JPS6029487A - Manufacture of cathode with low hydrogen overvoltage - Google Patents
Manufacture of cathode with low hydrogen overvoltageInfo
- Publication number
- JPS6029487A JPS6029487A JP58137860A JP13786083A JPS6029487A JP S6029487 A JPS6029487 A JP S6029487A JP 58137860 A JP58137860 A JP 58137860A JP 13786083 A JP13786083 A JP 13786083A JP S6029487 A JPS6029487 A JP S6029487A
- Authority
- JP
- Japan
- Prior art keywords
- plating
- cathode
- layer
- bath
- low hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は水溶液中において優れた低水素過電圧を示す、
主として電解のための陰極の製法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention exhibits excellent low hydrogen overpotential in aqueous solution.
It mainly relates to a method for manufacturing cathodes for electrolysis.
従来より陰極で水素ガスを発生する技術として隔膜(ア
スベストの如き多孔性f隔膜及びイオン交換膜の如き密
隔膜を含む)を使用したアルカリ金属塩水溶液の電解が
知られており、又水電解等もこれに該当する。Electrolysis of an aqueous alkali metal salt solution using a diaphragm (including a porous diaphragm such as asbestos and a dense diaphragm such as an ion exchange membrane) has been known as a technique for generating hydrogen gas at a cathode, and water electrolysis, etc. This also applies.
近年省エネルギーの観点か°ら、この種の技術において
電解電圧の低減化が望まれて来ており、かかる電解電圧
低減の手段として各種活性陰極が提案されている。In recent years, from the viewpoint of energy saving, it has been desired to reduce the electrolysis voltage in this type of technology, and various active cathodes have been proposed as a means for reducing the electrolysis voltage.
この様な活性陰極は通常鉄、銅、二、ケル及びこれらを
含む合金、パルプ金属などの耐アルカリ性基材の表面に
、低減された水素過電圧特性をもつ活性金属材料の層を
、溶射、熱分解、溶融物への浸漬、電気メッキ、化学メ
ッキ、蒸着、爆着などの手段で被覆することによって得
られ、就中、か瓦る活性金属材料層の表面に細かい凹凸
を形成して多孔性の粗なる活性表面を作ることにより、
活性金属材料層本来の電気化学的触媒作用に加えて活性
表面積の増大妃より水素過電圧低減の効用をより助長せ
しめることも行なわれている。Such active cathodes are typically made by thermally spraying or heat-spraying a layer of an active metal material with reduced hydrogen overpotential properties onto the surface of an alkali-resistant substrate such as iron, copper, dichloride, alloys containing these, or pulp metal. It is obtained by coating by means such as decomposition, immersion in a melt, electroplating, chemical plating, vapor deposition, explosion bonding, etc., and in particular, forms fine irregularities on the surface of the active metal material layer to make it porous. By creating a rough active surface of
In addition to the inherent electrochemical catalytic action of the active metal material layer, efforts have also been made to increase the active surface area to further enhance the hydrogen overvoltage reduction effect.
これらの陰極のでつとして本発明者等の成る者は先に陰
極基材表面に炭素質の微粉子を分散させたメッキ浴を用
いて電気メッキを施す、所謂分散メッキによる方法を提
案した。(特開昭57−35689、特開昭57−89
491、特開昭57−94582、特開昭57−945
83など)しての堅牢性の向上と、水素過電圧のより一
層の低減をはかるべく検討の結果、本発明の完成に至っ
た。As a method for developing these cathodes, the present inventors previously proposed a method using so-called dispersion plating, in which electroplating is performed using a plating bath in which carbonaceous fine particles are dispersed on the surface of a cathode substrate. (JP-A-57-35689, JP-A-57-89
491, JP-A-57-94582, JP-A-57-945
As a result of studies aimed at improving the robustness and further reducing hydrogen overvoltage (e.g., 83), the present invention was completed.
即ち、本発明は、炭素質微粒子が分散され、且つメッキ
金属としてニッケル主体の金属成分を含むメッキ浴を用
いて、陰極基材表面に、メッキ電流密度7 A/dm“
以上で電気メッキを施し、表面に生じた離脱容易なメッ
キ層を除去することを特徴とする低水素過電圧陰極の製
法である。That is, the present invention applies a plating current density of 7 A/dm to the surface of a cathode substrate using a plating bath in which carbonaceous fine particles are dispersed and also contains a metal component mainly consisting of nickel as the plating metal.
The above is a method for producing a low hydrogen overvoltage cathode characterized by performing electroplating and removing a plating layer that is easily separated from the surface.
本発明方法は陰極基材表面に上記の如くメッキ電流密度
71y’dmF以上で、所門分散メッキを施すことを特
徴の一つとしているものであるが、使用する陰極基材と
しては、分散メッキの適用が容易であって、メッキの密
着性に格別支障を生じない耐食性の材料が用いられ、具
体的には鉄、銅、二yケル、及びこれらを含む合金やパ
ルプ金属よりなる耐アルカリ土類金属素材が好ましく用
いられ、又かへる金属素材に予めニッケルメッキ浴のメ
ッキを施したものを使用することも出来る。One of the characteristics of the method of the present invention is to perform dispersion plating on the surface of the cathode base material at a plating current density of 71 y'dmF or higher as described above. Corrosion-resistant materials are used that are easy to apply and do not cause any particular problems with plating adhesion. Specifically, alkali-resistant materials made of iron, copper, dikel, alloys containing these, and pulp metals are used. Similar metal materials are preferably used, and metal materials that have been previously plated with a nickel plating bath can also be used.
又その形状として特忙制限はないが、エキスバンドメタ
ル、およびこれをプレスした有孔平板、パンチングメタ
ル、織成金網等の多孔板形状のものが好ましく採用され
、それらの空間率は1〜99係の範囲にあることが好ま
しい。Although there is no special restriction on its shape, expanded metal, perforated flat plates made of pressed metal, punched metal, woven wire mesh, and other perforated plate shapes are preferably used, and their porosity is 1 to 99. It is preferable that it be within the range of
か−る基材表面に施す分散メッキは、炭素質からなる微
粒子を、はy1〜s o p/lの範囲で分散し、且つ
メッキ金属としてニッケルを主体とする金属成分を含む
メッキ浴により電気メッキを施すものである。Dispersion plating applied to the surface of such a base material involves dispersing carbonaceous fine particles in a range of y1 to so p/l, and electrolytically using a plating bath containing a metal component mainly consisting of nickel as the plating metal. It is plated.
メッキ浴における上記ニッケル主体の金屑成分とは、ニ
ッケルのみか、もしくはニッケルを優位量(50%(重
量幅:以下同じ)以上)として含み、性能上悪影響を及
ぼさず忙、経済的有利性、その他を考慮して他の金属の
1種又は2種以上を併用したものを包含する。The above-mentioned nickel-based gold scrap component in the plating bath is one that contains only nickel or nickel in a predominant amount (more than 50% (weight range: the same applies hereinafter)), has no adverse effect on performance, is economically advantageous, It includes one or a combination of two or more other metals in consideration of other factors.
か匁る併用金属としては、コバルト、鉄、銀、銅、リン
、タングステン、マグネシウム、チタン、モリブデン、
ベリリウム、クロム、亜鉛、マンガ、ン、スズ、鉛、ビ
スマス、等を挙げることが出来る。Cobalt, iron, silver, copper, phosphorus, tungsten, magnesium, titanium, molybdenum,
Beryllium, chromium, zinc, manga, tin, lead, bismuth, etc. can be mentioned.
このニッケル主体の金属によるメッキ浴は、スルファミ
ン酸ニッケル、Heニッケル、塩化ニッケル、臭化ニッ
ケルなどの一種又はそれ以上を主成分として含有する浴
として使用され誹記以外に好適なメッキ物を得るために
ホウ酸、クエン酸、塩酸、硫酸、アンモニア、塩化アン
モン、塩化カリなどが適宜加えられる。This nickel-based metal plating bath is used as a bath containing one or more of nickel sulfamate, He nickel, nickel chloride, nickel bromide, etc. as a main component. Boric acid, citric acid, hydrochloric acid, sulfuric acid, ammonia, ammonium chloride, potassium chloride, etc. are added as appropriate.
更にこれにピット防止剤、平坦化剤等を添加してもよい
。又一般的に知られているニッケルメッキ浴、例えばワ
ット浴、硫9ニッケル浴などを分散メッキ浴として使用
するのも簡便な方法である。Furthermore, a pit preventive agent, a flattening agent, etc. may be added to this. It is also a simple method to use a generally known nickel plating bath, such as a Watt bath or a nickel sulfur bath, as a dispersion plating bath.
一方、炭素質からなる微粒子としては木炭、石炭、骨炭
、黒鉛、活性炭、カーボンブラック、コークス等を季げ
ることか出来、その粒径は100μ以下の平均粒径を持
つものが好ましく、10μ以下のものが特に好ましい。On the other hand, fine particles made of carbonaceous material include charcoal, coal, bone char, graphite, activated carbon, carbon black, coke, etc., and the particle size preferably has an average particle size of 100μ or less, and 10μ or less. Particularly preferred are those.
上記微粒子の分散は、液中へのガスの吹込み、ポンプ循
環、攪拌機による機a的攪拌などで実施することが好ま
しい。The dispersion of the fine particles is preferably carried out by blowing gas into the liquid, circulating with a pump, mechanical stirring using a stirrer, or the like.
この様なメッキ浴を使用して電気メッキする際のメッキ
条件として温度、PHメ、キ時間等はそのメッキ浴に適
したものを選定すべきであるが、本発明においては特に
メッキ電流密度が重要である、
即ちメッキ時の電流密度は7 A/dm”以上であるこ
とを要し、上記したメッキ浴で、か−る7 7%7d7
++“以上の一定電流密度の条件下でメッキした場合、
メッキ層が緻密で硬く水素過電圧の低い層と、比較的柔
軟性があって表面より容易に離脱することが出来る低水
素過電圧の層とが形成される。この場合、これをそのま
へ、例えばイオン交換膜電角了槽の陰極として使用する
と、運転中に上記柔軟層が離脱してイオン交換膜を汚染
させたり、これが溶解して陰極の活性低下の原因を作る
おそれがある。従って本発明方法ではか〜る離脱容易な
層を予め除去して上記の障害を排除するものであり、こ
れは軽い研摩等忙よって比較的容易に除去することが出
来るっ
この場合の研摩は、50〜200−/♂程度の加圧水の
噴射、或は軟らかいバフ掛けを行うとかタワシや手でこ
するなどの作業で除去出来る。When performing electroplating using such a plating bath, the plating conditions such as temperature, pH value, and time should be selected to be suitable for the plating bath, but in the present invention, the plating current density is particularly important. This is important, that is, the current density during plating must be 7 A/dm or higher, and in the above plating bath, the current density must be 77%7d7.
When plating under conditions of a constant current density of ++“ or more,
The plating layer forms a dense and hard layer with a low hydrogen overvoltage, and a layer with a low hydrogen overvoltage that is relatively flexible and can be easily separated from the surface. In this case, if this is used as it is, for example, as a cathode in an ion-exchange membrane electrolyte tank, the flexible layer may detach during operation and contaminate the ion-exchange membrane, or it may dissolve and reduce the activity of the cathode. There is a risk of causing this. Therefore, in the method of the present invention, such a layer that is easily separated is removed in advance to eliminate the above-mentioned problem, and this can be removed relatively easily by light polishing or the like. It can be removed by spraying pressurized water at a pressure of about 50 to 200 -/♂, applying soft buffing, or scrubbing with a scrubbing brush or hand.
一般的に云えば、前記したメッキ電流密度7Vdm’以
上の条件下で分散メッキを行うと、緻密な硬い分散メッ
キ層は概ね下層(陰極基材側)K、比較的柔軟で離脱容
易な分散メッキ層がその上層(陰極表面側)に形成され
、この2層の境界は明確ではない。Generally speaking, when dispersion plating is performed under the above-mentioned conditions of plating current density of 7 Vdm' or more, the dense hard dispersion plating layer is generally the lower layer (on the cathode base material side) K, and the dispersion plating layer is relatively flexible and easily separated. A layer is formed on the upper layer (on the cathode surface side), and the boundary between these two layers is not clear.
前記した軽い研摩は、この上層の柔軟層のみを容易に離
脱せしめると共に、下層の緻密層までを離脱せしめるこ
とがなく、かくて概ね下層の緻密な分散メッキ層のみで
形成された低水素過電圧特性に優れた陰極が得られる。The above-mentioned light polishing allows only the upper soft layer to be easily removed and does not cause the lower dense layer to separate, resulting in a low hydrogen overvoltage characteristic formed only by the lower dense dispersed plating layer. A cathode with excellent properties can be obtained.
分散メッキにおける前記メッキ電流密度の上限は特にな
いが、メッキのための整流器や、メッキ効率の点から1
00a/dゴ迄が好ましく、特に15〜50 A/di
“の範囲が実用上好ましい。このメッキ電流密度が7A
/d77fより低い場合には、一応前記した緻密層と、
柔軟ノーとの2層が形成されるものの、緻密層の緻密の
程度が異り、長期の使用ではメッキの剥離が生じ、水素
過電圧低下の効力が漸次衰えてゆく様になる。There is no particular upper limit to the plating current density in dispersion plating, but from the viewpoint of rectifiers for plating and plating efficiency,
00a/d is preferable, especially 15 to 50 A/di
It is practically preferable that the plating current density be within the range of 7A.
/d77f or lower, the above-mentioned dense layer and
Although two layers are formed, a soft layer and a soft layer, the degree of density of the dense layer is different, and with long-term use, the plating will peel off, and the effectiveness of reducing the hydrogen overvoltage will gradually decline.
以上述べた方法において、陰極の表面に生じた離脱容易
なメッキ層を除いた後、再び前記の分散メッキおよび軽
い研摩を繰返し行うことにより、一層長寿命の低水素過
電圧陰極を得ることが出来る、そして一般的にこの繰返
しが多い稈長寿命とすることが出来るが、メッキ層の厚
さおよび、使用中における陰極液中の不純物による劣化
等を考えると、余り多く行なっても実際的ではなく、望
ましくは10回以下の繰返しがよい。In the method described above, after removing the easily separated plating layer formed on the surface of the cathode, by repeating the dispersion plating and light polishing, it is possible to obtain a low hydrogen overvoltage cathode with an even longer lifespan. In general, it is possible to extend the life of the culm by repeating this process frequently, but considering the thickness of the plating layer and deterioration due to impurities in the catholyte during use, it is not practical to repeat this process too often, and it is not desirable. It is best to repeat 10 times or less.
更に又、メッキ後の離脱容易なメッキ層を除去した後に
、その上にニッケルメッキ、ニッケルー硫黄メッキその
他の補強メッキを施すことも、陰極の寿命延長をはかる
上で好適である。又これら補強メッキ後に再び本発明方
法によるメッキを行い表面の離脱容易な層を除去した後
、補強メッキを行う所謂積層メッキも好適に実施するこ
とが出来、この積層回数も実際的な曲からは10回以下
が好ましい。Furthermore, after removing the easily separated plating layer after plating, it is also suitable to apply nickel plating, nickel-sulfur plating, or other reinforcing plating thereon in order to extend the life of the cathode. In addition, so-called laminated plating, in which reinforcing plating is performed after the reinforcing plating is performed again by the method of the present invention to remove the layer that easily separates from the surface, can also be carried out suitably, and the number of laminations is also limited from practical considerations. Preferably 10 times or less.
なお前記したニッケルー硫黄メッキとはニッケルメッキ
浴に、チオ尿素、チオシアン酸塩、チオ硫酸塩、亜硫酸
塩、チオグリコール酸などを添加して電気メッキしたメ
ッキのことを云う。The above-mentioned nickel-sulfur plating refers to electroplating in which thiourea, thiocyanate, thiosulfate, sulfite, thioglycolic acid, etc. are added to a nickel plating bath.
こ〜で本発明方法に使用する分散メッキ浴は既述の通り
、炭素質微粒子を分散し、且つメッキ金属としてニッケ
ル又はニッケルと他の併用金属をもってメッキ金属成分
とするものであるが、この浴中に、陰極としての低水素
過電圧特性をより助長させ、かつ基羽に対する分散メッ
キ層の定着性をより向上させるために、下記に述べる微
量の金属を添加することが好ましい。As mentioned above, the dispersion plating bath used in the method of the present invention is one in which carbonaceous fine particles are dispersed and the plating metal component is nickel or nickel and other combined metals as the plating metal. In order to further promote the low hydrogen overvoltage characteristics as a cathode and to further improve the fixation of the dispersed plating layer to the base layer, it is preferable to add a trace amount of the metal described below.
即ちかNる微量金属成分としては、銅、アルミニウム、
クロム、スズ、バリウム、亜鉛、銀、白金、イリジウム
、ロジウム、パラジウム等より選ばれた1種又は2種以
上を挙げることが出来る。That is, the trace metal components include copper, aluminum,
Examples include one or more selected from chromium, tin, barium, zinc, silver, platinum, iridium, rhodium, palladium, and the like.
これらの微量金属成分は、分散メッキ浴中で概ね1係以
下の微量で使用され、塩化物、硫酸塩、炭酸塩などの化
合物の形で加えられる。These trace metal components are used in trace amounts, generally less than 1 part, in the dispersion plating bath, and are added in the form of compounds such as chlorides, sulfates, and carbonates.
か又る微量金属成分の望ましい濃度範囲は各種イオン、
メッキ浴の種類、炭素質微粒子の種類、メッキ操作条件
等により異るが各金属成分により概ね次の通りである。The desirable concentration range of trace metal components is various ions,
Although it varies depending on the type of plating bath, type of carbonaceous fine particles, plating operation conditions, etc., it is generally as follows depending on each metal component.
Cu+0.5〜250+97J、Al″’ 50〜50
00層g/IZn+50〜500 k//、A戸50〜
5000rtg/ICv’又はCr’″50〜20DO
tny/l、Sn”50〜5DDDzy//Ba+50
〜5000ny/l、P t 5〜3000F!g、/
IRh 5〜3001117/jl、 Ir人又は1r
414又は(r)Ili柑
10〜3000璧/l、Pd”1〜300fi!9/J
、上記、微量金属の分散メッキ浴中への添加は、その微
量によって得られた陰極の低水素過電圧管同上
皆y、メッキの定着性向上に有効であるが、これら微量
金属の中には先に掲げたニッケル主体の金属成分におけ
るニッケルと併用する金属成分、即ち併用金属と一部に
おいて重複する同種の金属がある。Cu+0.5~250+97J, Al″' 50~50
00 layer g/IZn+50~500 k//, A door 50~
5000rtg/ICv' or Cr'''50~20DO
tny/l, Sn"50~5DDDzy//Ba+50
~5000ny/l, Pt 5~3000F! g, /
IRh 5-3001117/jl, Ir person or 1r
414 or (r) Ilikan 10-3000fi/l, Pd"1-300fi!9/J
As mentioned above, the addition of trace amounts of metals to the dispersion plating bath is effective in improving the fixation of plating, but the addition of trace amounts of metals to the dispersion plating bath is effective in improving the fixation of plating. There are metals of the same type that partially overlap with the metal components that are used in combination with nickel in the nickel-based metal components listed above, that is, the metals used in combination.
微量金属はメッキに当ってその添加量を上記範囲を大き
く逸脱して増加すると、微量金属としての有効性が喪失
してゆく傾向があるので、併用金属と微量金属を共に使
用するときは、異極の金属を選択して微量金属を上記添
加範囲内に留めることが望ましいが、同種の金属を用い
て微量金属の有効性を望むときには、この同種金属の合
計景が上記微量金属の添加量範囲を越えない程度に使用
することが望ましい。If the amount of trace metal added during plating increases significantly beyond the above range, it tends to lose its effectiveness as a trace metal, so when using a combination metal and a trace metal, It is desirable to select the metal of the pole and keep the trace metal within the above addition range, but when using the same kind of metal and wanting the effectiveness of the trace metal, the total view of the same kind of metal is within the above addition amount range of the trace metal. It is desirable to use it to the extent that it does not exceed.
以下に実施例および比較例を掲げて本発明を説明する。The present invention will be explained below with reference to Examples and Comparative Examples.
実施例1
Ni製の6謁ψ丸棒3本を(S N −HC7!を使用
して80℃×30分エツチングした。内2本について先
端の20%を残して収縮チューブでシールし、電流密度
20A/diで表1の浴組成およびメッキ条件で10分
間メッキした。Example 1 Three six-sided round rods made of Ni (SN-HC7!) were etched at 80°C for 30 minutes. Two of the rods were sealed with shrink tubes, leaving 20% of the tips. Plating was carried out for 10 minutes at a density of 20 A/di under the bath composition and plating conditions shown in Table 1.
次いでメッキ面を手で強くこすった後、水洗した。この
内の1本については同じ浴で更に10分間メッキを施し
た後、同様に手でこすり、水洗した。これらのものを、
20チKOH,60℃、20A / dm”、 H&/
l−1110基準で水素発生電位を測定した。その結果
、1回メッキのものの電位は−1,15■、2回メッキ
したもの−1,13Vを示した。一方塩酸エッチングし
たのみのNi丸棒は同条件で表1
1 ゛
(lp+ 約6
1温 度 40℃
iメッキ条件:浴 I D Ortl
l 1、 拌 マグネティックスクーラー :1 :メ
ッキ電流密度2oA/dゴ
1 ・
j [メッキ時間 10分間
実施例2
Ni製の3監ψ丸棒6本を6N−HC7を使用して80
℃×60分エッチンーグ°した。内2本について先端の
20%を残して収縮チー−ブでシールし、電流密度2o
A/dmで表2の浴組成およびメッキ条件で10分間メ
ッキした。Next, the plated surface was rubbed strongly by hand, and then washed with water. One of these was plated in the same bath for an additional 10 minutes, then rubbed by hand in the same manner and washed with water. these things,
20cm KOH, 60℃, 20A/dm”, H&/
The hydrogen generation potential was measured based on 1-1110. As a result, the potential of the one plated once was -1.15 V, and the potential of the two plated one was -1.13 V. On the other hand, a Ni round bar that had only been etched with hydrochloric acid was plated under the same conditions as shown in Table 1. Go1・j [Plating time: 10 minutes Example 2 Six Ni round bars were plated at 80°C using 6N-HC7.
Etching was performed for 60 minutes at ℃. Seal two of them with a shrink tube, leaving 20% of the tips, and apply a current density of 2o.
Plating was carried out at A/dm for 10 minutes under the bath composition and plating conditions shown in Table 2.
次いでメッキ面を手で強くこすった後、水洗した。この
内1本については再び同じ浴で10分間メッキを行い、
同様に手でこすり水洗I−だ。これらのものを、20%
KOH60℃20 A/1hrt l−1,97Hfl
O基準で水素発生電位を測定した結果、1回メッキをし
、たもの−0,97V、2回メッキしたもの−0,97
Vを示した。一方塩酸エノチングだけしたN1丸棒は、
同条件で−1,35Vを示した。Next, the plated surface was rubbed strongly by hand, and then washed with water. One of these was plated again in the same bath for 10 minutes,
Similarly, rub it by hand and wash it with water. 20% of these things
KOH60℃20A/1hrt l-1,97Hfl
As a result of measuring the hydrogen generation potential based on O standard, the one plated once was -0.97V, and the one plated twice -0.97V.
It showed V. On the other hand, the N1 round bar that was only subjected to hydrochloric acid enoting was
It showed -1.35V under the same conditions.
表 2
1 )硫酸銅 04・ 1
.1温 度 40℃
;相手@ N i &
1メ・キ搬件1浴 100m1
□l 1m 拌 マグネテイツクスターラー:メッキ電
流密度 20A/d774 1:メッキ時間 10分間
実施例6
実施例2と同様にしてNip丸棒(3ヰφ)をエツチン
グし、下記表6の浴組成およびメッキ条件で分散メッキ
を施した後、手で強くこすり、以後水洗してメッキ物を
得た。このものの電位は−0、99Vであった。Table 2 1) Copper sulfate 04.1. 1 Temperature 40°C; Opponent @ Ni & 1 me/ki 1 bath 100 m1 □l 1 m Stirring Magnetic stirrer: Plating current density 20 A/d774 1: Plating time 10 minutes Example 6 Same as Example 2 After etching a Nip round bar (3ヰφ) and performing dispersion plating using the bath composition and plating conditions shown in Table 6 below, it was strongly rubbed by hand and then washed with water to obtain a plated product. The potential of this material was -0.99V.
表3 1 1PH約。Table 3 1 1PH approx.
1メッキ条件イ浴 100d
1 1m 拌 −グネテイツクスクーラー :実施例4
実施例2と同じく表2の浴組成の内、活性炭の代りに黒
鉛粉末(東洋カーボン製AT−40)を251/11
mへ、又硫酸銅濃度を0.51/IIとして、50A/
di”で7分間メッキし柔軟層を取り除いたものと、更
にこの上に7分間メッキし柔軟層を取り除いたもの(即
ち1回メッキと2回メッキを行ったもの)の電位を測定
した結果−1,00■及び−1,01Vを得た。1 plating condition Bath 100 d 1 1 m Stirring - Magnetic cooler: Example 4 Same as Example 2, of the bath composition in Table 2, graphite powder (AT-40 manufactured by Toyo Carbon Co., Ltd.) was used instead of activated carbon at 251/11.
m, and the copper sulfate concentration is 0.51/II, 50A/
The results of measuring the potentials of one plate that was plated with di'' for 7 minutes and the flexible layer removed, and another plate that was further plated for 7 minutes and the flexible layer removed (i.e. one plated and two plated) - 1,00 µ and -1,01 V were obtained.
実施例5
〈
実施例2と同じ僕表2の浴組成の内活性炭の代りにコー
クスを粉砕し、350メソシユの篩で篩分ゆしたものを
20 E/l用いたこと以外は同じ条件でメッキを行っ
た。1回メッキしたものi電位は−0,99V、2回メ
ッキは一〇、98Vを示した。Example 5 (Same as Example 2) Plating was carried out under the same conditions except that the same bath composition as in Table 2 was used, except that instead of activated carbon, 20 E/l of crushed coke and sieve through a 350 sieve was used. I did it. The i potential of the one-time plating was -0.99V, and the two-time plating was 10.98V.
実施例6
実施例2と同じ浴組成とメッキ条件で1回メッキしたも
の2本を柔軟層を除くように水洗しこのものの内の1本
を矢←ぐ下記表4の浴を用いて5A/dmjX15分ニ
ッケルメツ率を施した。Example 6 Two pieces plated once using the same bath composition and plating conditions as Example 2 were washed with water to remove the soft layer, and one of the pieces was plated at 5A/1 using the bath shown in Table 4 below. dmjX 15 minute nickel rate was applied.
又他の1本は表5の浴を用いて3A/dmX20分の条
件でニッケルー硫黄メッキを行った。The other one was subjected to nickel-sulfur plating using the bath shown in Table 5 under conditions of 3 A/dm x 20 minutes.
前者の電位は−0,99V、後者の電位は一〇、97■
を示した。The potential of the former is -0,99V, and the potential of the latter is 10,97■
showed that.
表4
戸 、−2つ 3゜7 ・
表5
実施例7
sUs31oS製のエクスパンドメタル(12LWx
6 SWx 1.5Wx 1.5 T、単位π+a;L
Wは網目の長手方向長さ、SWは網目の短手方向長さ、
Wは刻み巾、1′は厚みを表わす。以下同じ)の1di
(100mX 100m)のものを6 N−HCl×
60分で塩酸エツチングして、活性化の前処理後、表4
の浴組成およびメッキ条件(但′し浴は511メッキ電
流密度は2A/dmj、メッキ時間は2時間とした)で
下地のニッケルメッキを施した。Table 4 -2 doors 3°7 Table 5 Example 7 Expanded metal made of sUs31oS (12LWx
6 SWx 1.5Wx 1.5 T, unit π+a;L
W is the length of the mesh in the longitudinal direction, SW is the length of the mesh in the short direction,
W represents the cutting width and 1' represents the thickness. (same below) 1di
(100mX 100m) with 6 N-HCl
After pretreatment for activation by etching with hydrochloric acid for 60 minutes, Table 4
Underlying nickel plating was performed using the following bath composition and plating conditions (the bath had a 511 plating current density of 2 A/dmj, and the plating time was 2 hours).
次いで表2の浴組成およびメッキ条件(但し浴は51.
攪拌は1@ / Ii rのポンプで液循環し、メッキ
電流密度30A/di、とした。)で分散メッキを施し
、その後タワシを使用して表層の柔軟層を除去し水洗し
て仕上げた。Next, the bath composition and plating conditions shown in Table 2 (however, the bath was 51.
For stirring, the liquid was circulated using a 1@/Ir pump, and the plating current density was 30 A/di. ), then used a scrubbing brush to remove the soft surface layer, and finished by washing with water.
このものを20係KOH,室温、20A/di1−1g
/l1go基準で水素発生電位を測定したところ66チ
NaOHで60日水素発生、11!転抜取り出して、電
位をjl定したところ−1,02Vであった3、実施例
8
実施例\と同様のエクスンドメタルを用いて同様に下地
ニッケルメッキ及び表1の分散メッキを施し100kp
/dの高圧水を使用して洗滌し、次と同じ(ニッケルー
硫黄メッキを行いニッケル硫黄メッキで補強した積層メ
ッキ品を得た。とのもの)電位は−1,01Vであった
。Add this to 20% KOH, room temperature, 20A/di1-1g
When the hydrogen generation potential was measured using the /l1go standard, hydrogen was generated for 60 days with 66-chi NaOH, 11! When the transfer was taken out and the potential was determined to be -1.02 V, it was found to be -1.02 V. 3. Example 8 Using the same Xund metal as in Example \, base nickel plating and dispersion plating as shown in Table 1 were applied in the same manner to 100 kp.
/d high pressure water was used to wash the product, and the potential was -1.01V, which was the same as the one shown below (a multilayer plated product was obtained in which nickel-sulfur plating was performed and reinforced with nickel-sulfur plating).
30日水素発生運転後、取り出して電位を測定したとこ
ろ−1,01Vであった。After 30 days of hydrogen generation operation, it was taken out and the potential was measured and found to be -1.01V.
比較例1
実施例7において、下地のニッケルメッキを施した後の
分散メッキ条件としてメッキ電流密度を5A/dyf、
メッキ時間を20分とした以外はこの実施例7と同じ条
件でメッキを行なった。このメッキで得たメッキ物は強
い研摩を行うとメッキの剥雛が生ずるので水洗のみに留
め、次いで再び上記と同様の分散メッキ条件宅分散メッ
キを施した。この様にして得たメッキ物の電位は−1,
01■を示した。これを実施例7と同じ様に電解槽に組
込み同様にして30日間水素発生運転を行った後取出し
て電位を測定したところ−1゜06■であり若干の劣化
が認められた。Comparative Example 1 In Example 7, the plating current density was 5 A/dyf as the dispersion plating conditions after applying the underlying nickel plating.
Plating was carried out under the same conditions as in Example 7 except that the plating time was 20 minutes. If the plated product obtained by this plating was subjected to strong polishing, the plating would peel off, so it was washed only with water, and then dispersion plating was applied again under the same dispersion plating conditions as above. The potential of the plated material obtained in this way is -1,
01■ was shown. This was assembled into an electrolytic cell in the same manner as in Example 7, and after 30 days of hydrogen generation operation, it was taken out and the potential was measured, and it was found to be -1°06■, indicating some deterioration.
特許出願人の名称 東亜合成化学工業株式会社Patent applicant name Toagosei Chemical Industry Co., Ltd.
Claims (1)
ニッケル主体の金属成分を含むメッキ浴を用いて陰極基
材表面にメッキ電流密度7A /di’以上で電気メッ
キを施し、表面に生じた離脱容易なメッキ層を除去する
ことを特徴とする低水素過電圧陰極の製法。1. Electroplating is applied to the surface of the cathode substrate at a plating current density of 7 A/di' or more using a plating bath in which carbonaceous fine particles are dispersed and contains a metal component mainly consisting of nickel as the plating metal, to eliminate the easy detachment that occurs on the surface. A method for producing a low hydrogen overvoltage cathode, which is characterized by removing the plating layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58137860A JPS6029487A (en) | 1983-07-29 | 1983-07-29 | Manufacture of cathode with low hydrogen overvoltage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58137860A JPS6029487A (en) | 1983-07-29 | 1983-07-29 | Manufacture of cathode with low hydrogen overvoltage |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6029487A true JPS6029487A (en) | 1985-02-14 |
JPH0344159B2 JPH0344159B2 (en) | 1991-07-05 |
Family
ID=15208447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58137860A Granted JPS6029487A (en) | 1983-07-29 | 1983-07-29 | Manufacture of cathode with low hydrogen overvoltage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6029487A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05146453A (en) * | 1991-11-29 | 1993-06-15 | Hogi Medical:Kk | Method for handling cord for operation under laparoscope and covering cloth for operation under laparoscope |
WO2010061766A1 (en) * | 2008-11-25 | 2010-06-03 | 株式会社トクヤマ | Method for producing active cathode for electrolysis |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5735689A (en) * | 1980-08-14 | 1982-02-26 | Toagosei Chem Ind Co Ltd | Production of cathode for generation of hydrogen |
-
1983
- 1983-07-29 JP JP58137860A patent/JPS6029487A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5735689A (en) * | 1980-08-14 | 1982-02-26 | Toagosei Chem Ind Co Ltd | Production of cathode for generation of hydrogen |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05146453A (en) * | 1991-11-29 | 1993-06-15 | Hogi Medical:Kk | Method for handling cord for operation under laparoscope and covering cloth for operation under laparoscope |
WO2010061766A1 (en) * | 2008-11-25 | 2010-06-03 | 株式会社トクヤマ | Method for producing active cathode for electrolysis |
JPWO2010061766A1 (en) * | 2008-11-25 | 2012-04-26 | 株式会社トクヤマ | Method for producing active cathode for electrolysis |
US8349165B2 (en) | 2008-11-25 | 2013-01-08 | Tokuyama Corporation | Process for producing an active cathode for electrolysis |
Also Published As
Publication number | Publication date |
---|---|
JPH0344159B2 (en) | 1991-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3480523A (en) | Deposition of platinum-group metals | |
US5035779A (en) | Process for producing cathode and process for electrolysis using said cathode | |
JPS5948872B2 (en) | Electrolytic cathode and its manufacturing method | |
US4470893A (en) | Method for water electrolysis | |
EP0129231B1 (en) | A low hydrogen overvoltage cathode and method for producing the same | |
JPS60159184A (en) | Anode for electrolyzing water | |
JPS6029487A (en) | Manufacture of cathode with low hydrogen overvoltage | |
JPH0633481B2 (en) | Electrolytic cathode and method of manufacturing the same | |
JPS6045710B2 (en) | electrolytic cell | |
KR940010101B1 (en) | Process for the preparation of electrolytic cell cathodes | |
US4177129A (en) | Plated metallic cathode | |
JPS5867883A (en) | Manufacture of low hydrogen overvoltage cathode | |
JPH0260759B2 (en) | ||
JPH0625879A (en) | Production of alkali hydroxide | |
JPS6123278B2 (en) | ||
JPS58133387A (en) | Cathode having low hydrogen overvoltage and preparation thereof | |
JPS6211075B2 (en) | ||
US3373092A (en) | Electrodeposition of platinum group metals on titanium | |
JP3712220B2 (en) | Ion exchange membrane electrolysis method | |
JPH0124228B2 (en) | ||
JPS63130791A (en) | Production of low-hydrogen overvoltage cathode | |
JPS6047912B2 (en) | Manufacturing method of cathode for hydrogen generation | |
JPS61223189A (en) | Production of cathode | |
JPS586983A (en) | Electrolytic cell | |
JPH025829B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |