JPH0344159B2 - - Google Patents

Info

Publication number
JPH0344159B2
JPH0344159B2 JP58137860A JP13786083A JPH0344159B2 JP H0344159 B2 JPH0344159 B2 JP H0344159B2 JP 58137860 A JP58137860 A JP 58137860A JP 13786083 A JP13786083 A JP 13786083A JP H0344159 B2 JPH0344159 B2 JP H0344159B2
Authority
JP
Japan
Prior art keywords
plating
nickel
bath
layer
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58137860A
Other languages
Japanese (ja)
Other versions
JPS6029487A (en
Inventor
Akihiro Sakata
Toshimasa Okazaki
Kyoji Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP58137860A priority Critical patent/JPS6029487A/en
Publication of JPS6029487A publication Critical patent/JPS6029487A/en
Publication of JPH0344159B2 publication Critical patent/JPH0344159B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水溶液中において優れた低水素過電圧
を示す、主として電解のための陰極の製法に関す
る。 従来より陰極で水素ガスを発生する技術として
隔膜(アスベストの如き多孔性隔膜及びイオン
交換膜の如き密隔膜を含む)を使用したアルカリ
金属塩水溶液の電解が知られており、又水電解等
もこれに該当する。 近年省エネルギーの観点から、この種の技術に
おいて電解電圧の低減化が望まれて来ており、か
かる電解電圧低減の手段として各種活性陰極が提
案されている。 この様な活性陰極は通常鉄、銅、ニツケル及び
これらを含む合金、バルブ金属などの耐アルカリ
性基材の表面に、低減された水素過電圧特性をも
つ活性金属材料の層を、溶射、熱分解、溶融物へ
の浸漬、電気メツキ、化学メツキ、蒸着、爆着な
どの手段で被覆することによつて得られ、就中、
かゝる活性金属材料層の表面に細かい凹凸を形成
して多孔性の粗なる活性表面を作ることにより、
活性金属材料層本来の電気化学的触媒作用に加え
て活性表面積の増大により水素過電圧低減の効用
をより助長せしめることも行なわれている。 これらの陰極の一つとして本発明者等の或る者
は先に陰極基材表面に炭素質の微粒子を分散させ
たメツキ浴を用いて電気メツキを施す、所謂分散
メツキによる方法を提案した。(特開昭57−
35689、特開昭57−89491、特開昭57−94582、特
開昭57−94583など) 本発明者等は、かゝる炭素質微粒子分散メツキ
浴による低水素過電圧陰極について、活性陰極と
しての堅牢性の向上と、水素過電圧のより一層の
低減をはかるべく検討の結果、本発明の完成に至
つた。 即ち、本発明は、炭素質微粒子が分散され、且
つメツキ金属としてニツケル主体の金属成分を含
むメツキ浴を用いて、陰極基材表面に、メツキ電
流密度7A/dm2以上で電気メツキを施し、表面
に生じた離脱容易なメツキ層を除去し、次いで前
記の電気メツキおよび表面に生じた離脱容易なメ
ツキ層の除去を繰返し行うか、或いは、補強メツ
キを施すことを特徴とする低水素過電圧陰極の製
法である。 本発明方法は陰極基材表面に上記の如くメツキ
電流密度7A/dm2以上で、所謂分散メツキを施
すことを特徴の一つとしているものであるが、使
用する陰極基材としては、分散メツキの適用が容
易であつて、メツキの密着性に格別支障を生じな
い耐食性の材料が用いられ、具体的には鉄、銅、
ニツケル、及びこれらを含む合金やバルブ金属よ
りなる耐アルカリ性の金属素材が好ましく用いら
れ、又かゝる金属素材に予めニツケルメツキ等の
メツキを施したものを使用することも出来る。 又その形状として特に制限はないが、エキスパ
ンドメタル、およびこれをプレスした有孔平板、
パンチングメタル、織成金網等の多孔板形状のも
のが好ましく採用され、それらの空間率は1〜99
%の範囲にあることが好ましい。 かゝる基材表面に施す分散メツキは、炭素質か
らなる微粒子を、ほゞ1〜50g/lの範囲で分散
し、且つメツキ金属としてニツケルを主体とする
金属成分を含むメツキ浴により電気メツキを施す
ものである。 メツキ浴における上記ニツケル主体の金属成分
とは、ニツケルのみか、もしくはニツケルを優位
量(50%(重量%;以下同じ)以上)として含
み、性能上悪影響を及ぼさずに、経済的有利性、
その他を考慮して他の金属の1種又は2種以上を
併用したものを包含する。 かゝる併用金属としては、コバルト、鉄、銀、
銅、リン、タングステン、マグネシウム、チタ
ン、モリブデン、ベリリウム、クロム、亜鉛、マ
ンガ、ン、スズ、鉛、ビスマス、等を挙げること
が出来る。 このニツケル主体の金属によるメツキ浴は、ス
ルフアミン酸ニツケル、硫酸ニツケル、塩化ニツ
ケル、臭化ニツケルなどの一種又はそれ以上を主
成分として含有する浴として使用され、上記以外
に好適なメツキ物を得るためにホウ酸、クエン
酸、塩酸、硫酸、アンモニア、塩化アンモニウ
ム、塩化カリウムなどが適宜加えられる。 更にこれにピツト防止剤、平坦化剤等を添加し
てもよい。又一般的に知られているニツケルメツ
キ浴、例えばワツト浴、硫酸ニツケル浴などを分
散メツキ浴として使用するのも簡便な方法であ
る。 一方、炭素質からなる微粒子としては木炭、石
炭、骨炭、黒鉛、活性炭、カーボンブラツク、コ
ークス等を挙げることが出来、その粒径は100μ
以下の平均粒径を持つものが好ましく、10μ以下
のものが特に好ましい。 上記微粒子の分散は、液中へのガスの吹込み、
ポンプ循環、撹拌機による機械的撹拌などで実施
することが好ましい。 この様なメツキ浴を使用して電気メツキする際
のメツキ条件として温度、PHメツキ時間等はその
メツキ浴に適したものを選定すべきであるが、本
発明においては特にメツキ電流密度が重要であ
る。 即ちメツキ時の電流密度は7A/dm2以上であ
ることを要し、上記したメツキ浴で、かゝる
7A/pm2以上の一定電流密度の条件下でメツキ
した場合、メツキ層が緻密で硬く水素過電圧の低
い層と、比較的柔軟性があつて表面より容易に離
脱することが出来る低水素過電圧の層とが形成さ
れる。この場合、これをそのまゝ、例えばイオン
交換膜電解槽の陰極として使用すると、運転中に
上記柔軟層が離脱してイオン交換膜を汚染させた
り、これが溶解して陰極の活性低下の原因を作る
おそれがある。従つて本発明方法ではかゝる離脱
容易な層を予め除去して上記の障害を排除するも
のであり、これは軽い研摩等によつて比較的容易
に除去することが出来る。 この場合の研摩は、50〜200Kg/cm2程度の加圧
水の噴射、或は軟らかいバフ掛けを行うとかタワ
シや手でこするなどの作業で除去出来る。 一般的に云えば、前記したメツキ電流密度
7A/dm2以上の条件下で分散メツキを行うと、
緻密な硬い分散メツキ層は概ね下層(陰極基材
側)に、比較的柔軟で離脱容易な分散メツキ層が
その上層(陰極表面側)に形成され、この2層の
境界は明確ではない。 前記した軽い研摩は、この上層の柔軟層のみを
容易に離脱せしめると共に、下層の緻密層までを
離脱せしめることがなく、かくて概ね下層の緻密
な分散メツキ層のみで形成された低水素過電圧特
性に優れた陰極が得られる。 分散メツキにおける前記メツキ電流密度の上限
は特にないが、メツキのための整流器や、メツキ
効率の点から100A/dm2迄が好ましく、特に15
〜50A/dm2の範囲が実用上好ましい。このメツ
キ電流密度が7A/dm2より低い場合には、一応
前記した緻密層と、柔軟層との2層が形成される
ものの、緻密層の緻密の程度が異り、長期の使用
ではメツキの剥離が生じ、水素過電圧低下の効力
が漸次衰えてゆく様になる。 本発明は以上述べた方法において、陰極の表面
に生じた離脱容易なメツキ層を除いた後、再び前
記の分散メツキおよび軽い研磨を繰返し行うか、
或いは、離脱容易なメツキ層を除去した後に、そ
の上にニツケルメツキ、ニツケル−硫黄メツキそ
の他の補強メツキを施すことをその特徴の一つと
するもので、これにより、一層長寿命の低水素過
電圧陰極を得ることが出来るものである。 又上記補強メツキ後に再び前記の分散メツキを
行い表面の離脱容易な層を除去した後、補強メツ
キを行う所謂積層メツキも好適に実施することが
出来る。 分散メツキおよび軽い研磨の繰返しは、一般的
に繰返しが多い程長寿命とすることが出来るが、
メツキ層の厚さおよび、使用中における陰極液中
の不純物による劣化等を考えると、余り多く行な
つても実際的ではなく、望ましくは10回以下の繰
返しがよい。 又積層メツキの積層回数も実際的な面からは10
回以下が好ましい なお前記したニツケル−硫黄メツキとはニツケ
ルメツキ浴に、チオ尿素、チオシアン酸塩、チオ
硫酸塩、亜硫酸塩、チオグリコール酸などを添加
して電気メツキしたメツキのことを云う。 こゝで本発明方法に使用する分散メツキ浴は既
述の通り、炭素質微粒子を分散し、且つメツキ金
属としてニツケル又はニツケルと他の併用金属を
もつてメツキ金属成分とするものであるが、この
浴中に、陰極としての低水素過電圧特性をより助
長させ、かつ基材に対する分散メツキ層の定着性
をより向上させるために、下記に述べる微量の金
属を添加することが好ましい。 即ちかゝる微量金属成分としては、銅、アルミ
ニウム、クロム、スズ、バリウム、亜鉛、銀、白
金、イリジウム、ロジウム、パラジウム等より選
ばれた1種又は2種以上を挙げることが出来る。 これらの微量金属成分は、分散メツキ浴中で概
ね1%以下の微量で使用され、塩化物、硫酸塩、
炭酸塩などの化合物の形で加えられる。 かゝる微量金属成分の望ましい濃度範囲は各種
イオン、メツキ浴の種類、炭素質微粒子の種類、
メツキ操作条件等により異るが各金属成分により
概ね次の通りである。 Cu++0.5〜250mg/l、Al+++50〜5000mg/l
Zn++50〜5000mg/l、Ag+50〜5000mg/l
Cv++又はCr+++50〜2000mg/l、Sn++50〜5000
mg/l Ba++50〜5000mg/l、Pt++5〜3000
mg/l Rh+++5〜300mg/、Ir++、又はIr+++
はIr++++ 10〜3000mg/l、Pd++1〜300mg/l、 上記、微量金属の分散メツキ浴中への添加は、
その微量によつて得られた陰極の低水素過電圧特
性向上と、メツキの定着性向上に有効であるが、
これら微量金属の中には先に掲げたニツケル主体
の金属成分におけるニツケルと併用する金属成
分、即ち併用金属と一部において重複する同種の
金属がある。 微量金属はメツキに当つてその添加量を上記範
囲を大きく逸脱して増加すると、微量金属として
の有効性が喪失してゆく傾向があるので、併用金
属と微量金属を共に使用するときは、異種の金属
を選択して微量金属を上記添加範囲内に留めるこ
とが望ましいが、同種の金属を用いて微量金属の
有効性を望むときには、この同種金属の合計量が
上記微量金属の添加量範囲を越えない程度に使用
することが望ましい。 以下に実施例および比較例を掲げて本発明を説
明する。 実施例 1 Ni製の3mmφ丸棒3本を6N−HClを使用して
80℃×30分エツチングした。内2本について先端
の20m/mを残して収縮チユーブでシールし、電
流密度20A/dm2で表1の浴組成およびメツキ条
件で10分間メツキした。 次いでメツキ面を手で強くこすつた後、水洗し
た。この内の1本については同じ浴で更に10分間
メツキを施した後、同様に手でこすり、水洗し
た。これらのものを、20%KOH、60℃、20A/
dm2、Hg/HgO基準で水素発生電位を測定し
た。この結果、1回メツキのものの電位は−
1.15V、2回メツキしたもの−1.13Vを示した。
一方塩酸エツチングしたのみのNi丸棒は同条件
で−1.35Vを示した。
The present invention relates to a method for producing a cathode, primarily for electrolysis, which exhibits an excellent low hydrogen overpotential in aqueous solution. Conventionally, electrolysis of aqueous alkali metal salt solutions using diaphragms (including porous diaphragms such as asbestos and tight diaphragms such as ion exchange membranes) has been known as a technique for generating hydrogen gas at the cathode, and water electrolysis, etc. This applies. In recent years, from the viewpoint of energy saving, it has been desired to reduce the electrolysis voltage in this type of technology, and various active cathodes have been proposed as a means for reducing the electrolysis voltage. Such active cathodes are typically made by spraying, pyrolyzing, or depositing a layer of an active metal material with reduced hydrogen overvoltage characteristics on the surface of an alkali-resistant substrate such as iron, copper, nickel, alloys containing these, or valve metal. Obtained by coating by means such as immersion in a melt, electroplating, chemical plating, vapor deposition, explosion bonding, etc., among others:
By forming fine irregularities on the surface of the active metal material layer to create a porous and rough active surface,
In addition to the electrochemical catalytic action inherent to the active metal material layer, attempts have also been made to increase the active surface area to further promote the hydrogen overvoltage reduction effect. As one of these cathodes, some of the present inventors have previously proposed a method using so-called dispersion plating, in which the surface of the cathode substrate is electroplated using a plating bath in which carbonaceous fine particles are dispersed. (Unexamined Japanese Patent Publication No. 57-
35689, JP-A-57-89491, JP-A-57-94582, JP-A-57-94583, etc.) The present inventors have developed a low hydrogen overvoltage cathode using a plating bath in which carbonaceous fine particles are dispersed, and have developed a method for using it as an active cathode. As a result of studies aimed at improving robustness and further reducing hydrogen overvoltage, the present invention was completed. That is, in the present invention, the surface of the cathode substrate is electroplated at a plating current density of 7 A/dm 2 or more using a plating bath in which carbonaceous fine particles are dispersed and also contains a metal component mainly consisting of nickel as the plating metal, A low hydrogen overvoltage cathode characterized in that a plating layer that is easily separated from the surface is removed, and then the electroplating and the removal of the plating layer that is easily removed from the surface are repeated, or reinforcing plating is applied. This is the manufacturing method. One of the characteristics of the method of the present invention is to perform so-called dispersion plating on the surface of the cathode substrate at a plating current density of 7 A/dm 2 or higher as described above. Corrosion-resistant materials are used that are easy to apply and do not cause any particular problems with the adhesion of plating, specifically iron, copper,
Alkali-resistant metal materials such as nickel, alloys containing these, and valve metals are preferably used, and such metal materials may be previously plated with nickel plating or the like. There are no particular restrictions on the shape, but expanded metal, a flat plate with holes pressed from it,
Perforated plate shapes such as punched metal and woven wire mesh are preferably used, and their porosity is 1 to 99.
% range is preferable. Such dispersion plating is performed on the surface of a substrate by electroplating using a plating bath containing fine particles of carbonaceous material dispersed in a range of about 1 to 50 g/l and containing a metal component mainly composed of nickel as the plating metal. It is intended to provide The above-mentioned nickel-based metal component in the plating bath is nickel alone or contains nickel in a predominant amount (50% (weight %; the same shall apply hereinafter) or more), and has no adverse effect on performance, has economic advantage,
It includes one or a combination of two or more other metals in consideration of other factors. Such combined metals include cobalt, iron, silver,
Examples include copper, phosphorus, tungsten, magnesium, titanium, molybdenum, beryllium, chromium, zinc, manga, tin, lead, and bismuth. This nickel-based metal plating bath is used as a bath containing one or more of nickel sulfamate, nickel sulfate, nickel chloride, nickel bromide, etc. as a main component, and is used to obtain suitable plating products other than those mentioned above. Boric acid, citric acid, hydrochloric acid, sulfuric acid, ammonia, ammonium chloride, potassium chloride, etc. are added to the solution as appropriate. Further, an anti-pitting agent, a flattening agent, etc. may be added to this. It is also a simple method to use a generally known nickel plating bath, such as a Watt bath or a nickel sulfate bath, as a dispersion plating bath. On the other hand, fine particles made of carbonaceous material include charcoal, coal, bone charcoal, graphite, activated carbon, carbon black, coke, etc., and the particle size is 100 μm.
Those having an average particle size of the following are preferable, and those having an average particle size of 10 μ or less are particularly preferable. The dispersion of the fine particles is carried out by blowing gas into the liquid,
It is preferable to use pump circulation, mechanical stirring using a stirrer, or the like. When performing electroplating using such a plating bath, the temperature, PH plating time, etc. should be selected to be suitable for the plating bath, but the plating current density is particularly important in the present invention. be. In other words, the current density during plating must be 7A/ dm2 or higher, and the plating bath described above
When plating is carried out under conditions of a constant current density of 7 A/pm 2 or more, the plating layer is dense and hard and has a low hydrogen overvoltage, and the other is a layer that is relatively flexible and has a low hydrogen overvoltage that can be easily detached from the surface. A layer is formed. In this case, if this is used as it is, for example, as a cathode in an ion exchange membrane electrolytic cell, the flexible layer may detach during operation and contaminate the ion exchange membrane, or it may dissolve and cause a decrease in the activity of the cathode. There is a risk of creating Therefore, in the method of the present invention, such an easily detachable layer is removed in advance to eliminate the above-mentioned problem, and it can be removed relatively easily by light polishing or the like. In this case, the abrasiveness can be removed by jetting pressurized water at about 50 to 200 kg/cm 2 , by applying soft buffing, or by scrubbing with a scrubbing brush or by hand. Generally speaking, the plating current density mentioned above
When dispersion plating is performed under conditions of 7A/dm2 or higher ,
A dense and hard dispersed plating layer is generally formed on the lower layer (on the cathode base material side), and a relatively flexible and easily separated dispersed plating layer is formed on the upper layer (on the cathode surface side), and the boundary between these two layers is not clear. The above-mentioned light polishing allows only the upper soft layer to be easily removed, without causing the lower dense layer to separate, and thus the low hydrogen overvoltage characteristic formed only by the lower dense dispersed plating layer is achieved. A cathode with excellent properties can be obtained. There is no particular upper limit to the plating current density in distributed plating, but from the viewpoint of the rectifier for plating and the plating efficiency, it is preferably up to 100 A/ dm2 , especially 15
A range of ˜50 A/dm 2 is practically preferable. When this plating current density is lower than 7A/ dm2 , two layers, the dense layer and the flexible layer described above, are formed, but the degree of density of the dense layer is different, and in long-term use, the plating becomes difficult. Peeling occurs, and the effectiveness of hydrogen overvoltage reduction gradually declines. In the method described above, the present invention involves removing the easily separated plating layer formed on the surface of the cathode, and then repeating the dispersion plating and light polishing, or
Alternatively, one of its features is that after removing the easily separated plating layer, a reinforcing plating such as nickel plating, nickel-sulfur plating, etc. It is something that can be obtained. Furthermore, so-called laminated plating, in which the above-mentioned dispersion plating is performed again after the above-mentioned reinforcing plating is performed to remove a layer on the surface that is easily separated, and then reinforcing plating is performed can also be suitably carried out. Generally speaking, the more times you repeat dispersion plating and light polishing, the longer the life will be.
Considering the thickness of the plating layer and deterioration due to impurities in the catholyte during use, it is not practical to repeat the process too many times, and it is preferable to repeat the process 10 times or less. Also, from a practical point of view, the number of layers for laminated plating is 10.
The above-mentioned nickel-sulfur plating refers to a plating obtained by electroplating by adding thiourea, thiocyanate, thiosulfate, sulfite, thioglycolic acid, etc. to a nickel plating bath. As mentioned above, the dispersion plating bath used in the method of the present invention is one in which carbonaceous fine particles are dispersed, and the plating metal component is nickel or nickel and other combined metals as the plating metal. In order to further promote the low hydrogen overvoltage characteristics as a cathode and to further improve the fixing properties of the dispersed plating layer to the substrate, it is preferable to add a trace amount of the metal described below to this bath. That is, such trace metal components include one or more selected from copper, aluminum, chromium, tin, barium, zinc, silver, platinum, iridium, rhodium, palladium, and the like. These trace metal components are used in trace amounts of approximately 1% or less in the dispersion plating bath, and contain chlorides, sulfates,
It is added in the form of compounds such as carbonates. The desirable concentration range of such trace metal components depends on various ions, the type of plating bath, the type of carbonaceous particles,
Although it varies depending on the plating operation conditions etc., it is generally as follows depending on each metal component. Cu ++ 0.5~250mg/l, Al +++ 50~5000mg/l
Zn ++ 50~5000mg/l, Ag + 50~5000mg/l
Cv ++ or Cr +++ 50-2000mg/l, Sn ++ 50-5000
mg/l Ba ++ 50~5000mg/l, Pt ++ 5~3000
mg/l Rh +++ 5 to 300 mg/l, Ir ++ , or Ir +++ or Ir ++++ 10 to 3000 mg/l, Pd ++ 1 to 300 mg/l, above, trace metal dispersion plating bath Addition to the inside is
A small amount of it is effective in improving the low hydrogen overvoltage characteristics of the cathode and improving the plating fixing properties.
Among these trace metals, there are metals of the same type that partially overlap with the metal components used in combination with nickel in the nickel-based metal component listed above, that is, the metals used in combination. If the amount of trace metals added during plating increases significantly beyond the above range, they tend to lose their effectiveness as trace metals, so when using combination metals and trace metals, it is important to It is desirable to select metals and keep trace metals within the above addition range. However, when using similar metals to achieve the effectiveness of trace metals, the total amount of the same metals should exceed the above addition range of trace metals. It is desirable to use it to the extent that it does not exceed. The present invention will be explained below with reference to Examples and Comparative Examples. Example 1 Three 3mmφ round rods made of Ni were prepared using 6N-HCl.
Etching was performed at 80°C for 30 minutes. Two of the tubes were sealed with a shrink tube, leaving a 20 m/m section at the tip, and plated for 10 minutes at a current density of 20 A/dm 2 under the bath composition and plating conditions shown in Table 1. Next, the plated surface was rubbed vigorously by hand, and then washed with water. One of these pieces was plated in the same bath for an additional 10 minutes, then rubbed by hand in the same manner and washed with water. 20% KOH, 60℃, 20A/
dm 2 , hydrogen generation potential was measured on a Hg/HgO basis. As a result, the potential of the one-time plating is -
1.15V, twice plated showed -1.13V.
On the other hand, a Ni round bar only etched with hydrochloric acid showed -1.35V under the same conditions.

【表】 実施例 2 Ni製の3mmφ丸棒3本を6N−HClを使用して
80℃×30分エツチングした。内2本について先端
の20m/mを残して収縮チユーブでシールし、電
流密度20A/dm2で表2の浴組成およびメツキ条
件で10分間メツキした。 次いでメツキ面を手で強くこすつた後、水洗し
た。この内1本については再び同じ浴で10分間メ
ツキを行い、同様に手でこすり水洗した。これら
のものを、20%KOH60℃20A/dm2 Hg/HgO
基準で水素発生電位を測定した結果、1回メツキ
をしたもの−0.97V、2回メツキしたもの−
0.97Vを示した。一方塩酸エツチングだけしたNi
丸棒は、同条件で−1.35Vを示した。
[Table] Example 2 Three 3mmφ round rods made of Ni were treated using 6N-HCl.
Etching was performed at 80°C for 30 minutes. Two of the tubes were sealed with a shrink tube, leaving a 20 m/m section at the tip, and plated for 10 minutes at a current density of 20 A/dm 2 under the bath composition and plating conditions shown in Table 2. Next, the plated surface was rubbed vigorously by hand, and then washed with water. One of these pieces was plated again in the same bath for 10 minutes, and then rubbed by hand and washed with water. Add these to 20% KOH60℃20A/dm 2 Hg/HgO
As a result of measuring the hydrogen generation potential using the standard, the one plated once - 0.97V, and the one plated twice -
It showed 0.97V. On the other hand, Ni etched only with hydrochloric acid
The round bar showed -1.35V under the same conditions.

【表】 実施例 3 実施例2と同じく表2の浴組成の内、活性炭の
代りに黒鉛粉末(東洋カーボン製AT−40)を
25g/l加へ、又硫酸銅濃度を0.5g/lとして、
30A/dm2で7分間メツキし柔軟層を取り除いた
ものと、更にこの上に7分間メツキし柔軟層を取
り除いたもの(即ち1回メツキと2回メツキを行
つたもの)の電位を測定した結果−1.00V及び−
1.01Vを得た。 実施例 4 実施例2と同じく表2の浴組成の内活性炭の代
りにコークスを粉砕し、350メツシユの篩で篩分
けしたものを20g/l用いたこと以外は同じ条件
でメツキを行つた。1回メツキしたものの電位は
−0.99V、2回メツキは−0.98Vを示した。 実施例 5 実施例2と同じ浴組成とメツキ条件で1回メツ
キしたもの2本を柔軟層を除くように水洗しこの
ものの内の1本を下記表3の浴を用いて3A/d
m2×15分ニツケルメツキを施した。 又他の1本は表4の浴を用いて3A/dm2×20
分の条件ででニツケル−硫黄メツキを行つた。 前者の電位は−0.99V、後者の電位は−0.97V
を示した。
[Table] Example 3 Same as Example 2, graphite powder (AT-40 manufactured by Toyo Carbon Co., Ltd.) was used instead of activated carbon in the bath composition in Table 2.
Adding 25g/l, and setting the copper sulfate concentration to 0.5g/l,
The potentials were measured for one plated at 30 A/dm 2 for 7 minutes and the flexible layer removed, and another plated for 7 minutes and the flexible layer removed (i.e., plated once and plated twice). Result −1.00V and −
I got 1.01V. Example 4 Plating was carried out under the same conditions as in Example 2, except that in the bath composition shown in Table 2, instead of activated carbon, pulverized coke and sieved through a 350 mesh sieve were used at 20 g/l. The potential after plating once was -0.99V, and the potential after plating twice was -0.98V. Example 5 Two pieces plated once using the same bath composition and plating conditions as Example 2 were washed with water to remove the soft layer, and one of these pieces was plated at 3A/d using the bath shown in Table 3 below.
Nickel plating was applied for m 2 ×15 minutes. The other one is 3A/dm 2 ×20 using the bath shown in Table 4.
Nickel-sulfur plating was carried out under the following conditions: The former potential is -0.99V, the latter potential is -0.97V
showed that.

【表】【table】

【表】 比較例 1 SUS310S製のエクスパンドメタル(12LW×
6SW×1.5W×1.5T、単位mm;LWは網目の長手
方向長さ、SWは網目の短手方向長さ、Wは刻み
巾、Tは厚みを表わす。以下同じ)の1dm2(100
mm×100mm)のものを6N−HCl×30分で塩酸エツ
チングして、活性化の前処理後、表3の浴組成お
よびメツキ条件(但し浴は5l、メツキ電流密度は
2A/dm2、メツキ時間は2時間とした)で下地
のニツケルメツキを施した。 次いで表2の浴組成およびメツキ条件(但し浴
は5l、撹拌は1m3/hrのポンプで液循環し、メツ
キ電流密度30A/dm2、とした。)で分散メツキ
を施し、その後タワシを使用して表層の柔軟層を
除去し水洗して仕上げた。 このものを20%KOH、室温、20A/dm2
Hg/HgO基準で水素発生電位を測定したところ
−1.01Vを得た。又、これを陰極室がSUS310S製
のイオン交換膜法電解槽に組み込み、90℃、33%
NaOHで30日水素発生運転後取り出して、電位
を測定したところ−1.02Vであつた。 実施例 6 比較例1と同様のエクパンドメタルを用いて同
様に下地ニツケルメツキ及び表1の分散メツキを
施し100Kg/cm2の高圧水を使用して洗滌し、次い
で表3の浴組成およびメツキ条件(但し浴5l、メ
ツキ電流密度5A/dm2メツキ時間20分でメツキ
をし、水洗後再び表1の活性炭を含む浴で30A/
dm2×10分メツキし高圧水で洗滌後、表4とじく
ニツケル−硫酸メツキを行いニツケル硫黄メツキ
で補強した積層メツキ品を得た。このものの電位
は−1.01Vであつた。 これを陰極として陰極室がNi製のイオン交換
膜法電解槽に、組み込み90℃、33%HaOHで30
日水素発生運転後、取り出して電位を測定したと
ころ−1.01Vであつた。 比較例 2 比較例1において、下地のニツケルメツキを施
した後の分散メツキ条件としてメツキ電流密度を
5A/dm2、メツキ時間を20分とした以外はこの
実施例7と同じ条件でメツキを行なつた。このメ
ツキで得たメツキ物は強い研摩を行うとメツキの
剥離が生ずるので水洗のみに留め、次いで再び上
記と同様の分散メツキ条件で分散メツキを施し
た。この様にして得たメツキ物の電位は−1.01V
を示した。これを比較例1と同じ様に電解槽に組
込み同様にして30日間水素発生運転を行つた後取
出して電位を測定したところ−1.06Vであり若干
の劣化が認められた。
[Table] Comparative example 1 Expanded metal made of SUS310S (12LW×
6SW×1.5W×1.5T, unit: mm; LW is the length of the mesh in the longitudinal direction, SW is the length of the mesh in the lateral direction, W is the width of the cut, and T is the thickness. 1dm 2 (100
mm x 100 mm) was etched with hydrochloric acid in 6N-HCl x 30 minutes, and after pretreatment for activation, the bath composition and plating conditions shown in Table 3 (however, the bath was 5 liters, and the plating current density was
The base plate was plated with nickel at a rate of 2 A/dm 2 and the plating time was 2 hours. Next, dispersion plating was performed using the bath composition and plating conditions shown in Table 2 (the bath was 5 liters, the liquid was circulated with a pump of 1 m 3 /hr for stirring, and the plating current density was 30 A/dm 2 ), and then a scrubber was used. The soft surface layer was removed and washed with water. 20% KOH, room temperature, 20A/dm 2
When the hydrogen generation potential was measured on a Hg/HgO basis, -1.01V was obtained. In addition, this was incorporated into an ion-exchange membrane method electrolytic cell with a cathode chamber made of SUS310S, and the temperature was 90℃ and 33%.
After 30 days of hydrogen generation operation with NaOH, it was taken out and the potential was measured, and it was -1.02V. Example 6 Using the same expanded metal as in Comparative Example 1, base nickel plating and dispersion plating as shown in Table 1 were applied in the same manner, followed by washing using high pressure water of 100 kg/ cm2 , and then bath composition and plating conditions as shown in Table 3. (However, plating is done in a bath of 5 liters, plating current density of 5 A/ dm , and plating time of 20 minutes. After washing with water, use a bath containing activated carbon in Table 1 again at 30 A/dm.
After plating for dm 2 ×10 minutes and washing with high-pressure water, nickel-sulfuric acid plating was performed as shown in Table 4 to obtain a laminated plated product reinforced with nickel-sulfur plating. The potential of this material was -1.01V. This was installed as a cathode in an ion-exchange membrane method electrolytic cell with a cathode chamber made of Ni.
After one day of hydrogen generation operation, I took it out and measured the potential, which was -1.01V. Comparative Example 2 In Comparative Example 1, the plating current density was set as the dispersion plating condition after applying nickel plating to the base.
Plating was carried out under the same conditions as in Example 7 except that the plating time was 5 A/dm 2 and the plating time was 20 minutes. The plated product obtained by this plating was washed only with water because strong polishing would cause the plating to peel off, and then dispersion plating was applied again under the same dispersion plating conditions as above. The potential of the plated material obtained in this way is -1.01V
showed that. This was assembled into an electrolytic cell in the same manner as in Comparative Example 1, and after 30 days of hydrogen generation operation, it was taken out and the potential was measured, and it was -1.06V, indicating some deterioration.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素質微粒子が分散され、且つメツキ金属と
してニツケル主体の金属成分を含むメツキ浴を用
いて陰極基材表面にメツキ電流密度7A/dm2
上で電気メツキを施し、表面に生じた離脱容易な
メツキ層を除去し、次いで前記の電気メツキおよ
び表面に生じた離脱容易なメツキ層の除去を繰返
し行うか、或いは、補強メツキを施すことを特徴
とする低水素過電圧陰極の製法。
1 Electroplating is applied to the surface of the cathode substrate at a plating current density of 7 A/dm 2 or more using a plating bath in which carbonaceous fine particles are dispersed and also contains a metal component mainly consisting of nickel as the plating metal, to remove easily detachable particles that occur on the surface. A method for producing a low hydrogen overvoltage cathode, which comprises removing the plating layer, and then repeating the electroplating and removing the easily detachable plating layer formed on the surface, or applying reinforcing plating.
JP58137860A 1983-07-29 1983-07-29 Manufacture of cathode with low hydrogen overvoltage Granted JPS6029487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58137860A JPS6029487A (en) 1983-07-29 1983-07-29 Manufacture of cathode with low hydrogen overvoltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58137860A JPS6029487A (en) 1983-07-29 1983-07-29 Manufacture of cathode with low hydrogen overvoltage

Publications (2)

Publication Number Publication Date
JPS6029487A JPS6029487A (en) 1985-02-14
JPH0344159B2 true JPH0344159B2 (en) 1991-07-05

Family

ID=15208447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58137860A Granted JPS6029487A (en) 1983-07-29 1983-07-29 Manufacture of cathode with low hydrogen overvoltage

Country Status (1)

Country Link
JP (1) JPS6029487A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146453A (en) * 1991-11-29 1993-06-15 Hogi Medical:Kk Method for handling cord for operation under laparoscope and covering cloth for operation under laparoscope
WO2010061766A1 (en) * 2008-11-25 2010-06-03 株式会社トクヤマ Method for producing active cathode for electrolysis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735689A (en) * 1980-08-14 1982-02-26 Toagosei Chem Ind Co Ltd Production of cathode for generation of hydrogen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735689A (en) * 1980-08-14 1982-02-26 Toagosei Chem Ind Co Ltd Production of cathode for generation of hydrogen

Also Published As

Publication number Publication date
JPS6029487A (en) 1985-02-14

Similar Documents

Publication Publication Date Title
JPS634920B2 (en)
US4470893A (en) Method for water electrolysis
US3350294A (en) Electrodes
US4414064A (en) Method for preparing low voltage hydrogen cathodes
EP0044035A1 (en) Electrode
US5494560A (en) Low-hydrogen overvoltage cathode having activated carbon particles supporting platinum, rhodium, indium, or platinum in a nickel layer formed on a substrate
US4422920A (en) Hydrogen cathode
CA1072915A (en) Cathode surfaces having a low hydrogen overvoltage
US4221643A (en) Process for the preparation of low hydrogen overvoltage cathodes
EP0129231B1 (en) A low hydrogen overvoltage cathode and method for producing the same
JPH0344159B2 (en)
EP0226291B1 (en) Method for extending service life of a hydrogen-evolution electrode
EP0222911B1 (en) Highly durable low-hydrogen overvoltage cathode and a method of producing the same
JP4115575B2 (en) Activated cathode
US4190514A (en) Electrolytic cell
US4421626A (en) Binding layer for low overvoltage hydrogen cathodes
JPS6045710B2 (en) electrolytic cell
US4177129A (en) Plated metallic cathode
JPH0260759B2 (en)
JPS6261677B2 (en)
JPS586983A (en) Electrolytic cell
JPH0245719B2 (en)
JPS5867883A (en) Manufacture of low hydrogen overvoltage cathode
JPS6211075B2 (en)
JP3712220B2 (en) Ion exchange membrane electrolysis method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees