費性を向上
する一方、高負荷運転域においては、燃料を分散して均
一燃焼を行ってスモークの発生を伴うことなく良好な高
出力運転を確保することができる。さらに、上記低負荷
域の層状燃焼から高負荷域の均一燃焼への中間負荷の移
行領域においては、成層燃焼用の燃料供給と均一燃焼用
の燃料供給の両燃料供給を行うとともに、この移行領域
では空気過剰率λが1よりも大きくかつ負荷の増大とと
もに空気過剰率λが小さくなるように設定したことによ
り、均一燃焼を開始する領域において、スワールの生成
により着火装置のまわりに混合気を偏在させて火種を十
分に確保しつつ、均一燃焼用の燃料についてもスワール
によって燃焼室内の空気とのミキシングを向上させ、気
化、霧化の促進による均一混合気への着火性、燃焼性を
確保することができる。 【0012】また、前記移行領域において空気過剰率λ
が小さくなるに伴って層状燃焼用の燃料供給量を減少さ
せ、かつ、移行終了時において均一燃焼用の燃料供給量
よりも少なくなるようにしたことにより、負荷増大に伴
って均一燃焼用の燃料供給量が増加し、燃焼室全体の空
気利用率が高まって、エンジン出力が増大する。そし
て、着火装置まわりへの燃料の偏在化がスワールによっ
て高められるため、燃焼室全体の均一混合気の空燃比が
次第に濃くなって行く結果、着火装置まわりの局所的空
燃比が濃くなる傾向にあるものの、層状燃焼用の燃料供
給量を燃焼室全体の空気過剰率λが小さくなるに従って
減少させるため、過濃混合気となることがなく均一燃焼
へと切り換えることで、スモークの発生を伴うことなく
高出力運転へスムーズに移行でき、良好な運転性能を得
ることができる。 【0013】 【実施例】以下、本発明の実施例を図面に沿って説明す
る。この実施例は図1ないし図5に示し、燃料供給手段
を、成層用の第1燃料供給手段と分散用の第2燃料供給
手段とにより構成した例を示すものである。 【0014】図1に示すエンジンにおいて、1はピスト
ン2の上方に形成された副室を持たない一般のオープン
チャンバ形状の燃焼室、3は該燃焼室1に吸入空気を導
入する吸気通路、4は燃焼室1から排気ガスを導出する
排気通路、5は吸気弁、6は排気弁、7は排気通路4に
介装された触媒装置をそれぞれ示している。 【0015】上記燃焼室1には、点火プラグによる着火
装置8が配設されるとともに、この着火装置8のまわり
に燃料を供給する成層用燃料噴射ノズル9が配設され、
この成層用燃料噴射ノズル9には燃料噴射ポンプ10が
接続されて第1燃料供給手段11が構成されている。 【0016】一方、上記吸気通路3には、燃焼室1内に
燃料を分散供給する分散用燃料噴射ノズル12による第
2燃料供給手段13が介装されている。さらに、この分
散用燃料噴射ノズル12の下流には絞り弁14が配設さ
れ、この絞り弁14にはその開閉作動を電気的に行うア
クチュエータ15(アクセル操作には連動していない)
が設けられて吸気通路3の開口面積を制御して吸入空気
量を規制する吸気絞り手段20が構成されている。 【0017】上記吸気通路3の下流側部分は図2に示す
ように、湾曲形成されて吸入空気を燃焼室1の接線方向
から導入し、燃焼室1内にその周方向に沿ったスワール
Sを生成するスワールポート(スワール生成手段)に形
成され、このスワールにより、第1燃料供給手段11の
成層用燃料噴射ノズル9から供給され着火装置8にて着
火された着火燃料を空気と十分に混合させるとともに、
火炎を燃焼室1全体に伝播させて、噴射燃料全体を十分
に燃焼させるものである。 【0018】上記第1燃料供給手段11の燃料噴射ポン
プ10、第2燃料供給手段13の分散用燃料噴射ノズル
12および吸気絞り手段20のアクチュエータ15の作
動は、制御手段16によって制御される。 【0019】上記制御手段16は、エンジンの要求負荷
を例えばアクセルセンサーによって検出する負荷検出手
段17からの負荷信号、およびエンジン冷機時を例えば
冷却水温度によって検出する水温センサー18からの検
出信号を受けるとともに、エンジン回転センサー19か
らのエンジン回転信号等を受け、成層用燃料噴射ノズル
9からの燃料噴射量および燃料噴射時期、分散用燃料噴
射ノズル12からの燃料噴射量をそれぞれ制御するとと
もに、絞り弁14の閉作動時期を制御するものである。 【0020】上記制御手段16は、水温センサー18の
検出信号に応じ、冷却水温度が設定値以下のエンジン冷
機時には吸気絞り手段20を作動して絞り弁14を閉
じ、吸入空気量を減少するとともに、第2燃料供給手段
13によって所定量の分散燃料を供給するものである。 【0021】また、この制御手段16による負荷に対応
した燃料供給量制御は、負荷検出手段17の信号を受
け、設定負荷以下の低・中負荷域における常用運転域で
は第2燃料供給手段13による分散燃料の供給は停止
し、第1燃料供給手段11による成層燃料を供給して層
状燃焼を行い、負荷の増加に応じてその供給量を増加
し、設定負荷を越えた移行領域では成層燃料の供給量を
減少させるものである。一方、第2燃料供給手段13に
よる分散燃料は、上記設定負荷近傍の負荷以上において
供給を開始し、第1燃料供給手段11による成層燃料の
減少量を補うとともに、負荷の増加に応じて全供給量が
増加するよう分散用燃料の供給量を増加して層状燃焼か
ら均一燃焼に移行するものである。その際、各噴射毎の
噴射量、噴射回数はエンジン回転数に対応して設定す
る。 【0022】すなわち、エンジンの負荷に対応した第1
燃料供給手段11、第2燃料供給手段13による燃料供
給量制御は、図3に示すように行う。この図3は負荷の
変動に対する燃料供給量Qの変動を空気過剰率λの変動
とともに示すものであって、前記絞り弁14は基本的に
全開状態で吸入空気量は一定であり、負荷の増加に対し
燃料供給量Qを増加して空気過剰率λを小さくし、すな
わち空燃比を濃くして出力制御を行うように設けられて
いる。燃料供給量Qにおいて、領域Iの燃料を第1燃料
供給手段11から供給し、領域IIの燃料を第2燃料供給
手段13から供給するものである。第1燃料供給手段1
1による成層燃料の供給はA点の設定負荷以下では負荷
の増加に応じて増大する一方、この設定負荷A点を越え
ると、第1燃料供給手段11からの燃料供給を減少し、
B点を越えた高負荷時には、成層用燃料噴射ノズル9の
カーボンによる目詰まり防止と加熱防止のために少量噴
射を継続する。 【0023】一方、上記第2燃料供給手段13による分
散燃料の供給はA点の設定負荷以上で供給を開始し、こ
れより負荷が増加すると第1燃料供給手段11による成
層燃料の供給減少を補うとともに、全体として負荷の増
加に対応して増加した燃料を供給するものである。 【0024】上記A点の設定負荷は、その時点における
空気過剰率λが均一混合気でも着火可能な着火限界の空
気過剰率λ以下となるような負荷状態に設定され、ま
た、B点の負荷は、その時点における空気過剰率λが層
状燃焼によっては空気利用率が低下してスモークが発生
し始める空気過剰率λ以上となるような負荷状態に設定
される。空気過剰率λはB点以下で1以上であり、負荷
の増大に対して燃料供給量が増大して空気過剰率λが小
さくなる。 【0025】よって、上記A点以下においては、燃料は
燃焼室1の着火装置8まわりに偏在して供給される層状
燃焼領域であり、B点以上が燃焼室1全体に燃料が分散
して供給される均一燃焼領域で、A−B間が層状燃焼領
域から均一燃焼領域への移行領域であり、層状燃焼用燃
料と均一燃焼用燃料の両方が供給される。 【0026】なお、第2燃料供給手段13による分散燃
料の供給開始時期は、第1燃料供給手段11による成層
燃料の供給を減少させる設定負荷A点と一致させること
なく、このA点近傍の相前後した負荷状態で供給を開始
するようにすればよい。 【0027】次に、図4は負荷変動に対し、第1燃料供
給手段11による成層燃料の噴射時期(噴射開始時期)
と点火時期を示すものであり、前記A点の設定負荷以下
の成層化を行う領域では、噴射時期は圧縮上死点近傍の
点火時期より所定量早い時期に設定され、噴射燃料が着
火装置8まわりに有効に偏在した状態で着火を行う。上
記A点を越えてB点の分散化を行う領域に移行するのに
従って、噴射時期を進めて早い時期に噴射(少量噴射)
を行い、第1燃料供給手段11から噴射された燃料の偏
在を小さくして燃焼室1全体に分散させるようにする。
また、アイドル運転時のような極低負荷時には燃料噴射
時期および点火時期は層状燃焼時より若干進めて安定性
を向上している。 【0028】なお、エンジン冷機時において、上記第2
燃料供給手段13による分散燃料の供給を行う代りに、
第1燃料供給手段11による燃料噴射時期を、上記高負
荷時と同様に進角させることにより、吸気行程から圧縮
行程初期までの早い時期に噴射を完了し、その後の燃焼
室1内の吸入空気の流れによって燃料が分散するように
して、均一燃焼を得るようにしてもよい。 【0029】また、図4では点火時期は負荷変動に対し
て略一定に設定しているが、これは負荷の増大に応じて
点火時期を進めるように変化させてもよい。 【0030】一方、制御手段16による吸気絞り手段2
0の絞り弁14の開閉制御は、図5に示すように、基本
的には絞り弁14を全開状態としてノンスロットル運転
を行い、エンジン始動時もしくはアイドル時のような極
低負荷時には開度を小さくして吸入空気量を減少するも
のである。 【0031】また、エンジン冷機時には、図5中に鎖線
で示すように、低・中負荷域において広範囲に絞るもの
であり、負荷が低下するほど開度を小さくして吸入空気
量を減少することにより、空気過剰率を小さくし空燃比
をリッチにするものである。 【0032】その他、燃料供給が停止されている減速時
に触媒温度の低下を防止するとともにエンジンブレーキ
性能を向上するために、絞り弁14を閉じるように制御
するものである。 【0033】よって、上記実施例の層状給気エンジンに
よれば、設定負荷A点以下の低・中負荷における常用運
転領域では、層状燃焼を行って良好な着火性を得るとと
もに、空気過剰率λが1以上となる希薄燃焼を可能とし
て燃費性を向上すると同時に、この成層領域において
は、絞り弁14を閉じることなく吸入空気量を一定とし
て、第1燃料供給手段11による燃料供給量によって出
力制御を行うようにしたことにより、絞り弁14の絞り
作動に伴うポンピングロスを大幅に低減することがで
き、燃費性がより一層向上する。 【0034】また、上記設定負荷A点を越えたB点まで
の移行領域では層状燃焼用燃料と均一燃焼用燃料の両方
を供給するとともに、均一燃焼用燃料の割合を増大して
層状燃焼から均一燃焼に移行して、B点を越えた高負荷
運転域では均一燃焼として空気利用率を増大してスモー
クの発生を伴うことなく高出力運転を行うものであり、
全領域において良好な運転性能と、ポンピングロスの低
減による燃費性の改善が行える。 【0035】さらに、エンジン冷機時には、燃焼室全体
に燃料を分散供給する第2燃料供給手段13により燃料
を供給するか、第1燃料供給手段11による燃料噴射時
期を進角して燃焼室1内に供給した燃料が分散するよう
にして均一燃焼を行うとともに、吸気絞り手段20によ
り絞り弁14を閉じて吸入空気量を減少して分散燃料の
空燃比をリッチ化し、これにより良好な暖機性を確保し
ている。 【0036】なお、上記実施例では分散用燃料噴射ノズ
ル12は吸気通路3の途中に介装するようにしている
が、燃焼室1内に開口するように配設してもよく、その
場合、燃焼室1に直接供給する分散燃料の噴射時期は、
吸気行程から圧縮行程初期の間に噴射を完了するように
設定し、供給燃料が吸入空気との混合によって燃焼室1
内に均一分散するようにして、均一燃焼を得るものであ
る。 【0037】さらに、上記実施例において、冷却水温す
なわちエンジン冷機状態の程度に応じて、吸気絞り手段
20による吸入空気量の減少量、もしくは噴射時期の進
角等による均一化傾向度合を変更調整するようにしても
よく、温度が上昇するのに伴って吸入空気量を増加させ
るとともに、層状燃焼に戻すものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stratified charge engine. 2. Description of the Related Art Conventionally, for the purpose of improving fuel efficiency and emission of an engine, only fuel required for ignition among fuels supplied to a combustion chamber in accordance with a load is unevenly distributed near an ignition device. Thus, a stratified charge engine capable of realizing lean combustion as a whole by enlarging the air-fuel ratio of only this portion to perform stratified combustion with improved ignitability is disclosed in, for example,
As described in JP-A-9-62807, JP-A-49-128109 and JP-A-51-1816. [0003] In the stratified charge engine, stratified charge combustion is performed at a low load. In the stratified charge charge combustion engine, the throttle amount of the intake passage is reduced to reduce the amount of intake air. The amount of air is increased and the air-fuel mixture is unevenly distributed around the ignition device to improve fuel efficiency by realizing stable combustion with the lean air-fuel mixture. When the air-fuel ratio increases, an air-fuel mixture is present, the air utilization rate is reduced, and smoke is generated. [0004] In this respect, in a high load state, uniform combustion in which fuel is dispersed and supplied to the entire combustion chamber improves the air utilization rate, so that a large output can be obtained as a whole. It is necessary to smoothly shift the combustion mode between the combustion and the uniform combustion under a high load without impairing the operation performance. In other words, depending on the load at which uniform combustion is started, the injected fuel is dispersed throughout the combustion chamber, so that it is too lean in view of the air-fuel ratio, impairing the ignitability and combustibility of the homogeneous mixture. Become. In particular, in the case of an engine in which an air-fuel ratio leaner than the stoichiometric air-fuel ratio (excess air ratio λ = 1) is set to a low / medium load region from the viewpoint of improving fuel efficiency, the fuel efficiency is also reduced by reducing the pumping loss. Since the output control is performed based on the fuel injection amount, the occurrence of misfire becomes a problem when starting the fuel supply for uniform combustion. In view of the above circumstances, the present invention controls both the generation of smoke and the occurrence of misfire while controlling the engine output by the fuel injection amount to reduce lean combustion and pumping loss in a wide operating range. Accordingly, it is an object of the present invention to provide a stratified intake engine in which the engine output is smoothly changed in the entire operation range to obtain good operation performance. The stratified charge engine of the present invention has a swirl generating means for generating swirl in the combustion chamber by introducing intake air into the combustion chamber, and a load detecting means for detecting a load on the engine. Means, a fuel supply means for supplying fuel into the combustion chamber, and an ignition device for igniting an air-fuel mixture in the combustion chamber. At low load, the supply fuel is unevenly distributed around the ignition device by the swirl generation means and the fuel supply means. While stratified combustion is performed by igniting and igniting, at high load, the supplied fuel is dispersed throughout the combustion chamber and ignited to perform uniform combustion, and the amount of fuel supplied to the combustion chamber is reduced. The engine output is gradually increased in accordance with the load increase, and the engine output is controlled. A transition region for supplying the fuel to be distributed and the fuel dispersed throughout the combustion chamber is provided, and the excess air ratio λ is set to be larger than 1 over the entire transition region. The excess ratio λ is set to be small, and the fuel supply amount for stratified combustion is reduced as the excess air ratio λ decreases in the transition region, and the fuel supply for uniform combustion is completed at the end of the transition. The fuel cell system further comprises control means for controlling the fuel supply means so as to make the fuel supply amount smaller than the fuel supply amount. It is preferable that the control means supplies a small amount of fuel for stratified combustion at the end of the transition region. On the other hand, it is preferable that the control means sets the fuel supply amount into the combustion chamber with the increase in load so that the rate of change from the stratified combustion region to the transition region is constant and continuously increased. is there. According to the stratified charge engine of the present invention as described above, in a low load region, the stratified charge is supplied unevenly around the ignition device in the combustion chamber with the generation of swirl. By performing combustion, fuel efficiency can be improved by lean combustion, but in the high-load operation range, it is possible to disperse fuel and perform uniform combustion to ensure good high-output operation without generating smoke. it can. Further, in the transition region of the intermediate load from the stratified combustion in the low load region to the uniform combustion in the high load region, both the fuel supply for the stratified combustion and the fuel supply for the uniform combustion are performed. In the region where the excess air ratio λ is larger than 1 and the excess air ratio λ is set to decrease as the load increases, the air-fuel mixture is unevenly distributed around the ignition device due to swirl generation in the region where uniform combustion starts. While ensuring sufficient fire, the swirling of the fuel for uniform combustion also improves the mixing with the air in the combustion chamber, and secures the ignitability and combustibility of a uniform mixture by promoting vaporization and atomization. be able to. In the transition region, the excess air ratio λ
As the fuel supply for stratified combustion is reduced as the fuel supply becomes smaller, and is made smaller than the fuel supply for uniform combustion at the end of the transition, the fuel for uniform combustion is increased as the load increases. The supply amount increases, the air utilization rate of the entire combustion chamber increases, and the engine output increases. And, since the uneven distribution of the fuel around the ignition device is enhanced by the swirl, the air-fuel ratio of the uniform mixture in the entire combustion chamber gradually increases, and as a result, the local air-fuel ratio around the ignition device tends to increase. However, since the amount of fuel supplied for stratified combustion is reduced as the excess air ratio λ of the entire combustion chamber is reduced, switching to uniform combustion without forming an over-enriched air-fuel mixture does not involve generation of smoke. It is possible to smoothly shift to high-output operation and obtain good operation performance. Embodiments of the present invention will be described below with reference to the drawings. This embodiment is shown in FIGS. 1 to 5 and shows an example in which the fuel supply means is constituted by a first fuel supply means for stratification and a second fuel supply means for dispersion. In the engine shown in FIG. 1, reference numeral 1 denotes a general open-chamber combustion chamber having no sub-chamber formed above a piston 2; 3 denotes an intake passage for introducing intake air into the combustion chamber 1; Denotes an exhaust passage for discharging exhaust gas from the combustion chamber 1, 5 denotes an intake valve, 6 denotes an exhaust valve, and 7 denotes a catalyst device provided in the exhaust passage 4. The combustion chamber 1 is provided with an ignition device 8 using a spark plug, and a stratification fuel injection nozzle 9 for supplying fuel around the ignition device 8.
A fuel injection pump 10 is connected to the stratification fuel injection nozzle 9 to form a first fuel supply means 11. On the other hand, the intake passage 3 is provided with a second fuel supply means 13 including a dispersing fuel injection nozzle 12 for dispersing and supplying fuel into the combustion chamber 1. Further, a throttle valve 14 is provided downstream of the dispersion fuel injection nozzle 12, and an actuator 15 for electrically opening and closing the throttle valve 14 (not linked to the accelerator operation).
Are provided to form intake throttle means 20 for controlling the opening area of the intake passage 3 to regulate the amount of intake air. As shown in FIG. 2, the downstream portion of the intake passage 3 is curved to introduce intake air from a tangential direction of the combustion chamber 1 and to form a swirl S in the combustion chamber 1 along its circumferential direction. A swirl port (swirl generating means) is formed, and the swirl causes the ignition fuel supplied from the stratification fuel injection nozzle 9 of the first fuel supply means 11 and ignited by the ignition device 8 to be sufficiently mixed with air. With
The flame is propagated to the entire combustion chamber 1 to sufficiently burn the entire injected fuel. The operation of the fuel injection pump 10 of the first fuel supply means 11, the dispersing fuel injection nozzle 12 of the second fuel supply means 13, and the operation of the actuator 15 of the intake throttle means 20 are controlled by control means 16. The control means 16 receives a load signal from a load detection means 17 for detecting a required load of the engine by, for example, an accelerator sensor, and a detection signal from a water temperature sensor 18 for detecting when the engine is cold, for example, by a cooling water temperature. At the same time, it receives the engine rotation signal from the engine rotation sensor 19 and controls the fuel injection amount and the fuel injection timing from the stratification fuel injection nozzle 9 and the fuel injection amount from the dispersion fuel injection nozzle 12, respectively. 14 to control the closing operation timing. The control means 16 operates the intake throttle means 20 to close the throttle valve 14 in response to the detection signal of the water temperature sensor 18 when the cooling water temperature is equal to or lower than the set value to reduce the intake air amount. The second fuel supply means 13 supplies a predetermined amount of dispersed fuel. The control of the fuel supply amount corresponding to the load by the control means 16 is performed by the second fuel supply means 13 in a normal operation range in a low / medium load range below a set load upon receiving a signal from the load detection means 17. The supply of the dispersed fuel is stopped, the stratified fuel is supplied by the first fuel supply means 11 to perform stratified combustion, and the supply amount is increased in accordance with the increase in the load. This is to reduce the supply amount. On the other hand, the dispersed fuel by the second fuel supply means 13 starts to be supplied at a load equal to or higher than the load in the vicinity of the set load, compensates for the decrease in the amount of the stratified fuel by the first fuel supply means 11, and provides a total supply according to the increase in the load. The amount of the dispersing fuel is increased so that the amount increases, and the stratified combustion shifts to uniform combustion. At this time, the injection amount and the number of injections for each injection are set in accordance with the engine speed. That is, the first type corresponding to the engine load
The fuel supply amount control by the fuel supply means 11 and the second fuel supply means 13 is performed as shown in FIG. FIG. 3 shows the variation of the fuel supply amount Q with respect to the variation of the load together with the variation of the excess air ratio λ. The throttle valve 14 is basically in the fully opened state, the intake air amount is constant, and the load increases. However, the fuel supply amount Q is increased to reduce the excess air ratio λ, that is, the air-fuel ratio is increased to perform output control. In the fuel supply amount Q, the fuel in the region I is supplied from the first fuel supply means 11, and the fuel in the region II is supplied from the second fuel supply means 13. First fuel supply means 1
The supply of the stratified fuel according to 1 increases with an increase in the load below the set load at the point A, whereas when the load exceeds the set load A, the fuel supply from the first fuel supply means 11 decreases,
At the time of a high load exceeding the point B, a small amount of injection is continued to prevent the stratification fuel injection nozzle 9 from being clogged with carbon and from being heated. On the other hand, the supply of the dispersed fuel by the second fuel supply means 13 starts at a load equal to or higher than the set load at the point A, and when the load increases further, the decrease in the supply of the stratified fuel by the first fuel supply means 11 is compensated for. At the same time, it supplies the increased fuel in response to the increase in the load as a whole. The load set at the point A is set so that the excess air ratio λ at that time is equal to or less than the ignition limit excess air ratio λ that can ignite even a homogeneous mixture, and the load at the point B is set. Is set to a load state in which the excess air ratio λ at that time becomes equal to or higher than the excess air ratio λ at which the air utilization rate decreases due to the stratified combustion and smoke starts to be generated. The excess air ratio λ is 1 or more below the point B, and the fuel supply amount increases as the load increases, and the excess air ratio λ decreases. Therefore, below the point A, the fuel is distributed in a stratified combustion region around the ignition device 8 in the combustion chamber 1, and above point B, the fuel is dispersed and supplied to the entire combustion chamber 1. In the uniform combustion region to be performed, a section from A to B is a transition region from the stratified combustion region to the uniform combustion region, and both the stratified combustion fuel and the uniform combustion fuel are supplied. The start timing of the supply of the dispersed fuel by the second fuel supply means 13 does not coincide with the set load A point at which the supply of the stratified fuel by the first fuel supply means 11 is reduced. The supply may be started under the changed load state. Next, FIG. 4 shows the injection timing (injection start timing) of the stratified fuel by the first fuel supply means 11 in response to the load fluctuation.
In the region where stratification is performed below the set load at the point A, the injection timing is set to a timing earlier than the ignition timing near the compression top dead center by a predetermined amount, and the injected fuel is set to the ignition device 8. Ignition is performed in a state where it is effectively unevenly distributed around. The injection timing is advanced and the injection is advanced earlier (small amount injection) as the process shifts to the area where the dispersion of the point B is performed beyond the point A.
Is performed to reduce the uneven distribution of the fuel injected from the first fuel supply means 11 and to distribute the fuel throughout the combustion chamber 1.
In addition, when the load is extremely low such as during idling, the fuel injection timing and the ignition timing are slightly advanced from those in the stratified combustion to improve the stability. When the engine is cold, the second
Instead of supplying the dispersed fuel by the fuel supply means 13,
By advancing the fuel injection timing by the first fuel supply means 11 in the same manner as at the time of the high load, the injection is completed at an early timing from the intake stroke to the early stage of the compression stroke, and the intake air in the combustion chamber 1 thereafter is completed. The fuel may be dispersed by the flow of the air to obtain uniform combustion. Further, in FIG. 4, the ignition timing is set to be substantially constant with respect to the load fluctuation, but this may be changed so that the ignition timing is advanced in accordance with the increase in the load. On the other hand, the intake throttle means 2 by the control means 16
As shown in FIG. 5, the opening / closing control of the throttle valve 14 of 0 is basically performed with the throttle valve 14 fully opened to perform a non-throttle operation. This is to reduce the intake air amount by making it smaller. When the engine is cold, as shown by the dashed line in FIG. 5, the engine is throttled over a wide range in a low-to-medium load region. Thus, the excess air ratio is reduced and the air-fuel ratio is made rich. In addition, the throttle valve 14 is controlled to close so as to prevent the catalyst temperature from decreasing during deceleration when the fuel supply is stopped and to improve the engine braking performance. Therefore, according to the stratified charge engine of the above-described embodiment, stratified combustion is performed to obtain good ignitability, and the excess air ratio λ In the stratified region, the intake air amount is kept constant without closing the throttle valve 14, and the output control is performed by the fuel supply amount by the first fuel supply means 11 at the same time. Is performed, the pumping loss accompanying the throttle operation of the throttle valve 14 can be significantly reduced, and the fuel efficiency is further improved. In the transition region from the point A to the point B exceeding the set load A, both the stratified combustion fuel and the uniform combustion fuel are supplied, and the ratio of the uniform combustion fuel is increased to increase the uniform combustion fuel from the stratified combustion. After the transition to combustion, in the high-load operation range beyond the point B, the air utilization is increased as uniform combustion to perform high-power operation without generating smoke.
Good driving performance can be achieved in all areas, and fuel efficiency can be improved by reducing pumping loss. Further, when the engine is cold, the fuel is supplied by the second fuel supply means 13 for dispersing and supplying the fuel to the entire combustion chamber, or the fuel injection timing by the first fuel supply means 11 is advanced to allow the fuel to be injected into the combustion chamber 1. In addition, uniform combustion is performed so that the fuel supplied to the fuel cell is dispersed, and the throttle valve 14 is closed by the intake throttle means 20 to reduce the amount of intake air to enrich the air-fuel ratio of the dispersed fuel. Is secured. In the above embodiment, the dispersing fuel injection nozzle 12 is interposed in the middle of the intake passage 3, but may be disposed so as to open into the combustion chamber 1. The injection timing of the dispersed fuel directly supplied to the combustion chamber 1 is
The injection is set to be completed between the intake stroke and the initial stage of the compression stroke.
In this case, uniform combustion is obtained by uniformly dispersing the gas in the chamber. Further, in the above embodiment, the amount of decrease in the amount of intake air by the intake throttle means 20 or the degree of equalization tendency due to advance of the injection timing is changed and adjusted according to the cooling water temperature, that is, the degree of the engine cold state. Alternatively, the amount of intake air may be increased as the temperature rises, and the combustion may return to stratified combustion.

【図面の簡単な説明】 【図1】本発明の一つの実施例による層状給気エンジン
の概略構成図 【図2】図1の例における燃焼室を模式的に示した平面
図 【図3】図1の例における負荷に対する燃料供給量の制
御を空気過剰率とともに示す特性図 【図4】図1の例における負荷変動に対し第1燃料供給
手段による成層燃料の噴射時期と点火時期を示す特性図 【図5】図1の例における負荷変動に対する絞り弁の開
度を示す特性図 【符号の説明】 1 燃焼室 3 吸気通路 8 着火装置 9 成層用燃料噴射ノズル 10 燃料噴射ポンプ 11 第1燃料供給手段 12 分散用燃料噴射ノズル 13 第2燃料供給手段 14 絞り弁 15 アクチュエータ 16 制御手段 17 負荷検出手段 18 水温センサー 20 吸気絞り手段
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of a stratified charge engine according to one embodiment of the present invention. FIG. 2 is a plan view schematically showing a combustion chamber in the example of FIG. FIG. 4 is a characteristic diagram showing control of a fuel supply amount with respect to a load together with an excess air ratio in the example of FIG. 1; FIG. 5 is a characteristic diagram showing an opening degree of a throttle valve with respect to a load change in the example of FIG. 1. [Description of References] 1 Combustion chamber 3 Intake passage 8 Ignition device 9 Stratification fuel injection nozzle 10 Fuel injection pump 11 First fuel Supply means 12 Dispersion fuel injection nozzle 13 Second fuel supply means 14 Throttle valve 15 Actuator 16 Control means 17 Load detection means 18 Water temperature sensor 20 Intake throttle means

フロントページの続き (72)発明者 沖本 晴男 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (72)発明者 河野 誠公 広島県安芸郡府中町新地3番1号 マツ ダ株式会社内 (56)参考文献 特開 昭51−1816(JP,A) 特開 昭54−47924(JP,A) 特開 昭56−151213(JP,A) 特開 昭57−62915(JP,A) 実公 昭52−54651(JP,Y2)Continuation of front page    (72) Inventor Haruo Okimoto               Pine, 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima               DA Co., Ltd. (72) Inventor Makoto Kono               Pine, 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima               DA Co., Ltd.                (56) References JP-A-51-1816 (JP, A)                 JP-A-54-47924 (JP, A)                 JP-A-56-151213 (JP, A)                 JP-A-57-62915 (JP, A)                 52-54651 (JP, Y2)

Claims (1)

(57)【特許請求の範囲】 1.燃焼室内への吸入空気の導入によって燃焼室内にス
ワールを生成するスワール生成手段と、エンジンの負荷
を検出する負荷検出手段と、燃焼室内へ燃料を供給する
燃料供給手段と、燃焼室内の混合気を着火させる着火装
置とを備え、低負荷時にはスワール生成手段と燃料供給
手段とにより着火装置のまわりに供給燃料を偏在させて
着火することにより層状燃焼を行う一方、高負荷時には
燃焼室全体に供給燃料を分散させて着火することにより
均一燃焼を行うようにした層状給気エンジンであって、 燃焼室内へ供給する燃料供給量を負荷増大に応じて徐々
に増加させ、エンジン出力を制御するとともに、 前記層状燃焼から均一燃焼領域に移行する中間負荷域
に、着火装置まわりに偏在させる燃料と燃焼室全体に分
散させる燃料とを供給する移行領域を設け、 上記移行領域の全域にわたって空気過剰率λが1よりも
大きくなるよう設定するとともに、この移行領域では負
荷の増大とともに空気過剰率λが小さくなるように設定
し、さらに、 上記移行領域において空気過剰率λが小さくなるに伴っ
て層状燃焼用の燃料供給量を減少させ、かつ、移行終了
時において均一燃焼用の燃料供給量よりも少なくなるよ
う前記燃料供給手段を制御する制御手段を備えたことを
特徴とする層状給気エンジン。 2.前記制御手段は、前記移行領域終了時点で層状燃焼
用の燃料を少量供給することを特徴とする請求項1に記
載の層状給気エンジン。 3.前記制御手段は、負荷の増大に伴う燃焼室内への燃
料供給量を、層状燃焼領域から移行領域にかけて変化割
合が一定で、連続して増加するように設定したことを特
徴とする請求項1に記載の層状給気エンジン。
(57) [Claims] A swirl generating means for generating a swirl in the combustion chamber by introducing intake air into the combustion chamber, a load detecting means for detecting a load of the engine, a fuel supply means for supplying fuel to the combustion chamber, and an air-fuel mixture in the combustion chamber. An ignition device that ignites the fuel, and performs stratified combustion by eccentrically igniting the supplied fuel around the ignition device by the swirl generating means and the fuel supply means at low load, while supplying fuel to the entire combustion chamber at high load. A stratified charge engine that performs uniform combustion by dispersing and igniting, and gradually increases a fuel supply amount supplied to a combustion chamber in accordance with an increase in load to control an engine output; A fuel supply that is distributed unevenly around the ignition device and a fuel that is dispersed throughout the combustion chamber are supplied to the intermediate load region where the combustion shifts from the stratified combustion to the uniform combustion region. A region is provided, and the excess air ratio λ is set to be larger than 1 over the entire region of the transition region. In this transition region, the excess air ratio λ is set to decrease with an increase in load. Control means for controlling the fuel supply means so as to reduce the fuel supply amount for stratified combustion as the excess air ratio λ decreases and to make the fuel supply amount for uniform combustion smaller at the end of the transition. A stratified charge engine comprising: 2. The stratified charge engine according to claim 1, wherein the control means supplies a small amount of fuel for stratified combustion at the end of the transition region. 3. 2. The control device according to claim 1, wherein the control unit sets the amount of fuel supplied into the combustion chamber with the increase in load so that the rate of change is constant and continuously increased from the stratified combustion region to the transition region. 3. A stratified charge engine as described.
JP32191696A 1996-12-02 1996-12-02 Stratified charge engine Expired - Lifetime JP2732050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32191696A JP2732050B2 (en) 1996-12-02 1996-12-02 Stratified charge engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32191696A JP2732050B2 (en) 1996-12-02 1996-12-02 Stratified charge engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58138493A Division JPH0639928B2 (en) 1983-07-28 1983-07-28 Stratified charge engine

Publications (2)

Publication Number Publication Date
JPH09310631A JPH09310631A (en) 1997-12-02
JP2732050B2 true JP2732050B2 (en) 1998-03-25

Family

ID=18137847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32191696A Expired - Lifetime JP2732050B2 (en) 1996-12-02 1996-12-02 Stratified charge engine

Country Status (1)

Country Link
JP (1) JP2732050B2 (en)

Also Published As

Publication number Publication date
JPH09310631A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
US6684849B2 (en) Multiple operating mode engine and method of operation
US20080257304A1 (en) Internal combustion engine and combustion method of the same
JP2000120457A (en) Diesel engine
JPH0658067B2 (en) Stratified charge engine
JPH0512537B2 (en)
JPH0639928B2 (en) Stratified charge engine
JP2732050B2 (en) Stratified charge engine
JP3278225B2 (en) Gas fuel engine
JPH0583730B2 (en)
JP2689100B2 (en) Stratified charge engine
JP2896757B2 (en) Stratified charge engine
JP2840603B2 (en) Stratified charge engine
JP2873574B2 (en) Stratified charge engine
JPS6030416A (en) Stratiform charging engine
JPH0670368B2 (en) Spark ignition engine
JPH0639927B2 (en) Stratified charge engine
JP2818934B2 (en) Stratified charge engine
JP3142630B2 (en) Combustion control system for multi-ignition engine
JP4070377B2 (en) Premixed compression auto-ignition engine and its operation method
JPH0583729B2 (en)
JPH0639925B2 (en) Stratified charge engine
JPH0639923B2 (en) Stratified charge engine
JPH0639926B2 (en) Stratified charge engine
JPH0639924B2 (en) Stratified charge engine
JPH11148408A (en) Spark ignition cylinder injection type internal combustion engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971125