JPS603001B2 - Method for manufacturing ribbon-shaped silicon crystals - Google Patents

Method for manufacturing ribbon-shaped silicon crystals

Info

Publication number
JPS603001B2
JPS603001B2 JP52072124A JP7212477A JPS603001B2 JP S603001 B2 JPS603001 B2 JP S603001B2 JP 52072124 A JP52072124 A JP 52072124A JP 7212477 A JP7212477 A JP 7212477A JP S603001 B2 JPS603001 B2 JP S603001B2
Authority
JP
Japan
Prior art keywords
silicon
ribbon
drum
nozzle
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52072124A
Other languages
Japanese (ja)
Other versions
JPS547283A (en
Inventor
辰美 荒川
武夫 木村
秀彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP52072124A priority Critical patent/JPS603001B2/en
Publication of JPS547283A publication Critical patent/JPS547283A/en
Publication of JPS603001B2 publication Critical patent/JPS603001B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は特定の配向を有するリボン状のシリコン結晶を
容易にかつ大童に得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for easily and easily obtaining ribbon-shaped silicon crystals having a specific orientation.

化石燃料資源が次第に枯渇し、又、価格が高騰するにつ
れて、太陽エネルギーの利用は益々重要になる。太陽電
池をエネルギー濠として使うアイデアは古くからある。
しかし、従来の発電方式に比べて、高価格であるために
現在までその使用範囲が限定され、汎用エネルギー源と
して使用することは単なるアイデアにとどまっていた。
太陽電池がェネルギ‐危鼓機を救う一助となり得るかど
うかは、すべて低コスト化にかかっているといえる。0
シリコン太陽電池の場合、価格の約30%を使用する
シリコンのみで占めている事実は重要である。
As fossil fuel resources become increasingly depleted and prices soar, the use of solar energy becomes increasingly important. The idea of using solar cells as an energy moat has been around for a long time.
However, because it is more expensive than conventional power generation methods, its range of use has been limited until now, and its use as a general-purpose energy source remained a mere idea.
Whether solar cells can help save the energy crisis depends entirely on lowering costs. 0
In the case of silicon solar cells, it is important to note that approximately 30% of the price is due to the silicon used alone.

半導体材料価格の大幅な低下とともにさらに太陽電池へ
加工するために必要な費用を低下させることが太陽ェネ
ルギ−の経済的利用の前提である。薄常、太陽電池に使
用されるシリコンウェーハーは、高純度のシリコン原料
から注意深く製造された単結晶ロッドを、ダイヤモンド
ソーによって薄板状に切り出すことによって得る。
A prerequisite for the economical use of solar energy is a significant reduction in the cost of semiconductor materials, as well as a reduction in the costs required for processing them into solar cells. Silicon wafers, which are commonly used in solar cells, are obtained by carefully manufacturing single-crystal rods from high-purity silicon raw materials and cutting them into thin sheets with a diamond saw.

太陽電池の効率を高めるためには、シリコン単結晶はで
きるだけ完全でなければならない。すなわち点欠陥、デ
イスロケーション、双晶形成、積層欠陥、又はイb学的
不純物があってはならない。このようにして注意深く得
られたシリコン単結晶ロッドのほぼ半分はダイヤモンド
ソーによる切り出しの際、肩として失われる。シリコン
太陽電池の製造コストを下げるための種々の提案がなさ
れているがいまだ満足な方法がないのが現状である。米
国タイコ研究所(Tyco La奴ratories)
のEFG(Ed群DefinedFilmFedGro
w仇)法は毛細管現象を利用してリボン状の単結晶シリ
コンを引き上げる方法である。この方法によればウェー
ハー切り出しの必要がなく得られるリボン結晶は全部使
えるという利点はあるが、単結晶の製造という限定から
くる製造条件、操作法の複雑さは依然としてまぬがれな
い。単結晶のかわりに多結具シリコンを用いるのは価格
面から特に有利である。多結晶シリコンよりなる太陽電
池は通常経済的に不利な1%程度の効率しかもたないと
いわれていたくエレクトロニクス(E1ecoonic
s)1974年4月4日、109ページ参照)。しかし
、ウェハーの面に垂直な方向には結晶粒界を有せず、配
向したカラム状の微小結晶が集合した構造を有するよう
な多結晶シリコンゥェハーを用いた太陽電池は優れた光
電変換効率を有することが報告されている〔ピー・エッ
チ・ファン他、アプライド・フィジツクス・レターズ、
第25巻、1974年11月号、583頁(P.日.F
angeGI Applied Physics Le
比ers、Vol.25Novemはrl974、斑3
)参照〕。配向多結晶はこの場合500qo前後に加熱
したアルミニウム基板上にシリコンを義春することによ
って得ている。この方法は必ずしも大量生産向きとはい
いがたい。本発明の目的はウェハーの面に垂直な方向に
は結晶粒界を有せず、配向したカラム状の微小結晶が集
合した構造を有し太陽電池用基質材料として適する多結
晶シリコンゥェハ−を安価に、かつ大量に製造するため
の製法を与えることである。本発明は、先端に細長いオ
リフイスのノズルを有する耐熱管を所定の温度に設定さ
れた高速回転する回転中空ドラムの内面の所定位置に対
向させ、該ノズルを内壁にそつてドラム軸方向に一定速
度で移動させると同時に加熱溶融させたシリコン金属を
ノズルより所定の流量で噴流させ該溶融シリコン金属を
上記回転ドラムの内面に接触させて温度勾配をもって凝
固させてリボン状シリコン結晶を製造することを特徴と
する。以下本発明を、図面を用いて実施例により説明4
する。
To increase the efficiency of solar cells, silicon single crystals must be as perfect as possible. That is, there should be no point defects, dislocation, twinning, stacking faults, or chemical impurities. Approximately half of the silicon single crystal rod carefully obtained in this way is lost as shoulders during cutting with a diamond saw. Although various proposals have been made to reduce the manufacturing cost of silicon solar cells, there is currently no satisfactory method. Tyco Laboratories (Tyco Laboratories)
EFG (Ed group DefinedFilmFedGro
The method uses capillarity to pull up ribbon-shaped single crystal silicon. Although this method has the advantage of not requiring wafer cutting and can use all of the obtained ribbon crystals, it still leaves complicated manufacturing conditions and operational methods due to the limitation of manufacturing single crystals. The use of polycrystalline silicon instead of single crystal is particularly advantageous from a cost standpoint. It is said that solar cells made of polycrystalline silicon usually have an efficiency of only about 1%, which is economically disadvantageous.
s) April 4, 1974, page 109). However, solar cells using polycrystalline silicon wafers, which do not have grain boundaries in the direction perpendicular to the wafer surface and have a structure in which oriented columnar microcrystals are assembled, have excellent photoelectric conversion efficiency. It has been reported [P. H. Huang et al., Applied Physics Letters,
Volume 25, November 1974, page 583 (P.
angeGI Applied Physics Le
ratiors, Vol. 25Novem is rl974, plaque 3
)reference〕. In this case, the oriented polycrystal is obtained by depositing silicon on an aluminum substrate heated to about 500 qo. This method is not necessarily suitable for mass production. The purpose of the present invention is to inexpensively produce polycrystalline silicon wafers that do not have grain boundaries in the direction perpendicular to the wafer surface and have a structure in which oriented columnar microcrystals are assembled and are suitable as substrate materials for solar cells. , and to provide a manufacturing method for mass production. In the present invention, a heat-resistant tube having an elongated orifice nozzle at the tip is opposed to a predetermined position on the inner surface of a rotating hollow drum that is set at a predetermined temperature and rotates at high speed, and the nozzle is moved along the inner wall at a constant speed in the drum axis direction. A ribbon-shaped silicon crystal is produced by simultaneously moving heated and melted silicon metal by jetting it at a predetermined flow rate from a nozzle, bringing the molten silicon metal into contact with the inner surface of the rotating drum, and solidifying it with a temperature gradient. shall be. The present invention will be explained below by way of examples using drawings.
do.

図面は、本発明の実施に用いる装置の一例を示す図であ
る。先端に細長いオリフイスのノズル1を有する石英管
などの耐熱材料よりなる耐熱管2は、その上部に原料シ
リコンを融解する石英などの耐熱材料よりなるルツボ3
に連結されており、ノズルーは耐熱管2の本体より漸次
滑らかに曲げられ、且つ、先端に向かって漸次細く成形
されて夕 おり、ノズルーの先端は細長い、例えば幅0
.1〜1助長さ2〜4弧の噴出口を有している。このよ
うに先端に細長いオリフィスのノズル1を有する耐熱管
2を使用するため、耐熱管2から噴出する溶融シリコン
の噴流を途切れなくかつ細長い定常0流に保持し得る。
なお、ル、ソボ3は抵抗体加熱または誘導体加熱の装置
4によって溶融されたシリコン融液5が満たされている
。又、ルツボ3はその上部にコネクター6を介して高純
度の不活性ガス、例えばアルタゴンガスが送入され、こ
のガスによりシリコンの加熱溶融中の酸化を防止すると
ともに、不活性ガスの流入圧を、例えば他のコネクター
7に設けられたコック8を用いて調節することによって
ノズル1からのシリコン敵液5の噴出量を調節する。0
又耐熱管2及びルッポ3の系は全体として駆動装置9
によって上下(矢印の方向)に移動することができる。
The drawings are diagrams showing an example of an apparatus used to implement the present invention. A heat-resistant tube 2 made of a heat-resistant material such as a quartz tube and having an elongated orifice nozzle 1 at its tip has a crucible 3 made of a heat-resistant material such as quartz on which raw material silicon is melted.
The nozzle is gradually and smoothly bent from the main body of the heat-resistant tube 2, and is gradually tapered toward the tip.
.. It has an ejection port with a length of 1 to 1 arc and a length of 2 to 4 arcs. Since the heat-resistant tube 2 having the nozzle 1 with an elongated orifice at the tip is used in this manner, the jet of molten silicon ejected from the heat-resistant tube 2 can be maintained as an uninterrupted, elongated steady stream.
Incidentally, the groove 3 is filled with a silicon melt 5 melted by a resistor heating device 4 or an inductive heating device 4. In addition, a high-purity inert gas such as Artagon gas is fed into the upper part of the crucible 3 through a connector 6, and this gas prevents oxidation of the silicon during heating and melting, and also controls the inflow pressure of the inert gas. For example, the amount of silicone liquid 5 spouted from the nozzle 1 is adjusted by adjusting it using a cock 8 provided on another connector 7. 0
The heat-resistant tube 2 and Lupo 3 system as a whole is driven by a drive device 9.
You can move up and down (in the direction of the arrow) by using

一方、回転中空ドラム10はモーター11により高速回
転される。回転中空ドラム10は回転による遠心力負荷
をできるだけ小さ〈す夕るため軽量であり、かつ熱伝導
性の良い金属、例えばアルミニウム製の中空円筒が使用
され、ドラムの内面は好ましくはシリコン雛液に溶け込
まず、又、好ましくはシリコン融液の濡れが生じないよ
うな材料12でライニングされる。このよう0な材料と
して窒化シリコン又は黒鉛が好適に用いられる。13は
ドラム内面を加熱して配向結晶化に好適な温度に保つた
めの放射加熱装置である。
On the other hand, the rotating hollow drum 10 is rotated at high speed by a motor 11. In order to minimize the centrifugal force load due to rotation, the rotating hollow drum 10 is a hollow cylinder made of a metal that is lightweight and has good thermal conductivity, such as aluminum, and the inner surface of the drum is preferably coated with silicone brood liquid. It is lined with a material 12 that does not melt and preferably does not cause wetting of the silicon melt. Silicon nitride or graphite is preferably used as such a free material. Reference numeral 13 denotes a radiation heating device for heating the inner surface of the drum and maintaining it at a temperature suitable for oriented crystallization.

融解されたシリコンが高純度アルゴンガス(例えば純度
99999〜99.99999%)によってノズルよょ
り押し出されて所定温度例えば800qo以下の温度、
より好ましくは100qo〜400qoに保たれて高速
回転、例えば1000〜500位pmで回転するドラム
の内壁に達するとシリコンは遠心力によってドラム内面
に強く接触させられるため融解シリコンは急速に冷却せ
られると共に厚さ方向に大きな温度勾配が生じる。この
ような条件下で凝固したりポン状シリコンは厚さの方向
に配同した単結晶領域よりなるカラム状組織を示す。シ
リコン敵液を噴出させる際ノズルを内壁にそって藤方向
に移動させることにより溶融シリコンは絶えず新しいド
ラム内面に噴流され、ドラム内壁の円周上にそってラセ
ン状に連続的にリボン状結晶が得られる。特定のドーピ
ングしたシリコン結晶を得るには石英ルッボ内で適当な
ドーピング剤例えばホウ素アルミニウム、ガリウム、イ
ンジウム又はヒ素、アンチモンもしくはリンが添加され
る。このような融液を用いて凝固させた場合にもドーピ
ング剤はシリコン結晶中で面内方向又は軸方向に濃度の
勾配がなくきわめて均質に分布する。本発明の方法で得
られる結晶は上記のごとく多結晶体であり、したがって
単結晶を作製する場合のような複雑かつ慎重な条件設定
あるいは操作法は必要なく、極めて簡便容易に所望の結
晶を製造することができる。
The molten silicon is extruded through a nozzle by high-purity argon gas (for example, purity 99999 to 99.99999%) to a predetermined temperature, for example, a temperature of 800 qo or less,
More preferably, when it reaches the inner wall of a drum which is kept at 100 qo to 400 qo and rotates at high speed, for example, about 1000 to 500 pm, the molten silicon is brought into strong contact with the inner surface of the drum due to centrifugal force, so that the molten silicon is rapidly cooled and A large temperature gradient occurs in the thickness direction. Under such conditions, solidified or popped silicon exhibits a columnar structure consisting of single crystal regions arranged in the thickness direction. When spouting the silicone liquid, by moving the nozzle in the vertical direction along the inner wall, the molten silicon is constantly jetted onto the new inner surface of the drum, and ribbon-shaped crystals are continuously formed in a helical pattern along the circumference of the inner wall of the drum. can get. To obtain specifically doped silicon crystals, suitable doping agents such as boron, aluminum, gallium, indium or arsenic, antimony or phosphorous are added in the quartz rubbo. Even when such a melt is solidified, the doping agent is extremely homogeneously distributed in the silicon crystal without a concentration gradient in the in-plane direction or in the axial direction. As mentioned above, the crystals obtained by the method of the present invention are polycrystalline, and therefore there is no need for complex and careful setting of conditions or operation methods as in the case of producing a single crystal, and it is extremely simple and easy to produce the desired crystal. can do.

又本発明のリボン状シリコン結晶は多結晶体でありなが
ら単一のカラム状微結晶が厚さ方向に配同した構造を有
する故に光衝撃によって発生した少数キャリアの寿命が
長いのが特徴である。即ちゥェハーの厚さの方向には結
晶粒界が存在しないため、少数キャリアの結晶粒界によ
るトラップや散乱がなくなり、効率よく電極に集められ
るため、光蚤変換効率が優れたものとなり、太陽電池の
基質材料として適している。従がつて太陽電池を著しく
安価に製造するという前程を満たすものである。以下に
図面の装置を用いて太陽電池基質を製造する実施例につ
いて述べる。
Furthermore, although the ribbon-shaped silicon crystal of the present invention is a polycrystalline substance, it has a structure in which single column-shaped microcrystals are arranged in the thickness direction, so that the lifetime of minority carriers generated by light impact is long. . In other words, since there are no grain boundaries in the thickness direction of the wafer, minority carriers are not trapped or scattered by grain boundaries and are efficiently collected at the electrodes, resulting in excellent light conversion efficiency and solar cells. Suitable as a substrate material. Therefore, it satisfies the previous requirement of producing solar cells at a significantly low cost. An example of manufacturing a solar cell substrate using the apparatus shown in the drawings will be described below.

石葵ルツボ内で2×1び5ホウ素原子をドーブした高純
度多結晶シリコンを150ぴ0に加熱して融解した。
High purity polycrystalline silicon doped with 2×1 and 5 boron atoms was heated to 150 psi and melted in a stone hollyhock crucible.

次いで約300qoに加熱したドラムを約100仇pm
で回転させ、これに0.2愚×20柵の形状の噴出口を
有するノズルから上記シリコン融液を噴出させつつノズ
ルを上方へ移動させた。このようにして中2仇、厚さ0
.1肌、長さ20凧のりボンウェーハーを得た。
Next, the drum heated to about 300 qo was heated to about 100 pm.
The silicon melt was spouted from a nozzle having a spout in the shape of 0.2 x 20 bars, and the nozzle was moved upward. In this way, middle 2 enemies, thickness 0
.. I got a kite bond wafer of 1 skin and 20 lengths.

この結晶は厚さの方向に配向した単結晶領域よりなる柱
状組織を示した。太陽鰭池を製造するためこの結晶薄板
の表面層をエッチングにより除去した。
This crystal showed a columnar structure consisting of single crystal regions oriented in the thickness direction. To fabricate the solar fin pond, the surface layer of this crystal thin plate was removed by etching.

このシリコン結晶薄板から公知法により製造した太陽電
池の効率は8〜10%であった。この値は現在まで多く
使用された単結晶材料と少なくとも同等であり〜且つ、
この太陽電池の原価は著しく安い。
The efficiency of a solar cell manufactured from this silicon crystal thin plate by a known method was 8 to 10%. This value is at least equivalent to that of single-crystal materials that have been widely used until now, and
The cost of this solar cell is extremely low.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を実施するのに用いる装置の側断面図であ
る。 1・・・・・・ノズル、2・・・・・・耐熱管、3…・
・・ルツボ、10・・・…回転ドラム。
The drawing is a side cross-sectional view of the apparatus used to practice the invention. 1...Nozzle, 2...Heat-resistant tube, 3...
... Crucible, 10... Rotating drum.

Claims (1)

【特許請求の範囲】 1 先端に細長いオリフイスのノズルを有する耐熱管を
所定の温度に設定された高速回転する回転中空ドラムの
内面の所定位置に対向させ、該ノズルをドラム内壁にそ
ってドラム軸方向に一定速度で移動させると同時に加熱
溶融させたシリコン金属をノズルより所定の流量で噴流
させ該溶融シリコン金属を上記回転ドラムの内面に接触
させて温度勾配をもって凝固させることを特徴とするリ
ボン状シリコン結晶の製造法。 2 ドラムの内壁がシリコン融液に溶け込まず、又シリ
コン融液の濡れが生じないような材料でライニングされ
ている回転ドラムを使用することを特徴とする特許請求
の範囲第1項記載のリボン状シリコン結晶の製造法。 3 シリコン融液に溶け込まず、又、シリコン融液の濡
れが生じないような材料として窒化シリコン又は黒鉛を
使用することを特徴とする特許請求の範囲第2項記載の
リボン状シリコン結晶の製造法。 4 回転ドラムの温度が100〜400℃であることを
特徴とする特許請求の範囲第1項、第2項又は第3項記
載のリボン状シリコン結晶の製造法。
[Claims] 1. A heat-resistant tube having an elongated orifice nozzle at its tip is opposed to a predetermined position on the inner surface of a rotating hollow drum that is set at a predetermined temperature and rotates at high speed, and the nozzle is inserted along the inner wall of the drum toward the drum shaft. The ribbon-shaped silicone metal is moved at a constant speed in the direction and at the same time heated and melted silicon metal is jetted from a nozzle at a predetermined flow rate, and the molten silicon metal is brought into contact with the inner surface of the rotating drum and solidified with a temperature gradient. Method of manufacturing silicon crystals. 2. The ribbon-shaped ribbon according to claim 1, characterized in that a rotating drum is used, the inner wall of which is lined with a material that does not melt into the silicon melt or cause wetting of the silicon melt. Method of manufacturing silicon crystals. 3. A method for producing a ribbon-shaped silicon crystal according to claim 2, characterized in that silicon nitride or graphite is used as a material that does not dissolve in the silicon melt and does not cause wetting of the silicon melt. . 4. The method for producing ribbon-shaped silicon crystals according to claim 1, 2, or 3, wherein the temperature of the rotating drum is 100 to 400°C.
JP52072124A 1977-06-20 1977-06-20 Method for manufacturing ribbon-shaped silicon crystals Expired JPS603001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52072124A JPS603001B2 (en) 1977-06-20 1977-06-20 Method for manufacturing ribbon-shaped silicon crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52072124A JPS603001B2 (en) 1977-06-20 1977-06-20 Method for manufacturing ribbon-shaped silicon crystals

Publications (2)

Publication Number Publication Date
JPS547283A JPS547283A (en) 1979-01-19
JPS603001B2 true JPS603001B2 (en) 1985-01-25

Family

ID=13480261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52072124A Expired JPS603001B2 (en) 1977-06-20 1977-06-20 Method for manufacturing ribbon-shaped silicon crystals

Country Status (1)

Country Link
JP (1) JPS603001B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163106A (en) * 1997-09-09 2000-12-19 Asahi Glass Company Ltd. Color cathode ray tube and water resistant glass frit

Also Published As

Publication number Publication date
JPS547283A (en) 1979-01-19

Similar Documents

Publication Publication Date Title
US4382838A (en) Novel silicon crystals and process for their preparation
US4594229A (en) Apparatus for melt growth of crystalline semiconductor sheets
CN102260903B (en) Method for growing thin silicon crystals
JP2001516324A (en) Columnar crystalline granular polycrystalline solar cell substrate and improved manufacturing method
JPS6224936B2 (en)
JP4723071B2 (en) Silicon crystal, silicon crystal wafer, and manufacturing method thereof
US7601618B2 (en) Method for producing semi-conditioning material wafers by moulding and directional crystallization
JP2007019209A (en) Polycrystalline silicone for solar cell and its manufacturing method
CN1099434A (en) Process for producing rods or blocks of semiconductor material which expands on solidification by crystallization of a melt produced from granular material, and also an apparatus for carrying out.....
US20050066881A1 (en) Continuous production method for crystalline silicon and production apparatus for the same
US4157373A (en) Apparatus for the production of ribbon shaped crystals
JPS6343358B2 (en)
JPS603001B2 (en) Method for manufacturing ribbon-shaped silicon crystals
JP4164267B2 (en) Polycrystalline silicon substrate and method for manufacturing solar cell
JP4807914B2 (en) Silicon sheet and solar cell including the same
JPH0873297A (en) Substrate material for solar cell and solar cell using the same
JP2001064007A (en) Ga-ADDED POLYCRYSTALLINE SILICON, Ga-ADDED POLYCRYSTALLINE SILICON WAFER AND ITS PRODUCTION
Fiorito et al. A Possible Method for the Growth of Homogeneous Mercury Cadmium Telluride Single Crystals
CN114561707A (en) Infrared heating zone smelting furnace and method for preparing N-type bismuth telluride alloy by using same
JP2004140087A (en) Polycrystalline silicon substrate for solar cell and method for manufacturing the same, and method for manufacturing solar cell using the substrate
JP4723082B2 (en) Method for producing Ga-doped silicon single crystal
JPS61275119A (en) Production of silicon ribbon
JP4282278B2 (en) Substrate, plate manufacturing method using the substrate, plate and solar cell produced from the plate
US4125425A (en) Method of manufacturing flat tapes of crystalline silicon from a silicon melt by drawing a seed crystal of silicon from the melt flowing down the faces of a knife shaped heated element
JPH0912394A (en) Production of planar crystal