JPS6029680B2 - Method for producing oriented crystalline thin films - Google Patents

Method for producing oriented crystalline thin films

Info

Publication number
JPS6029680B2
JPS6029680B2 JP16691279A JP16691279A JPS6029680B2 JP S6029680 B2 JPS6029680 B2 JP S6029680B2 JP 16691279 A JP16691279 A JP 16691279A JP 16691279 A JP16691279 A JP 16691279A JP S6029680 B2 JPS6029680 B2 JP S6029680B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
thin films
crystalline thin
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16691279A
Other languages
Japanese (ja)
Other versions
JPS5692197A (en
Inventor
英史 森
達夫 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16691279A priority Critical patent/JPS6029680B2/en
Publication of JPS5692197A publication Critical patent/JPS5692197A/en
Publication of JPS6029680B2 publication Critical patent/JPS6029680B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 本発明は配向した結晶薄膜の製造法に関する。[Detailed description of the invention] The present invention relates to a method for producing oriented crystal thin films.

半導体および光集積回路技術において、基板上に結晶薄
膜を製造する方法は重要である。従来、結晶薄膜の製造
法としては液相成長法、化学気相成長法、分子線成長法
等がある。しかしながら液相成長法、化学気相成長法、
分子線成長法等いずれの方法でも基板が単結晶基板であ
って始めて良質の結晶薄膜が製造されるものであり、こ
のためガラスなどの非晶質基板上に良質の結晶薄膜を製
造し得れば、低コストの太陽電池の製造やガラスで製造
された低損失光導波路と組み合せて光集積回路などがで
きるにもかかわらず、これをなし得ないものであった。
本発明はこれらの欠点を解決するため、電磁波のェネル
ギと干渉図形の微細な周期を利用し、配向した結晶薄膜
を結晶質又は非結晶質の基板上に製造しようとするもの
である。
In semiconductor and optical integrated circuit technology, methods for producing crystalline thin films on substrates are important. Conventionally, methods for producing crystalline thin films include liquid phase growth, chemical vapor deposition, molecular beam growth, and the like. However, liquid phase growth method, chemical vapor deposition method,
In any method such as molecular beam growth, a high-quality crystalline thin film can only be produced when the substrate is a single crystal substrate, and for this reason, it is not possible to produce a high-quality crystalline thin film on an amorphous substrate such as glass. For example, although it is possible to manufacture low-cost solar cells and to create optical integrated circuits by combining them with low-loss optical waveguides made of glass, this has not been possible.
In order to solve these drawbacks, the present invention attempts to manufacture an oriented crystalline thin film on a crystalline or amorphous substrate by utilizing the energy of electromagnetic waves and the fine period of the interference pattern.

本発明は次の考察に基づいている。The present invention is based on the following considerations.

シリコン単結晶基板上に非晶質シリコン薄膜を蒸着法等
で形成し、その薄膜を炭酸ガスレーザ等で得られる強力
なしーザー光で照射すれば基板の結晶方位に一致して非
晶質シリコン薄膜が単結晶薄膜に成長することはレーザ
ーアニールとして公知である。また単結晶薄膜を製造す
るには基板表面の周期的性質が重要となる。例えばサフ
アィャ上にシリコン単結晶を成長させるには基板となる
サフアィャの両方位を調節してシリコンとの格子整合を
行うことは公知である。また一般に蒸着初期の状態では
基板上の蒸着物質は直径数百A以下の島状を成し、かつ
基板の表面ポテンシャルに従い移動することは公知であ
る。本発明は以上の事実より周期的な電磁波場の影響下
で基板上に薄膜となる原料を供給、付着させると、結晶
薄膜が製造できるとの考案に基き、種々の実際の結果、
単結晶又は非結晶の基板上に2本の互に童畳した可千渉
性電磁波を照射させ、5山m以下の、望ましくは3山m
以下の周期を有する干渉縞が基板表面に存在するように
配遣された状態で、上記基板上に得んとする薄膜の原料
を気相あるいは分子線により供給、付着させることによ
り配向した結晶薄膜が良好に形成されることを確認した
If an amorphous silicon thin film is formed on a silicon single crystal substrate by a vapor deposition method or the like, and the thin film is irradiated with powerful laser light obtained from a carbon dioxide laser, etc., the amorphous silicon thin film will match the crystal orientation of the substrate. Growing single crystal thin films is known as laser annealing. Furthermore, the periodic nature of the substrate surface is important for producing single crystal thin films. For example, it is known that in order to grow a silicon single crystal on Saphia, both positions of the Saphia serving as a substrate are adjusted to achieve lattice matching with silicon. Further, it is generally known that in the initial state of vapor deposition, the vapor deposited material on the substrate forms an island shape with a diameter of several hundred amps or less, and moves according to the surface potential of the substrate. The present invention is based on the idea that a crystalline thin film can be produced by supplying and depositing a raw material to form a thin film onto a substrate under the influence of a periodic electromagnetic field, based on the above facts, and based on various actual results,
A monocrystalline or amorphous substrate is irradiated with two mutually convoluted electromagnetic waves of 5 m or less, preferably 3 m.
A crystalline thin film oriented by supplying and depositing the raw material for the thin film to be obtained on the substrate using a gas phase or molecular beam, with interference fringes having the following period being arranged on the substrate surface. was confirmed to be well formed.

以下図面により実施例を説明する。Examples will be described below with reference to the drawings.

第1図は非晶質基板である石英ガラス上にシリコンの単
結晶薄膜を形成する場合の製造法の概略図である。
FIG. 1 is a schematic diagram of a manufacturing method for forming a silicon single crystal thin film on a quartz glass which is an amorphous substrate.

アルゴンイオンレーザー11から出射された波長514
5Aのレーザー光をビームスブリッター12により2方
向に分け、鏡13により光路を調節し真空容器14に付
属した光導入窓17を通じ石英基板15の表面で重畳さ
せる。光の干渉縞の周期dと2本の光の成す角28の間
にはd=入/本in8の関係がある。ここで入は光の波
長である。20を600としたため周期dは0.51仏
mであった。
Wavelength 514 emitted from argon ion laser 11
A 5A laser beam is split into two directions by a beam splitter 12, the optical path is adjusted by a mirror 13, and the beams are superimposed on the surface of a quartz substrate 15 through a light introduction window 17 attached to a vacuum container 14. There is a relationship d=in/in8 between the period d of the interference fringes of light and the angle 28 formed by the two lights. Here, input is the wavelength of light. Since 20 was set to 600, the period d was 0.51 French m.

次にシリコンが収容された蒸発源16を作動させ基板上
にシリコンの蒸気を供給、付着させた。レーザ出力7W
の場合形成された薄膜はしーザー照射領域の周辺部を除
き良好な単結晶薄膜であることが反射電子回析法により
確認された。上記の実施例においてはアルゴンイオンレ
ーザを用いているが、この外にYAGレーザ、ルビーレ
ーザなども使用可能である。また上記の実施例では原料
供給源が一つであったが複設設置することによりGa$
、1冊、GaAb、Gapなどの二元素化合物やGaA
IAs、lnGaAs、lnGaAsPなどの多元素化
合物の薄膜も製造できる。
Next, the evaporation source 16 containing silicon was activated to supply and deposit silicon vapor onto the substrate. Laser power 7W
It was confirmed by backscattered electron diffraction that the thin film formed in this case was a good single crystal thin film except for the peripheral part of the laser irradiation area. In the above embodiment, an argon ion laser is used, but other lasers such as a YAG laser and a ruby laser can also be used. Also, in the above example, there was only one raw material supply source, but by installing multiple sources, Ga$
, 1 volume, two-element compounds such as GaAb, Gap, and GaA
Thin films of multi-element compounds such as IAs, lnGaAs, lnGaAsP can also be produced.

また不純物元素の供給源を設置すれば不純物の添加もで
きる。また基板が結晶性基板であっても単結晶薄膜が得
られた。
Furthermore, impurities can be added by providing a supply source for impurity elements. Moreover, even when the substrate was a crystalline substrate, a single crystal thin film was obtained.

以上説明したように、非晶質基板または単結晶基板上に
配向した結晶薄膜が製造できるため、ガラス基板上に単
結晶薄膜を製造することにより低コストの太陽電池が製
造できるという利点がある。
As explained above, since an oriented crystal thin film can be manufactured on an amorphous substrate or a single crystal substrate, there is an advantage that a low cost solar cell can be manufactured by manufacturing a single crystal thin film on a glass substrate.

また光集積回路に必要な半導体レーザ、光検出器、変調
器等に使用する多種な結晶が同一基板上に製造できると
いう利点がある。
Another advantage is that various types of crystals used in semiconductor lasers, photodetectors, modulators, etc. required for optical integrated circuits can be manufactured on the same substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の配向した結晶薄膜及び周期構造薄膜の
製造法の概略図である。 11……レーザー、12……ビームスプリツタ−、13
・・…・鏡、14・・・・・・真空容器、15・・・・
・・基板、16・・・・・・原料供給源、17・・・・
・・光導入窓、18・・・・・・形成された結晶薄膜。
FIG. 1 is a schematic diagram of a method for manufacturing an oriented crystal thin film and a periodic structure thin film according to the present invention. 11... Laser, 12... Beam splitter, 13
...Mirror, 14...Vacuum container, 15...
... Substrate, 16... Raw material supply source, 17...
...Light introduction window, 18... Formed crystal thin film.

Claims (1)

【特許請求の範囲】 1 基板表面上に2本の互に重畳した可干渉性電磁波を
照射し、基板表面に電磁波の微細な干渉図形を配置した
状態で、上記基板上に得んとする薄膜の原料を気相ある
いは分子線により供給、付着させることを特徴とする配
向した結晶薄膜の製造法。 2 両可干渉性電磁波がレーザーであることを特徴とす
る特許請求の範囲第1項記載の方法。 3 基板として非結晶物質を使用することを特徴とする
特許請求の範囲第1項記載の方法。 4 基板として単結晶物質を使用することを特徴とする
特許請求の範囲第1項記載の方法。
[Claims] 1. A thin film to be obtained on the substrate by irradiating the surface of the substrate with two mutually superimposed coherent electromagnetic waves and arranging a fine interference pattern of the electromagnetic waves on the surface of the substrate. A method for producing oriented crystalline thin films characterized by supplying and depositing raw materials in a gas phase or molecular beams. 2. The method according to claim 1, wherein both coherent electromagnetic waves are lasers. 3. The method according to claim 1, characterized in that an amorphous material is used as the substrate. 4. A method according to claim 1, characterized in that a single crystal material is used as the substrate.
JP16691279A 1979-12-24 1979-12-24 Method for producing oriented crystalline thin films Expired JPS6029680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16691279A JPS6029680B2 (en) 1979-12-24 1979-12-24 Method for producing oriented crystalline thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16691279A JPS6029680B2 (en) 1979-12-24 1979-12-24 Method for producing oriented crystalline thin films

Publications (2)

Publication Number Publication Date
JPS5692197A JPS5692197A (en) 1981-07-25
JPS6029680B2 true JPS6029680B2 (en) 1985-07-11

Family

ID=15839937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16691279A Expired JPS6029680B2 (en) 1979-12-24 1979-12-24 Method for producing oriented crystalline thin films

Country Status (1)

Country Link
JP (1) JPS6029680B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623089A (en) * 1985-06-27 1987-01-09 Nippon Kogaku Kk <Nikon> Production apparatus for semiconductor
JPH0729869B2 (en) * 1986-07-02 1995-04-05 松下電子工業株式会社 Method for manufacturing semiconductor device
JPH0621877U (en) * 1992-04-02 1994-03-22 村田機械株式会社 Robot hand

Also Published As

Publication number Publication date
JPS5692197A (en) 1981-07-25

Similar Documents

Publication Publication Date Title
US4664940A (en) Process for the formation of a flux of atoms and its use in an atomic beam epitaxy process
US4071383A (en) Process for fabrication of dielectric optical waveguide devices
US4737232A (en) Process for depositing and crystallizing a thin layer of organic material by means of a beam of energy
US6489587B2 (en) Fabrication method of erbium-doped silicon nano-size dots
JPH0823645B2 (en) Non-linear optical thin film and manufacturing method thereof
US4073675A (en) Waveguiding epitaxial LiNbO3 films
JPS5928327A (en) Forming method of single crystal semiconductor film
JPS6029680B2 (en) Method for producing oriented crystalline thin films
US6645893B2 (en) Glass suitable for optical functional elements and process for producing same
JPH0297485A (en) Heteroepitaxial growth of two-dimensional materials on three-dimensional materials
KR100286487B1 (en) Solid laser crystal thin film preparation method and solid laser crystal thin film preparation device
US6447606B2 (en) Method for producing a single-crystalline film of KLN or KLNT
CN117822101A (en) A new multifunctional two-dimensional material growth device
JPS623089A (en) Production apparatus for semiconductor
EP0204724B1 (en) Method for deposition of gallium arsenide from vapor phase gallium-arsenic complexes
JP3637926B2 (en) Method for producing diamond single crystal film
JPH06140323A (en) Method of crystallizing semiconductor film
JPS60133720A (en) Molecular beam epitaxial growth method
JPH0360019A (en) Manufacture of polycrystalline silicon film
JPS59163817A (en) Substrate for semiconductor device
JPS5943815B2 (en) epitaxial growth method
JPH0524113B2 (en)
JPH0266502A (en) Method for manufacturing semiconductor optical waveguide
JPS6377112A (en) Vapor growth method
JPH0251497A (en) Formation of semiconductor thin film