JPH0583730B2 - - Google Patents
Info
- Publication number
- JPH0583730B2 JPH0583730B2 JP58145275A JP14527583A JPH0583730B2 JP H0583730 B2 JPH0583730 B2 JP H0583730B2 JP 58145275 A JP58145275 A JP 58145275A JP 14527583 A JP14527583 A JP 14527583A JP H0583730 B2 JPH0583730 B2 JP H0583730B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- load
- intake
- combustion
- stratified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 claims description 161
- 238000002485 combustion reaction Methods 0.000 claims description 82
- 238000002347 injection Methods 0.000 description 54
- 239000007924 injection Substances 0.000 description 54
- 239000003054 catalyst Substances 0.000 description 18
- 230000007423 decrease Effects 0.000 description 13
- 238000001514 detection method Methods 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 8
- 238000013517 stratification Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000000746 purification Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 239000000779 smoke Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B17/00—Engines characterised by means for effecting stratification of charge in cylinders
- F02B17/005—Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3023—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/32—Controlling fuel injection of the low pressure type
- F02D41/36—Controlling fuel injection of the low pressure type with means for controlling distribution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、層状給気エンジンに関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a stratified air charge engine.
(従来技術)
従来より、エンジンの燃費性、エミツシヨン性
を改善する目的から、負荷に応じて燃焼室に供給
する燃料のうち着火に必要な燃料だけを着火装置
の近傍に偏在させて、この部分のみの空燃比を濃
くして着火性を向上した層状燃焼を行うようにし
て、全体として希薄燃焼が実現できる層状給気エ
ンジンが、例えば特開昭49−62807号、特開昭49
−128109号に見られるように公知である。(Prior art) Conventionally, for the purpose of improving the fuel efficiency and emission performance of an engine, only the fuel necessary for ignition out of the fuel supplied to the combustion chamber according to the load is unevenly distributed near the ignition device, and this part A stratified air charge engine that achieves lean combustion as a whole by enriching the air-fuel ratio of the fuel and performing stratified combustion with improved ignitability is disclosed, for example, in JP-A-49-62807 and JP-A-49.
- It is publicly known as seen in No. 128109.
上記層状給気エンジンにおいては、着火装置ま
わりに供給する着火用燃料は負荷に関係なく一定
とし、この着火用燃料の供給と同時に負荷に応じ
た量の分散燃料を供給するようにしているもので
あり、このエンジンにおいては排気温度が低くな
る傾向にあることから、排気通路に設けた触媒装
置が過冷却となつて、排気浄化性能が不十分とな
る問題がある。 In the above-mentioned stratified air supply engine, the ignition fuel supplied around the ignition device is constant regardless of the load, and at the same time the ignition fuel is supplied, distributed fuel is supplied in an amount corresponding to the load. In this engine, since the exhaust gas temperature tends to be low, there is a problem that the catalyst device provided in the exhaust passage becomes overcooled, resulting in insufficient exhaust purification performance.
すなわち、層状燃焼においては、希薄燃焼の実
現によつて燃費性を向上するとともに、絞り弁の
開度を大きくしてポンピングロスの低減を図るよ
うにしているものであるが、吸入空気量が多くな
つて冷却性が増大するために排気温度が低下す
る。例えば、減速時には燃料の供給が殆どないこ
とから、排気通路の触媒装置を温度が低い空気の
みが通過してこの触媒を過冷却状態とし、燃料供
給に伴う反応浄化を再開するときに、触媒装置の
温度が低く触媒が活性化せず反応温度に達しない
ことから、十分な浄化性能が得られずにエミツシ
ヨン性が低下する問題を有する。 In other words, in stratified combustion, fuel efficiency is improved by achieving lean combustion, and pumping loss is reduced by increasing the opening of the throttle valve, but the amount of intake air is large. As the cooling performance increases, the exhaust temperature decreases. For example, during deceleration, there is almost no fuel supplied, so only low-temperature air passes through the catalyst device in the exhaust passage, bringing the catalyst into a supercooled state. When resuming the reaction purification associated with fuel supply, the catalyst device Since the temperature is low and the catalyst is not activated and does not reach the reaction temperature, there is a problem that sufficient purification performance is not obtained and emission properties are deteriorated.
(発明の目的)
そこで、本発明は上記事情に鑑み、少なくとも
低負荷時では着火装置のまわりに燃料を偏在して
供給した層状燃焼を行うとともに、高負荷域では
燃焼室全体に燃料を分散して供給した均一燃焼を
行うようにして、良好な層状燃焼と均一燃焼を得
るとともに、触媒装置の過冷却を防止し、排気浄
化性能を改善した層状給気エンジンを提供するこ
とを目的とするものである。(Object of the Invention) Therefore, in view of the above circumstances, the present invention performs stratified combustion in which fuel is unevenly distributed and supplied around the ignition device at least at low load times, and at the same time, in high load regions, the fuel is distributed throughout the combustion chamber. The purpose of the present invention is to provide a stratified air supply engine that achieves good stratified combustion and uniform combustion by uniformly combusting the air supplied with air, prevents overcooling of the catalyst device, and improves exhaust purification performance. It is.
(発明の構成)
本発明の層状給気エンジンは、燃焼室内へ負荷
に対応した出力制御用の燃料を供給する燃料供給
手段と、燃焼室内に配設された着火装置と、吸気
通路の開口面積をアクセス操作とは機械的に連係
せずに制御する吸気絞り手段と、排気通路に配設
された触媒装置と、排気系の温度を検出する排気
温度検出手段とを備え、少なくとも低負荷時には
燃料供給手段から着火装置のまわりに偏在して燃
料を供給し着火することにより層状燃焼を行うと
ともに前記吸気絞り手段によつて上記燃料量に比
して吸気通路の開口面積を増大して希薄燃料を行
う一方、高負荷時には燃焼室内に分散して燃料を
供給し着火することにより均一燃焼を行うように
したものであつて、前記排気温度検出手段からの
出力を受け、排気系の温度が設定値以下に低下し
たときには、前記吸気絞り手段により吸気通路の
開口面積を減少して吸入空気量を低減することを
特徴とするものである。(Structure of the Invention) The stratified air supply engine of the present invention includes a fuel supply means for supplying fuel for output control corresponding to the load into a combustion chamber, an ignition device disposed in the combustion chamber, and an opening area of an intake passage. It is equipped with an intake throttle means that controls the air flow without being mechanically linked to the access operation, a catalyst device disposed in the exhaust passage, and an exhaust temperature detection means that detects the temperature of the exhaust system.At least when the load is low, the fuel By supplying fuel unevenly distributed around the ignition device from the supply means and igniting it, stratified combustion is performed, and the intake throttle means increases the opening area of the intake passage in comparison to the amount of fuel to produce lean fuel. On the other hand, when the load is high, fuel is supplied dispersedly into the combustion chamber and ignited to achieve uniform combustion. When the air pressure decreases below, the intake air throttle means reduces the opening area of the intake passage to reduce the amount of intake air.
(発明の効果)
低負荷域においては、燃料供給手段によつて燃
焼室内の着火装置まわりに偏在して燃料を供給し
て層状燃焼を行うとともに、吸気絞り手段によつ
て燃料供給量に比して吸気通路の開口面積を増大
して希薄燃焼を行つて燃費性を向上する一方、高
負荷運転域においては、燃料供給手段によつて供
給した燃料を分散して均一燃焼を行い、スモーク
の発生を伴うことなく良好な高出力運転を確保す
ることができる。(Effect of the invention) In a low load range, the fuel supply means supplies fuel unevenly distributed around the ignition device in the combustion chamber to perform stratified combustion, and the intake throttle means supplies fuel unevenly distributed around the ignition device in the combustion chamber. This increases the opening area of the intake passage and performs lean combustion to improve fuel efficiency, while at the same time, in high-load operating ranges, the fuel supplied by the fuel supply means is dispersed for uniform combustion to reduce smoke generation. Good high-output operation can be ensured without any problems.
また、排気温度が低いときには吸気絞り手段に
よつて吸気通路を絞つて吸入空気量を減少し、多
量の吸入空気による触媒の過冷却を抑制し、触媒
の反応開始時に、早期に触媒温度を上昇してその
活性化を図り、良好な排気浄化性能を確保するこ
とができる。 In addition, when the exhaust temperature is low, the intake air restrictor narrows the intake passage to reduce the amount of intake air, suppressing overcooling of the catalyst due to a large amount of intake air, and raising the catalyst temperature early when the catalyst reaction starts. This can be activated to ensure good exhaust purification performance.
(実施例)
以下、図面により本発明の実施態様を詳細に説
明する。(Example) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
実施例 1
この実施例は第1図ないし第5図に示し、燃料
供給手段を、成層用の第1燃料供給手段と分散用
の第2燃料供給手段とにより構成した例を示すも
のである。Embodiment 1 This embodiment is shown in FIGS. 1 to 5, and shows an example in which the fuel supply means is composed of a first fuel supply means for stratification and a second fuel supply means for dispersion.
第1図に示すエンジンにおいて、1はピストン
2の上方に形成された燃焼室、3は該燃焼室1に
吸入空気を導入する吸気通路、4は燃焼室1から
排気ガスを導出する排気通路、5は吸気弁、6は
排気弁、7は排気通路4に介装された触媒装置を
それぞれ示している。 In the engine shown in FIG. 1, 1 is a combustion chamber formed above a piston 2, 3 is an intake passage that introduces intake air into the combustion chamber 1, 4 is an exhaust passage that leads out exhaust gas from the combustion chamber 1; Reference numeral 5 indicates an intake valve, 6 an exhaust valve, and 7 a catalyst device interposed in the exhaust passage 4, respectively.
上記燃焼室1には、点火プラグによる着火装置
8が配設されるとともに、この着火装置8のまわ
りに燃料を供給する成層用燃料噴射ノズル9が配
設され、この成層用燃料噴射ノズル9には燃料噴
射ポンプ10が接続されて第1燃料供給手段11
が構成されている。 The combustion chamber 1 is provided with an ignition device 8 using a spark plug, and a stratified fuel injection nozzle 9 for supplying fuel around the ignition device 8. The fuel injection pump 10 is connected to the first fuel supply means 11.
is configured.
一方、上記吸気通路3には、燃焼室1内に燃料
を分散供給する分散用燃料噴射ノズル12による
第2燃料供給手段13が介装されている。さら
に、この分散用燃料噴射ノズル12の下流には絞
り弁14が配設され、この絞り弁14にはその開
閉作動を行うアクチユエータ15(アクセル操作
には連動していない)が設けられて吸気通路3の
開口面積を制御して吸入空気量を規制する吸気絞
り手段21が構成されている。 On the other hand, a second fuel supply means 13 is interposed in the intake passage 3 and includes a dispersion fuel injection nozzle 12 for distributing fuel into the combustion chamber 1 . Further, a throttle valve 14 is disposed downstream of this dispersion fuel injection nozzle 12, and an actuator 15 (not linked to accelerator operation) for opening and closing the throttle valve 14 is disposed in the intake passage. An intake throttle means 21 is configured to control the opening area of No. 3 to regulate the amount of intake air.
上記吸気通路3の下流側部分は第2図に示すよ
うに、湾曲形成されて吸入空気を燃焼室1の接線
方向から導入し、燃焼室1内にその周方向に沿つ
たスワールSを生成するスワールポートに形成さ
れ、このスワールにより、第1燃焼供給手段11
の成層用燃料噴射ノズル9から供給され着火装置
8にて着火された着火燃料を空気と十分に混合さ
せるとともに、火炎を燃焼室1全体に伝播させ
て、噴射燃料全体を十分に燃焼させるものであ
る。 As shown in FIG. 2, the downstream portion of the intake passage 3 is curved to introduce the intake air from the tangential direction of the combustion chamber 1 and generate a swirl S along the circumferential direction within the combustion chamber 1. is formed in the swirl port, and due to this swirl, the first combustion supply means 11
The ignition fuel supplied from the stratified fuel injection nozzle 9 and ignited by the ignition device 8 is sufficiently mixed with air, and the flame is propagated throughout the combustion chamber 1, so that the entire injected fuel is sufficiently combusted. be.
上記第1燃料供給手段11の燃料噴射ポンプ1
0、第2燃料供給手段13の分散用燃料噴射ノズ
ル12および吸気絞り手段21のアクチユエータ
15の作動は、制御手段16によつて制御され
る。 Fuel injection pump 1 of the first fuel supply means 11
0, the operation of the dispersing fuel injection nozzle 12 of the second fuel supply means 13 and the actuator 15 of the intake throttle means 21 is controlled by the control means 16.
上記制御手段16は、エンジンの要求負荷を例
えばアクセルセンサーによつて検出する負荷検出
手段17からの負荷信号、排気系の温度を例えば
排気通路4の触媒装置7の出口側に配設された温
度センサーによつて検出する排気温度検出手段1
8からの温度信号、吸気圧力センサー19からの
吸気圧力信号、およびエンジン回転センサー20
からのエンジン回転信号等を受け、成層用燃料噴
射ノズル9からの燃料噴射量および燃料噴射時
期、分散用燃料噴射ノズル12からの燃料噴射量
をそれぞれ制御するとともに、絞り弁14の閉作
動時期を制御するものである。 The control means 16 receives a load signal from a load detection means 17 that detects the required load of the engine using, for example, an accelerator sensor, and receives a load signal from a load detection means 17 that detects the required load of the engine by using, for example, an accelerator sensor. Exhaust temperature detection means 1 detected by a sensor
temperature signal from 8, intake pressure signal from intake pressure sensor 19, and engine rotation sensor 20.
receives the engine rotation signal etc. from the stratification fuel injection nozzle 9, controls the fuel injection amount and fuel injection timing from the stratification fuel injection nozzle 9, and the fuel injection amount from the dispersion fuel injection nozzle 12, and also controls the closing operation timing of the throttle valve 14. It is something to control.
上記制御手段16は、排気温度検出手段18の
検出信号に応じ排気温度が設定値以下の低温時に
は、吸気絞り手段21を作動して絞り弁14を閉
じ、吸気通路3の開口面積を絞つて吸入空気量を
減少するものである。 The control means 16 operates the intake throttle means 21 to close the throttle valve 14 and throttle the opening area of the intake passage 3 when the exhaust temperature is low, below a set value, in response to a detection signal from the exhaust temperature detection means 18. This reduces the amount of air.
また、この制御手段16による負荷に対応した
燃料供給量制御は、負荷検出手段17の信号を受
け、設定負荷以下の低・中負荷域における常用運
転域では第2燃料供給手段13による分散燃料の
供給は停止し、第1燃料供給手段11による成層
燃料を供給して層状燃焼を行い、負荷の増加に応
じてその供給量を増加し、設定負荷を越えると成
層燃料の供給量を減少させるものである。一方、
第2燃料供給手段13による分散燃料は、上記設
定負荷近傍の負荷以上において供給を開始し、第
1燃料供給手段11による成層燃料の減少量を補
うともに、負荷の増加に応じて全供給量が増加す
るよう分散用燃料の供給量を増加して層状燃焼か
ら均一燃焼に移行するものである。その際、各噴
射毎の噴射量、噴射回数はエンジン回転数に対応
して設定する。 Further, the control means 16 performs fuel supply amount control corresponding to the load by receiving a signal from the load detection means 17, and in the normal operating range in the low/medium load range below the set load, the second fuel supply means 13 controls the amount of distributed fuel. The supply is stopped, stratified fuel is supplied by the first fuel supply means 11 to perform stratified combustion, and the supply amount is increased as the load increases, and when the set load is exceeded, the supply amount of the stratified fuel is decreased. It is. on the other hand,
The distributed fuel by the second fuel supply means 13 starts to be supplied at a load equal to or higher than the above-mentioned set load, and compensates for the decrease in the amount of stratified fuel by the first fuel supply means 11, and also increases the total supply amount as the load increases. This is to increase the supply amount of dispersion fuel so as to shift from stratified combustion to uniform combustion. At this time, the injection amount and number of injections for each injection are set in accordance with the engine rotation speed.
すなわち、エンジンの負荷に対応した第1燃料
供給手段11、第2燃料供給手段13による燃料
供給量制御は、第3図に示すように行う。この第
3図は負荷の変動に対する燃料供給量Qの変動を
空気過剰率λの変動とともに示すものであつて、
前記絞り弁14は基本的に全開状態で吸入空気量
は一定であり、負荷の増加に対し燃料供給量Qを
増加して空気過剰率λを小さくし、すなわち空燃
比を濃くして出力制御を行うように設けられてい
る。燃量供給量Qにおいて、領域Iの燃料を第1
燃料供給手段11から供給し、領域の燃料を第
2燃料供給手段13から供給するものである。第
1燃料供給手段11による成層燃料の供給はA点
の設定負荷以下では負荷の増加に応じて増大する
一方、この設定負荷A点を越えると、第1燃料供
給手段11からの燃料供給を減少し、B点を越え
た高負荷時には、成層用燃料噴射ノズル9のカー
ボンによる目詰まり防止と加熱防止のために少量
噴射を継続する。 That is, the fuel supply amount control by the first fuel supply means 11 and the second fuel supply means 13 corresponding to the engine load is performed as shown in FIG. This figure 3 shows the fluctuation of the fuel supply amount Q with respect to the fluctuation of the load, together with the fluctuation of the excess air ratio λ.
The throttle valve 14 is basically fully open and the amount of intake air is constant, and when the load increases, the fuel supply amount Q is increased to reduce the excess air ratio λ, that is, the air-fuel ratio is enriched to control the output. is set up to do so. In the fuel supply amount Q, the fuel in region I is
The fuel is supplied from the fuel supply means 11, and the fuel in the area is supplied from the second fuel supply means 13. The supply of stratified fuel by the first fuel supply means 11 increases as the load increases below the set load at point A, while when the set load exceeds point A, the supply of fuel from the first fuel supply means 11 decreases. However, when the load is high beyond point B, a small amount of fuel injection is continued in order to prevent the stratification fuel injection nozzle 9 from clogging with carbon and to prevent heating.
一方、上記第2燃料供給手段13による分散燃
料の供給はA点の設定負荷以上で供給を開始し、
これより負荷が増加すると第1燃料供給手段11
による成層燃料の供給減少を補うとともに、全体
として負荷の増加に対応して増加した燃料を供給
するものである。 On the other hand, the supply of distributed fuel by the second fuel supply means 13 starts at a load equal to or higher than the set load at point A,
When the load increases from this, the first fuel supply means 11
This will compensate for the decrease in the supply of stratified fuel due to this, and will also supply increased fuel in response to the overall increase in load.
上記A点の設定負荷は、その時点における空気
過剰率λが均一混合気でも着火可能な着火限界の
空気過剰率λ以下となるような負荷状態に設定さ
れ、また、B点の負荷は、その時点における空気
過剰率λが層状燃焼によつては空気利用率が低下
してスモークが発生し始める空気過剰率λ以上と
なるような負荷状態に設定される。 The set load at point A is set to a load state such that the excess air ratio λ at that point is less than the excess air ratio λ, which is the ignition limit that allows ignition even in a homogeneous mixture, and the load at point B is set at that point. The load condition is set such that the excess air ratio λ at the time becomes equal to or higher than the excess air ratio λ at which the air utilization rate decreases and smoke starts to occur due to stratified combustion.
よつて、上記A点以下においては、燃料は燃焼
室1の着火装置8まわりに偏在して供給される層
状燃焼領域であり、B点以上が燃焼室1全体に燃
料が分散して供給される均一燃焼領域で、A−B
間が層状燃焼領域から均一燃焼領域への移行領域
である。 Therefore, below the above-mentioned point A, there is a stratified combustion region in which fuel is supplied unevenly around the ignition device 8 of the combustion chamber 1, and above point B, fuel is distributed and supplied throughout the combustion chamber 1. In the uniform combustion region, A-B
The region between is the transition region from the stratified combustion region to the uniform combustion region.
また、この層状燃焼から均一燃焼への切換点A
点は、吸気圧力センサー19によつて検出した吸
気圧力に応じて変動するように設けられ、吸気圧
力すなわち吸気密度が低下したときには低負荷側
に移行するように設定されている。 Also, the switching point A from stratified combustion to uniform combustion
The point is set to vary according to the intake pressure detected by the intake pressure sensor 19, and is set to shift to the low load side when the intake pressure, that is, the intake air density decreases.
なお、第2燃料供給手段13による分散燃料の
供給開始時期は、第1燃料供給手段11による成
層燃料の供給を減少させる設定負荷A点と一致さ
せることなく、このA点近傍の相前後した負荷状
態で供給を開始するようにすればよい。 Note that the timing at which the second fuel supply means 13 starts supplying the distributed fuel is not made to coincide with the set load point A at which the supply of stratified fuel by the first fuel supply means 11 is reduced, but rather to match the successive loads near this point A. The supply may be started in the state.
また、第1燃料供給手段11による成層燃料供
給と第2燃料供給手段13による分散燃料供給の
切換えは、上記の如く徐々に減少、増大するよう
にするほか、設定負荷A点とB点との間の負荷状
態において、オン・オフ的に切換えるようにして
もよい。 In addition, the switching between the stratified fuel supply by the first fuel supply means 11 and the distributed fuel supply by the second fuel supply means 13 is performed by gradually decreasing and increasing as described above, and also by changing the setting load between point A and point B. It may be possible to switch it on and off in a load state between.
次に、第4図は負荷変動に対し、第1燃料供給
手段11による成層燃料の噴射時期(噴射開始時
期)と点火時期を示すものであり、前記A点の設
定負荷以下の成層化を行う領域では、噴射時期は
圧縮上死点近傍の点火時期より所定量早い時期に
設定され、噴射燃料が着火装置8のまわりに有効
に偏在した状態で着火を行う。上記A点を越えて
B点の分散化を行う領域に移行するのに従つて、
噴射時期を進めて早い時期に噴射を行い、第1燃
料供給手段11から噴射された燃料の偏在を小さ
くして燃焼室1全体に分散させるようにする。ま
た、アイドル運転時のような極低負荷時には燃料
噴射時期および点火時期は若干進めて安定性を向
上している。 Next, FIG. 4 shows the injection timing (injection start timing) and ignition timing of stratified fuel by the first fuel supply means 11 in response to load fluctuations, and stratification is performed below the set load at point A. In this region, the injection timing is set a predetermined amount earlier than the ignition timing near compression top dead center, and ignition is performed with the injected fuel effectively unevenly distributed around the ignition device 8. As we move beyond point A to the area where point B is decentralized,
The injection timing is advanced to perform injection at an earlier stage, thereby reducing uneven distribution of the fuel injected from the first fuel supply means 11 and dispersing it throughout the combustion chamber 1. Additionally, during extremely low load conditions such as during idling, the fuel injection timing and ignition timing are slightly advanced to improve stability.
一方、制御手段16による吸気絞り手段21の
絞り弁14の開閉制御は、第5図に示すように、
基本的には絞り弁14を全開状態としてノンスロ
ツトル運転を行い、エンジン始動時、減速時等に
は開度を小さくして吸入空気量を減少するもので
ある。また、排気温度が低いときには、第5図中
に鎖線で示すように、低・中負荷域において絞る
ものであり、負荷が低下するほど開度を小さくし
て吸入空気量を減少するものである。 On the other hand, the control means 16 controls the opening and closing of the throttle valve 14 of the intake throttle means 21 as shown in FIG.
Basically, non-throttle operation is performed with the throttle valve 14 fully open, and the opening degree is reduced during engine startup, deceleration, etc. to reduce the amount of intake air. In addition, when the exhaust temperature is low, as shown by the chain line in Figure 5, the valve is throttled in the low and medium load range, and as the load decreases, the opening is made smaller and the amount of intake air is reduced. .
よつて、上記実施例の層状給気エンジンによれ
ば、設定負荷A点以下の低・中負荷における常用
運転領域では、層状燃焼を行つて良好な着火性を
得るとともに、希薄燃焼を可能として燃費性を向
上すると同時に、この成層領域においては、絞り
弁14を閉じることなく吸入空気量を一定とし
て、第1燃料供給手段11による燃料供給量によ
つて出力制御を行うようにしたことにより、絞り
弁14の絞り作動に伴うポンピングロスを大幅に
低減することができ、燃費性がより一層向上す
る。 Therefore, according to the stratified air charge engine of the above embodiment, in the normal operating range at low and medium loads below the set load point A, stratified combustion is performed to obtain good ignitability, and lean combustion is made possible to improve fuel efficiency. At the same time, in this stratified region, the intake air amount is kept constant without closing the throttle valve 14, and the output is controlled by the fuel supply amount by the first fuel supply means 11. Pumping loss associated with the throttling operation of the valve 14 can be significantly reduced, and fuel efficiency is further improved.
また、上記設定負荷A点を越えた高負荷運転域
では層状燃焼から均一燃焼に移行して空気利用率
を増大してスモークの発生を伴うことなく高出力
運転を行うものであり、全領域において良好な運
転性能と、ポンピングロスの低減による燃費性の
改善が行える。 In addition, in the high-load operation range exceeding the set load point A mentioned above, the system shifts from stratified combustion to uniform combustion to increase the air utilization rate and perform high-output operation without smoke generation. It provides good driving performance and improves fuel efficiency by reducing pumping loss.
さらに、排気温度が低いときには、吸気絞り手
段21により絞り弁14を閉じて吸入空気量を減
少し、触媒装置7を流れる空気量を低減して、こ
の触媒装置7の過冷却を阻止する。その際、絞り
弁14の閉作動により吸気圧力が低下するのに伴
つて層状燃焼から均一燃焼への切換点A点が低負
荷側に移行し、低負荷状態から均一燃焼化を行つ
て排気ガス温度の上昇によつて早期に触媒温度が
上昇するようにしている。 Further, when the exhaust gas temperature is low, the intake air throttle means 21 closes the throttle valve 14 to reduce the amount of intake air, thereby reducing the amount of air flowing through the catalyst device 7, thereby preventing the catalyst device 7 from being overcooled. At this time, as the intake pressure decreases due to the closing operation of the throttle valve 14, the switching point A from stratified combustion to uniform combustion shifts to the low load side, and homogeneous combustion is performed from the low load state, and the exhaust gas The catalyst temperature is made to rise quickly as the temperature rises.
なお、前記第2燃料供給手段13は、分散用燃
料噴射ノズル12による燃料噴射方式に代えて、
気化器を使用して吸気通路3に分散燃料を供給す
るようにしてもよい。 Note that the second fuel supply means 13 uses a fuel injection method using the dispersion fuel injection nozzle 12,
A vaporizer may be used to supply dispersed fuel to the intake passage 3.
また、上記実施例では第2燃料供給手段13の
分散用燃料噴射ノズル12は吸気通路3の途中に
介装するようにしているが、この第2燃料供給手
段13の分散用燃料噴射ノズル12を第1燃料供
給手段11の成層用燃料噴射ノズル9と同様に燃
焼室1内に開口するように配設してもよく、その
場合、この第2燃料供給手段13により燃焼室1
に直接供給する分散燃料の噴射時期は、上記第1
燃料供給手段11による燃料噴射時期より早く、
吸気行程から圧縮行程初期の間に噴射を完了すよ
うに設定し、第2燃料供給手段13による供給燃
料が吸入空気との混合によつて燃焼室1内に均一
分散するようにして、均一燃焼を得るものであ
る。 Further, in the above embodiment, the dispersion fuel injection nozzle 12 of the second fuel supply means 13 is interposed in the middle of the intake passage 3; Similarly to the stratified fuel injection nozzle 9 of the first fuel supply means 11, it may be arranged so as to open into the combustion chamber 1. In that case, the second fuel supply means 13
The injection timing of the dispersed fuel directly supplied to the
earlier than the fuel injection timing by the fuel supply means 11,
The injection is set to be completed between the intake stroke and the early stage of the compression stroke, and the fuel supplied by the second fuel supply means 13 is mixed with the intake air and uniformly dispersed in the combustion chamber 1, thereby achieving uniform combustion. This is what you get.
実施例 2
この実施例は第6図ないし第9図に示し、燃料
供給手段を吸気通路に設けた1つの燃料噴射ノズ
ルにて構成した例である。Embodiment 2 This embodiment is shown in FIGS. 6 to 9, and is an example in which the fuel supply means is constituted by one fuel injection nozzle provided in the intake passage.
第6図および第7図に示すエンジンにおいて、
22は燃焼室1の1次吸気ポート23に開口した
1次吸気通路、24は同じく2次吸気ポート25
に開口した2次吸気通路、26は排気ポート27
に開口した排気通路、28は1次吸気弁、29は
2次吸気弁、30は排気弁、8は点火プラグによ
る着火装置をそれぞれ示している。 In the engine shown in FIGS. 6 and 7,
22 is a primary intake passage that opens to the primary intake port 23 of the combustion chamber 1, and 24 is the secondary intake port 25.
26 is an exhaust port 27
28 is a primary intake valve, 29 is a secondary intake valve, 30 is an exhaust valve, and 8 is an ignition device using a spark plug.
上記1次吸気通路22の下流側部分は燃焼室1
にスワールを形成するスワールポートに設けられ
るとともに、上流側は2次吸気通路24と合流
し、絞り弁14による吸気絞り手段21の作動で
吸入空気量が規制され、上記2次吸気通路24に
はスワールコントロールバルブ31が介装されて
いる。 The downstream portion of the primary intake passage 22 is located in the combustion chamber 1.
The swirl port is provided at the swirl port that forms a swirl, and the upstream side merges with the secondary intake passage 24, and the amount of intake air is regulated by the operation of the intake throttle means 21 by the throttle valve 14. A swirl control valve 31 is interposed.
また、上記1次吸気通路22には、1次吸気弁
28が開作動したときに、弁隙間から燃焼室1内
の着火装置8近傍に向けて燃料を噴射する燃料噴
射ノズル32が配設されて燃料供給手段33が構
成されている。 Further, a fuel injection nozzle 32 is disposed in the primary intake passage 22, which injects fuel from the valve gap toward the vicinity of the ignition device 8 in the combustion chamber 1 when the primary intake valve 28 is opened. A fuel supply means 33 is configured.
上記燃料供給手段33および吸気絞り手段21
は、前例と同様の制御手段(図示せず)によつ
て、燃料噴射ノズル32からの燃料噴射量、噴射
時期および絞り弁14の開度が制御される。燃料
供給手段33は、負荷に応じて燃料供給量を増加
することによつて出力制御を行い、その噴射時期
の制御によつて層状燃焼と均一燃焼との切換えを
行うようにしている。 The fuel supply means 33 and the intake throttle means 21
In this case, the amount of fuel injected from the fuel injection nozzle 32, the injection timing, and the opening degree of the throttle valve 14 are controlled by the same control means (not shown) as in the previous example. The fuel supply means 33 controls the output by increasing the amount of fuel supplied according to the load, and switches between stratified combustion and uniform combustion by controlling the injection timing.
すなわち、燃料噴射時期は、第8図に示すよう
に行うものであつて、Sは噴射開始時期を、Eは
噴射終り時期をそれぞれ示している。実施例1の
第3図におけるA点に相当する設定負荷以下の成
層領域における燃料噴射時期は、吸気行程の終期
において1次吸気通路22が閉じる直前の遅い時
期に噴射して燃料が1次吸気弁28の開弁隙間か
ら燃焼室1内に流入し、着火装置8のまわりに偏
在するように供給し、圧縮行程においてピストン
2が上昇したときにも、燃料を燃焼室1の上部に
偏在させて成層燃焼を行うようにするものであ
る。その際、燃料噴射終りを一定時期とし、噴射
始めを早くし、負荷の増大に応じて噴射量を増加
するようにしている。 That is, the fuel injection timing is performed as shown in FIG. 8, where S indicates the injection start timing and E indicates the injection end timing. The fuel injection timing in the stratified load region below the set load, which corresponds to point A in FIG. Fuel flows into the combustion chamber 1 through the opening gap of the valve 28 and is supplied so as to be unevenly distributed around the ignition device 8, and even when the piston 2 rises in the compression stroke, the fuel is distributed unevenly in the upper part of the combustion chamber 1. This is to perform stratified combustion. At this time, the end of fuel injection is set at a fixed time, the start of injection is made earlier, and the amount of injection is increased as the load increases.
また、A点の設定負荷を越えると、噴射時期を
大きく進角して早くし、B点を越えた高負荷時に
は噴射終りを一定にして、噴射始めを進角して負
荷の増大に応じて噴射量を増加するものであつ
て、吸気行程初期からの燃料供給により、燃焼室
1内に流入した燃料は吸入空気の流れによつて燃
焼室1全体に分散し、均一燃焼を行うものであ
る。 In addition, when the set load at point A is exceeded, the injection timing is greatly advanced to make it earlier, and when the load exceeds point B, the end of injection is kept constant and the start of injection is advanced to respond to the increase in load. This increases the injection amount, and by supplying fuel from the beginning of the intake stroke, the fuel that has flowed into the combustion chamber 1 is dispersed throughout the combustion chamber 1 by the flow of intake air, resulting in uniform combustion. .
上記層状燃焼から均一燃焼への切換点A点は、
前例と同様に吸気圧力の低下に伴つて低負荷側に
移行するように設定されている。 The switching point A from stratified combustion to uniform combustion is
As in the previous example, it is set to shift to the low load side as the intake pressure decreases.
なお、2次吸気通路24に介装されているスワ
ールコントロールバルブ31は、前記設定点Aか
ら開いて2次吸気通路24からも吸入空気を供給
し、1次吸気通路22により供給される吸入空気
のスワールの強さが過大になるのを阻止し、燃焼
速度の異常上昇にもとづく燃焼騒音、ノツキング
の発生を抑制するとともに、吸気抵抗を軽減して
吸気効率を向上するものである。 Note that the swirl control valve 31 installed in the secondary intake passage 24 opens from the set point A to supply intake air from the secondary intake passage 24 as well, and replaces the intake air supplied by the primary intake passage 22. This prevents the swirl strength from becoming excessive, suppresses the occurrence of combustion noise and knocking caused by an abnormal increase in combustion speed, and also reduces intake resistance and improves intake efficiency.
この実施例における絞り弁14の開度の制御
は、第9図に示すように行う。本例では成層領域
における燃料の成層化が、前例のものに比べて着
火装置8まわりへの偏在割合が少なくなつて低下
するため、絞り弁14は吸入空気量を低減するよ
うに絞る必要があるが、鎖線で示す如き従来の気
化器方式エンジンのように混合気充填量で出力制
御を行うものに比べて、その絞り開度は小さく、
ポンピングロスの低減が行えるものである。 The opening degree of the throttle valve 14 in this embodiment is controlled as shown in FIG. In this example, the stratification of the fuel in the stratification region is lowered as the proportion of fuel being unevenly distributed around the ignition device 8 is lower than in the previous example, so the throttle valve 14 needs to be throttled to reduce the amount of intake air. However, compared to conventional carburetor engines, which control the output based on the amount of air-fuel mixture filling, as shown by the chain line, the throttle opening is small;
Pumping loss can be reduced.
この絞り弁開度は、排気温度の低下時にいて
は、鎖線で示す開度程度にまで絞り、吸入空気量
を減少させる。 When the exhaust gas temperature decreases, the throttle valve opening degree is reduced to the degree shown by the chain line to reduce the amount of intake air.
よつて、この実施例においても、低負荷時には
層状燃焼による希薄燃焼を行つて燃費性の向上を
図る一方、高負荷時には均一燃焼によつてスモー
クの発生を伴うことなく高出力運転を行うことが
できる。 Therefore, in this embodiment as well, at low loads, lean combustion is performed by stratified combustion to improve fuel efficiency, while at high loads, homogeneous combustion allows high output operation without smoke generation. can.
また、排気温度の低下時には、吸気通路開口面
積の減少により吸入空気量を低減し、触媒装置7
の過冷却を防止するとともに、均一燃焼への移行
時期を早めて、反応開始時に早期に温度上昇を図
つて触媒の活性化が行えるようにしている。 In addition, when the exhaust temperature decreases, the intake air amount is reduced by reducing the opening area of the intake passage, and the catalyst device 7
In addition to preventing overcooling of the fuel, the transition to uniform combustion is brought forward, and the temperature is raised early at the start of the reaction to activate the catalyst.
なお、上記両実施例においては、吸気圧力に応
じて層状燃焼から均一燃焼への切換点を低負荷側
に移行し、排気温度が低いときには早期に均一燃
焼を行うようにしているが、これの代りに排気温
度の低下時には低負荷時においても燃料噴射時期
を進角して早くし、均一燃焼化傾向を得るように
してもよい。 In both of the above embodiments, the switching point from stratified combustion to uniform combustion is shifted to the low load side according to the intake pressure, and uniform combustion is performed early when the exhaust temperature is low. Alternatively, when the exhaust gas temperature decreases, the fuel injection timing may be advanced even under low load to obtain a tendency toward uniform combustion.
さらに、上記両実施例において、排気温度すな
わち触媒温度に応じて、吸気絞り手段21による
吸入空気量の減少量を変更調整し、温度が上昇す
るのに伴つて吸入空気量を増加させるようにして
もよい。 Furthermore, in both of the above embodiments, the amount of reduction in the amount of intake air by the intake air throttle means 21 is changed and adjusted according to the exhaust gas temperature, that is, the catalyst temperature, so that the amount of intake air is increased as the temperature rises. Good too.
第1図ないし第5図は本発明の第1の実施例を
示し、第1図は層状給気エンジンの概略構成図、
第2図は燃焼室を模式的に示した平面図、第3図
は負荷に対する燃料供給量の制御を空気過剰率と
ともに示す特性図、第4図は負荷変動に対し第1
燃料供給手段による成層燃料の噴射時期と点火時
期を示す特性図、第5図は負荷変動に対する絞り
弁の開度を示す特性図、第6図ないし第9図は本
発明の第2の実施例を示し、第6図は層状給気エ
ンジンにおけるシリンダヘツドを一部断面にして
示す底面図、第7図は第6図の−線に沿う断
面図、第8図は負荷に対する燃料噴射時期制御を
示す特性図、第9図は負荷に対する絞り弁の開度
制御を示す特性図である。
1……燃焼室、3……吸気通路、7……触媒装
置、8……着火装置、9……成層用燃料噴射ノズ
ル、10……燃料噴射ポンプ、11……第1燃料
供給手段、12……分散用燃料噴射ノズル、13
……第2燃料供給手段、14……絞り弁、15…
…アクチユエータ、16……制御手段、17……
負荷検出手段、18……排気温度検出手段、21
……吸気絞り手段、32……燃料噴射ノズル、3
3……燃料供給手段。
1 to 5 show a first embodiment of the present invention, and FIG. 1 is a schematic configuration diagram of a stratified air intake engine;
Fig. 2 is a plan view schematically showing the combustion chamber, Fig. 3 is a characteristic diagram showing control of fuel supply amount with respect to load along with excess air ratio, and Fig. 4 is a diagram showing the control of fuel supply amount with respect to load.
A characteristic diagram showing the injection timing and ignition timing of the stratified fuel by the fuel supply means, FIG. 5 is a characteristic diagram showing the opening degree of the throttle valve with respect to load fluctuation, and FIGS. 6 to 9 show a second embodiment of the present invention. Fig. 6 is a bottom view showing a partial section of the cylinder head in a stratified air charge engine, Fig. 7 is a sectional view taken along the - line in Fig. 6, and Fig. 8 shows fuel injection timing control according to load. FIG. 9 is a characteristic diagram showing the opening degree control of the throttle valve with respect to the load. DESCRIPTION OF SYMBOLS 1... Combustion chamber, 3... Intake passage, 7... Catalyst device, 8... Ignition device, 9... Fuel injection nozzle for stratification, 10... Fuel injection pump, 11... First fuel supply means, 12 ...Fuel injection nozzle for dispersion, 13
...second fuel supply means, 14...throttle valve, 15...
...actuator, 16...control means, 17...
Load detection means, 18... Exhaust temperature detection means, 21
...Intake throttle means, 32...Fuel injection nozzle, 3
3...Fuel supply means.
Claims (1)
を供給する燃料供給手段と、燃焼室内に配設され
た着火装置と、吸気通路の開口面積をアクセル操
作とは機械的に連係せずに制御する吸気絞り手段
と、排気通路に配設された触媒装置と、排気系の
温度を検出する排気温度検出手段とを備え、少な
くとも低負荷時には燃料供給手段から着火装置の
まわりに偏在して燃料を供給し着火することによ
り層状燃焼を行うとともに前記吸気絞り手段によ
つて上記燃料量に比して吸気通路の開口面積を増
大して希薄燃焼を行う一方、高負荷時には燃焼室
内に分散して燃料を供給し着火することにより均
一燃焼を行うようにした層状給気エンジンであつ
て、前記排気温度検出手段からの出力を受け、排
気系の温度が設定値以下に低下したときには、前
記吸気絞り手段により吸気通路の開口面積を減少
して吸入空気量を低減するようにしたことを特徴
とする層状給気エンジン。1. A fuel supply means that supplies fuel for output control in accordance with the load into the combustion chamber, an ignition device disposed within the combustion chamber, and a control system that controls the opening area of the intake passage without mechanically linking it to the accelerator operation. At least when the load is low, the fuel supply means distributes fuel unevenly around the ignition device. The fuel is supplied and ignited to perform stratified combustion, and the intake throttle means increases the opening area of the intake passage compared to the amount of fuel to perform lean combustion. At the time of high load, the fuel is dispersed within the combustion chamber. In the stratified air supply engine, which performs uniform combustion by supplying and igniting the exhaust gas, when the temperature of the exhaust system falls below a set value in response to an output from the exhaust temperature detecting means, the intake throttle means A stratified air intake engine characterized in that the opening area of the intake passage is reduced to reduce the amount of intake air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58145275A JPS6036720A (en) | 1983-08-09 | 1983-08-09 | Stratified-mixture supplied engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58145275A JPS6036720A (en) | 1983-08-09 | 1983-08-09 | Stratified-mixture supplied engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6036720A JPS6036720A (en) | 1985-02-25 |
JPH0583730B2 true JPH0583730B2 (en) | 1993-11-29 |
Family
ID=15381366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58145275A Granted JPS6036720A (en) | 1983-08-09 | 1983-08-09 | Stratified-mixture supplied engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6036720A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6419138A (en) * | 1987-07-14 | 1989-01-23 | Mazda Motor | Intake device for engine |
KR950004533B1 (en) * | 1990-11-30 | 1995-05-02 | 미쯔비시 지도샤 고교 가부시끼가이샤 | Exhaust gas purifier for diesel engine |
US5875743A (en) * | 1997-07-28 | 1999-03-02 | Southwest Research Institute | Apparatus and method for reducing emissions in a dual combustion mode diesel engine |
JP3414318B2 (en) * | 1999-04-28 | 2003-06-09 | トヨタ自動車株式会社 | Combustion control device for internal combustion engine |
JP3552609B2 (en) * | 1999-09-30 | 2004-08-11 | マツダ株式会社 | Control device for spark ignition type direct injection engine |
DE10040252C2 (en) * | 2000-08-14 | 2002-07-18 | Bosch Gmbh Robert | Method and control and / or regulating device for operating an internal combustion engine |
DE10154664A1 (en) * | 2001-11-07 | 2003-05-22 | Bosch Gmbh Robert | Method, computer program, control and / or regulating device for operating an internal combustion engine and internal combustion engine |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59153947A (en) * | 1983-02-18 | 1984-09-01 | Toyota Motor Corp | Method of controlling air-fuel ratio in internal-combustion engine |
-
1983
- 1983-08-09 JP JP58145275A patent/JPS6036720A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59153947A (en) * | 1983-02-18 | 1984-09-01 | Toyota Motor Corp | Method of controlling air-fuel ratio in internal-combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JPS6036720A (en) | 1985-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6877464B2 (en) | Spark-ignition engine controller | |
EP0978643B1 (en) | Control device for direct injection engine | |
EP0967380B1 (en) | Diesel Engine | |
EP1484491B1 (en) | Control device for spark-ignition engine | |
JP3893967B2 (en) | Diesel engine control device | |
JPH0512537B2 (en) | ||
JPH0658067B2 (en) | Stratified charge engine | |
JPH0583730B2 (en) | ||
JPS6030440A (en) | Stratified charging engine | |
JPH0480207B2 (en) | ||
JPS6030417A (en) | Stratiform charging engine | |
JP2896757B2 (en) | Stratified charge engine | |
JP2689100B2 (en) | Stratified charge engine | |
JP3896630B2 (en) | Exhaust gas purification device for in-cylinder injection engine | |
JPH0559272B2 (en) | ||
JPS6030438A (en) | Strafified charaging engine | |
JPS6030437A (en) | Stratified charging engine | |
JP2818934B2 (en) | Stratified charge engine | |
JP2732050B2 (en) | Stratified charge engine | |
JP2873574B2 (en) | Stratified charge engine | |
JP2840603B2 (en) | Stratified charge engine | |
JPH0639927B2 (en) | Stratified charge engine | |
JP5233748B2 (en) | Control device for compression self-ignition internal combustion engine | |
JPS6030435A (en) | Stratified charging engine | |
JPS6030436A (en) | Stratified charging engine |