JPS6028884B2 - Method for manufacturing heat-resistant tooth-shaped cutter bits - Google Patents

Method for manufacturing heat-resistant tooth-shaped cutter bits

Info

Publication number
JPS6028884B2
JPS6028884B2 JP11247780A JP11247780A JPS6028884B2 JP S6028884 B2 JPS6028884 B2 JP S6028884B2 JP 11247780 A JP11247780 A JP 11247780A JP 11247780 A JP11247780 A JP 11247780A JP S6028884 B2 JPS6028884 B2 JP S6028884B2
Authority
JP
Japan
Prior art keywords
treatment
hardness
cutter bit
nitriding
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11247780A
Other languages
Japanese (ja)
Other versions
JPS5739128A (en
Inventor
寿彦 佐藤
哲雄 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tone Boring Co Ltd
Original Assignee
Tone Boring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tone Boring Co Ltd filed Critical Tone Boring Co Ltd
Priority to JP11247780A priority Critical patent/JPS6028884B2/en
Publication of JPS5739128A publication Critical patent/JPS5739128A/en
Publication of JPS6028884B2 publication Critical patent/JPS6028884B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Earth Drilling (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は耐熱性歯型カッタービットの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a heat resistant tooth cutter bit.

従来の地層掘削用の歯型カッタービットは第1図に示す
如く、本体2は構造用合金鋼を使用し、これを焼入、焼
房の熱処理を施した後、浸炭法により内外表面にそれぞ
れ浸炭硬化層2A,2Bを形成したもので、通常の地層
掘削用としては、ある程度、目的を果しているものの、
地熱開発等の20000以上の高温地層掘削時には抗張
力の低下と共にラプチャー強度およびクリープ強度とも
低下し、その掘削性能を著しく低下する欠点を有してい
た。
As shown in Fig. 1, the conventional tooth-shaped cutter bit for geological excavation uses structural alloy steel for the main body 2, which is heat-treated by quenching and firing, and then carburized on the inner and outer surfaces. It has carburized hardened layers 2A and 2B, and although it serves the purpose to some extent for normal geological excavation,
When excavating 20,000 or more high-temperature strata such as in geothermal development, the tensile strength decreases, as well as the rupture strength and creep strength, which has the disadvantage of significantly reducing the excavation performance.

本発明の目的は歯型カッタービットにおける上記従来の
欠点を克服し、耐熱強度、耐高温摩耗性が高くすぐれた
掘削性能を有する歯型カッタービットを低製造コストに
て提供するにある。
An object of the present invention is to overcome the above-mentioned conventional drawbacks of tooth-shaped cutter bits and to provide a tooth-shaped cutter bit that has high heat-resistant strength, high temperature wear resistance, and excellent excavation performance at a low manufacturing cost.

本発明の要旨とするところは次の如くである。The gist of the present invention is as follows.

すなわち、ロストワックス法により作成した鋳型に析出
硬化型耐熱鋼の熔湯を鋳造してカッタービット素材を製
造する工程と、前記素材を溶体化処理する工程と、前記
溶体化処理した素材を窒化処理と時効処理を同時に行な
う工程と、を有して成ることを特徴とする耐熱性歯型カ
ッタービットの製造方法である。すなわち、本発明にお
けるカッタービット素材の鋳造に使用する耐熱鋼として
は析出硬化型のものであれば例えば17−4pHの如き
マルテンサィト系17−7pHの如き半オーステナィト
系および17−1岬日の如きオーステナィト系のいずれ
かの析出硬化型耐熱鋼であってもよくその後過飽和固港
体を得るため、1000〜1150oCの温度に加熱急
冷する溶体化処理を施す。
That is, a step of manufacturing a cutter bit material by casting molten precipitation-hardening heat-resistant steel into a mold created by the lost wax method, a step of solution-treating the material, and a nitriding treatment of the solution-treated material. This is a method for manufacturing a heat-resistant tooth-shaped cutter bit, comprising the steps of: and aging treatment at the same time. That is, the heat-resistant steel used for casting the cutter bit material in the present invention may be precipitation hardening type, such as martensitic steel such as 17-4 pH, semi-austenitic steel such as 17-7 pH, and 17-1 Misaki steel. It may be any type of austenitic precipitation hardening heat resistant steel. Thereafter, in order to obtain a supersaturated solid port, a solution treatment is performed by heating and rapidly cooling at a temperature of 1000 to 1150 oC.

更に溶体化処理後NH3気流中で500〜600ooの
温度範囲で数1餌時間加熱する窒化処理を施すことによ
りカッタービット素材の内外表面にきわめて硬い窒化層
を形成する。この温度城における加熱は該耐熱鋼の時効
処理を兼ねるものであって、この処理によって内外表面
にビッカース硬度HMv(300夕)にて1100以上
の高硬度の硬化層を得ることができることを見出した。
すなわち、第2図に示す如くカッタービット本体4は析
出硬化型耐熱鋼であって内外表面の硬化層4A,4Bに
窒化層を有するものであって、その窒化処理と同時に時
効処理を併せて行い時効硬化せしめることによりすぐれ
た強度と強さのほか鞠性をも有せしめ、かつその作業工
程を簡易化して製造コストの低減を図つたのが本発明の
特徴である。
Furthermore, after the solution treatment, an extremely hard nitrided layer is formed on the inner and outer surfaces of the cutter bit material by performing a nitriding treatment in which the cutter bit material is heated for several hours in a temperature range of 500 to 600 oo in an NH3 gas stream. The heating in this temperature range also serves as an aging treatment for the heat-resistant steel, and it has been found that by this treatment, a hardened layer with a Vickers hardness of HMv (300 mm) or more of 1100 or more can be obtained on the inner and outer surfaces. .
That is, as shown in FIG. 2, the cutter bit body 4 is made of precipitation-hardening heat-resistant steel and has a nitrided layer on the hardened layers 4A and 4B on the inner and outer surfaces, and is subjected to aging treatment at the same time as the nitriding treatment. A feature of the present invention is that age hardening provides excellent strength and strength as well as ballability, and that the work process is simplified to reduce manufacturing costs.

実施例 1 ロストワックス法により作成した鋳型中に第1表に示す
如き析出硬化型耐熱鋼の溶湯を注入し第2図に示す如き
カッタービット素材を製造した。
Example 1 A cutter bit material as shown in FIG. 2 was produced by pouring molten precipitation hardening heat resistant steel as shown in Table 1 into a mold made by the lost wax method.

第 1 表前記カッタービット素材を先づ1050oo
に加熱した後水焼入れする溶体化処理を行い、次に該素
材を570ooにて2加持間窒化処理と同時に時効処理
を施したる後空冷した。
Table 1 First, the cutter bit material is 1050mm.
The material was heated to a temperature of 100°C and then subjected to a solution treatment of water quenching, and then the material was subjected to a nitriding treatment at 570 oo for two periods and an aging treatment at the same time, followed by air cooling.

処理後の48000におけるラプチヤー応力およびクリ
ープ応力は第2表のとおりである。
The rupture stress and creep stress at 48000 after treatment are shown in Table 2.

第2表 実施例 2 実施例1と同一析出硬化型耐熱鋼によるカッタービット
素材を製造し、同一方法による溶体化処理後、窒化処理
と時効処理を570002筋時間同時に行った。
Table 2 Example 2 A cutter bit material made of the same precipitation-hardening heat-resistant steel as in Example 1 was manufactured, and after solution treatment by the same method, nitriding treatment and aging treatment were performed simultaneously for 570,002 hours.

かくして得た本発明によるカッタービットと、従来の構
造用合金鋼のSNCM−29材の窒化処理成品とをその
ままの状態および40000に1時間加熱処理したもの
の表面から2.0側までの深さについて硬さを測定した
結果とそれぞれ第3図および第4図に示す。すなわち第
3図に示すように窒化処理時の最高硬さは、Hvl12
0でありSNCM−29材のHv880に比べ1.3倍
の硬さを示す。また内部硬さは、Hv370〜380に
対し構造用合金鋼であるSNCM−25材はHv270
〜280であり本発明材は1.4倍の硬さを示す。また
、400o01時間加熱後の硬さ分布は第4図に示す如
く室温と比較し硬さの低下は認められなかった。
Regarding the depth from the surface to the 2.0 side of the thus obtained cutter bit according to the present invention and the nitrided product of the conventional structural alloy steel SNCM-29 material, both as-is and after being heat-treated at 40,000°C for 1 hour. The results of hardness measurements are shown in FIGS. 3 and 4, respectively. In other words, as shown in Figure 3, the maximum hardness during nitriding is Hvl12.
0, which is 1.3 times harder than Hv880 of SNCM-29 material. In addition, the internal hardness is Hv370-380, whereas the SNCM-25 material, which is a structural alloy steel, is Hv270.
~280, and the material of the present invention exhibits 1.4 times the hardness. Further, as shown in FIG. 4, the hardness distribution after heating at 400°C for 1 hour showed no decrease in hardness compared to room temperature.

従って、析出硬化型耐熱鋼に溶体化処理後時効・窒化処
理を同時に行なうことによりSNCM−29材の1.3
倍の表面硬さと1.2倍の内部硬ごを持たせることが可
能であり、しかも40000の加熱によっても硬度の低
下は認められなかった。上記実験より本発明によるカッ
タービットは高温における作業環境においてもすぐれた
掘削性を発揮し得ることが確認できた。実施例 3 実施例1,2と同一鋼種を使用し、同一処理によってカ
ッタービット素材を製造し、溶体化処理後窒化処理およ
び時効処理をそれぞれ52000、570℃、620q
oにて2凪時間行い、それぞれ時効後の引張強さ、硬さ
および衝撃値の三者を測定した結果は第5図のとおりで
ある。
Therefore, by simultaneously subjecting precipitation hardening heat-resistant steel to solution treatment, aging, and nitriding, the 1.3
It is possible to have double the surface hardness and 1.2 times the internal hardness, and no decrease in hardness was observed even after heating to 40,000 °C. The above experiment confirmed that the cutter bit according to the present invention can exhibit excellent digging performance even in a high-temperature working environment. Example 3 A cutter bit material was manufactured using the same steel type and the same treatment as in Examples 1 and 2, and after solution treatment, nitriding treatment and aging treatment were performed at 52,000°C, 570°C, and 620q, respectively.
Fig. 5 shows the results of measuring the tensile strength, hardness, and impact value after aging for 2 hours.

耐熱性カッタービットにおいて単に硬さのみならず、引
張強さ、衝撃値の三者が共にすぐれていることを要する
ことはその使用の条件より当然である。第5図より明ら
かなとおり、第1表に記載の如き析出硬化型耐熱鋼の場
合溶体化処理した後570℃において2岬時間窒化処理
と時効処理を同時に行なう場合には強度、硬度、衝撃値
の三者をほぼ最大限に併せ有せしめることができること
が判明した。
It is natural that a heat-resistant cutter bit needs to have excellent not only hardness but also tensile strength and impact value based on the conditions of its use. As is clear from Figure 5, in the case of precipitation hardening heat-resistant steels as listed in Table 1, when nitriding and aging are simultaneously performed at 570°C for 2 hours after solution treatment, strength, hardness, and impact values are It has been found that it is possible to combine the three factors to the maximum extent possible.

実施例 4 第1表にて示した析出硬化型耐熱鋼より成るカッタービ
ット素材を次の3つの異なる方法にて処理したる後表面
および内部の硬さと衝撃値を比較した。
Example 4 The hardness and impact value of the surface and interior of cutter bit materials made of precipitation-hardened heat-resistant steel shown in Table 1 were compared by treating them using the following three different methods.

■ 溶体化処理を行わず、単に窒化処理を570℃にて
2独特間行った場合、{B〕素材を1050ooにて溶
体化処理したる後、570℃にて2独特間窒化処理と同
時に時効処理を行った場合、にー 素材を1050oo
にて溶体化処理を行った後窒化処理を行なわず570こ
Cにて4時間時効処理を行った場合。
■ If nitriding is simply performed at 570°C for 2 hours without solution treatment, {B] material is solution treated at 1050 oo and then aged at the same time as nitriding at 570°C for 2 hours. If processed, the material will be 1050 oo
In the case where solution treatment was performed at 570 °C for 4 hours without nitriding treatment.

この比較試験結果は第6図に示す如く、帆は表面硬度が
大であるが、0.2肌より内部の硬さが3004v程度
であって若干劣り、に}の窒化処理を行わなかったもの
は当然の結果として表面硬度がはるかに低く、表面、内
部ともほぼ均一の380Kvの硬さを示すのに対し、本
発明の処理による‘B)‘ま表面硬さは1050HMv
に達するのみならず内部硬さもほぼ40岬州に達し、カ
ッタービットの硬度としては最もすぐれた処理であるこ
とが判明した。
As shown in Figure 6, the results of this comparative test show that the sail has a high surface hardness, but the internal hardness is about 3004V, which is slightly inferior to that of the 0.2 skin, which was not subjected to the nitriding treatment. As a matter of course, the surface hardness of 'B)' is much lower, showing an almost uniform hardness of 380 Kv both on the surface and inside, whereas 'B)' has a surface hardness of 1050 HMv due to the treatment of the present invention.
Not only did the internal hardness reach approximately 40, it was found to be the most excellent treatment for cutter bit hardness.

更に帆,【B},‘C)各処理材の上記処理後の衝撃値
を比較した結果は、第7図に示すとおりである。
Furthermore, the results of comparing the impact values of the treated materials after the above treatment are shown in FIG. 7.

すなわち、溶体化処理をしなかったのは衝撃値が極めて
低く1.0k9・m/力程度であるに対し、溶体化処理
した後溶体化処理を行わずに時効処理のみ行った‘C}
が最も衝撃値がすぐれ5.0k9・m/枕に達している
。これに対し、本発明による処理材の衝撃値はににはや
や及ばないもののほとんど遜色がない靭性を有すること
が判明した。前記の如くカッタービット素材としては強
度、硬さ、籾性の三者を併せ有することが必要であり、
この三者を併せしめる処理方法としては、先ず溶体化処
理した後、窒化処理と時効処理を同時に行うことが、特
性上も作業的にも最もすぐれた方法であることが判明し
た。
In other words, the impact value of the material without solution treatment was extremely low, around 1.0 k9 m/force, whereas the impact value of the material without solution treatment was extremely low, at around 1.0 k9 m/force, whereas in the case of 'C', which was subjected to solution treatment and only aging treatment without solution treatment.
had the highest impact value, reaching 5.0k9 m/pillow. On the other hand, it was found that the treated material according to the present invention had a toughness that was almost comparable, although the impact value was slightly lower than that of . As mentioned above, it is necessary for the cutter bit material to have a combination of strength, hardness, and graininess.
As a treatment method that combines these three, it has been found that the most excellent method in terms of properties and workability is to first perform solution treatment and then perform nitriding treatment and aging treatment simultaneously.

実施例 5 実施例1の第1表に記載の析出硬化型耐熱鋼と従釆の構
造用合金鋼SNCM−25およびSUS304を105
0qoに加熱した後冷却する溶体化処理を行った後、5
70qoにて2凪時間窒化処理と同時に時効処理を行っ
た各供試村についてそれぞれ2000、8000、10
0qoの5重量%比S04に浸潰して硫化物腐食に対す
る腐食試験を実験した。
Example 5 Precipitation hardening type heat-resistant steels listed in Table 1 of Example 1 and subordinate structural alloy steels SNCM-25 and SUS304 were combined into 105
After performing solution treatment by heating to 0qo and then cooling, 5
2000, 8000, and 10
A corrosion test for sulfide corrosion was conducted by immersing the sample in S04 at a 5% by weight ratio of 0qo.

該腐食試験の結果は第3表に示すとおりである。第3表 第3表より明らかな如く、本発明の処理による析出硬化
型耐熱鋼は最も強い耐硫酸腐食性を示し、石油井等の硫
化物腐食環境に使用するカッタービット素材としてすぐ
れた耐硫化物腐食性を示すことが明らかとなった。
The results of the corrosion test are shown in Table 3. Table 3 As is clear from Table 3, the precipitation-hardened heat-resistant steel treated according to the present invention exhibits the strongest sulfuric acid corrosion resistance and is excellent as a material for cutter bits used in sulfide corrosive environments such as oil wells. It was revealed that it exhibits corrosive properties.

実施例 6 実施例1の第1表の組成の析出硬化型耐熱鋼を使用し、
同一処理によってカッタービット素材を製造し、溶体化
処理後窒化処理を570qo、4加持間行ない、2加時
間同時に時効処理を行ない表面および内部に第2図に示
す如き硬化層4Aおよび4Bを形成した。
Example 6 Precipitation hardening heat-resistant steel having the composition shown in Table 1 of Example 1 was used,
A cutter bit material was manufactured by the same process, and after solution treatment, nitriding treatment was performed at 570 qo for 4 heating periods, and aging treatment was simultaneously performed for 2 heating hours to form hardened layers 4A and 4B on the surface and inside as shown in Fig. 2. .

かくして製造したカッタービットと構造用合金鋼を浸炭
処理した従来品とによる高温掘削比較試験を行った。
A high-temperature drilling comparison test was conducted between the cutter bit thus manufactured and a conventional product made of carburized structural alloy steel.

試験条件は次の如くである。ビットサイズ 71′2イ
ンチカッタービット穿 孔 機 利根ボーリング製T
W−次ビット回転数 8仇pm 掘削温度 300午○ 掘削対象物 デンスバ− FC−20 給 圧 4〜力 給圧を4tから7tまで1時間毎に増加した掘進長は第
4表に示すとおりである。
The test conditions are as follows. Bit size 71'2 inch cutter bit drilling machine Tone Boring Co., Ltd.
W-Next bit rotation speed: 8pm Excavation temperature: 300pm Object to be excavated: Densbur FC-20 Supply pressure: 4-force The excavation length when the supply pressure was increased from 4t to 7t every hour is as shown in Table 4. be.

第4表 本試験は岩石よりも著しく掘進性の悪い鋳鉄のFC−2
0について1時間掘進した後、給圧をltづつ上げる方
法で試験したが、構造用合金鋼の浸炭硬化法による従来
品に比して、前記第1表にて示した組成を有する耐熱鋼
によるカッタービット素材を本発明による漆体化処理後
窒化処理と時効処理を同時に行う処理を施したカッター
ビットにおいては著しく性能がすぐれていることが判明
した。
Table 4 This test was conducted using cast iron FC-2, which has significantly worse excavability than rock.
After excavating for 1 hour at 0, the supply pressure was increased in lt increments for testing, and compared to the conventional product made by the carburizing hardening method of structural alloy steel, the product made of heat-resistant steel having the composition shown in Table 1 above was tested. It has been found that a cutter bit in which the cutter bit material is subjected to lacquer treatment, followed by nitriding treatment and aging treatment simultaneously according to the present invention has significantly superior performance.

すなわち、従来品による場合は、最高7tの給圧によっ
てベアリングのがたが大となると共に、ビットの摩耗大
のために給圧技の時よりも却って掘進長が低下したが、
本発明品の場合は、ベアリングの異状もなく、またビッ
トの摩耗もわずかであって給圧と共に掘進長を増加する
傾向を示し、従来品に比し、給圧的下で140%以上の
掘進性能を示した。本発明はカッタービットにおいて従
来素材として使用されていた構造用合金鋼の浸炭法によ
る硬装を、析出硬化型の耐熱鋼を窒化処理による硬装に
改めただけでなく、窒化処理と時効処理を同時に行うと
いう特独の処理方法によって、上記各実施例にて明らか
な如き次の如き効果を収めることができた。
In other words, when using the conventional product, the bearing rattle increased due to the maximum supply pressure of 7 tons, and the digging length was actually reduced compared to when using the pressure supply technique due to the large amount of wear on the bit.
In the case of the product of the present invention, there is no abnormality in the bearing, there is only slight wear on the bit, and the digging length tends to increase with the supply pressure, and the digging length is 140% or more under the supply pressure compared to the conventional product. demonstrated its performance. The present invention not only changes the hardening of structural alloy steel, which was conventionally used as a material for cutter bits, by carburizing, but also hardens precipitation-hardened heat-resistant steel by nitriding. By using the unique processing method of simultaneous processing, we were able to achieve the following effects as evident in each of the above embodiments.

{ィ} 常温において強度靭性硬さの三者ともすぐれた
特性を示すばかりでなく、200oo以上の高温掘削に
おいても抗張力、硬さの低下は勿論プラチャー強度およ
びクリープ強度の低下を糧さず、すぐれた掘進性能を示
す。
{i} Not only does it exhibit excellent properties in terms of strength, toughness, and hardness at room temperature, but even in high-temperature drilling of 200 oo or more, it does not suffer from any decrease in tensile strength or hardness, nor does it suffer from a decrease in plateau strength or creep strength. This shows the excavation performance.

【o} 200oo以上の温度においても応力腐食割れ
および硫化物腐食に対する感受性を示さず、耐摩耗性も
すぐれている。
[o} Shows no susceptibility to stress corrosion cracking or sulfide corrosion even at temperatures above 200 ooohes, and has excellent wear resistance.

し一 窒化処理と時効処理を同時に行うことができるの
で、製造工程を簡略化できコストの低減が可能となった
Since nitriding treatment and aging treatment can be performed simultaneously, the manufacturing process can be simplified and costs can be reduced.

6 上記すぐれた性能から地熱開発、高温地層掘削等の
酷使条件下の広い用途に使用できる。
6 Due to the above-mentioned excellent performance, it can be used in a wide range of applications under heavy use conditions such as geothermal development and high-temperature geological excavation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の構造用合金鋼の浸炭硬装によるカッター
ビットを示す模式部分断面図、第2図は本発明による析
出硬化型耐熱鋼の窒化処理と時効処理を同時に行ったカ
ッタービットを示す第1図と同様の榛式部分断面図、第
3図および第4図はそれぞれ常温および4000CI時
間加熱後の本発明による処理材および構造用合金鋼SN
CM−29材の同一処理による表面からの距離による硬
さの分布を示す線図、第5図は本発明材の窒化処理温度
(時効処理同時施行)の変化による引張強さ、硬さ、衝
撃値に及ぼす影響を示す相関図、第6図は風窒化処理の
み、{B)溶体化処理、窒化時効処理、‘C}溶体化処
理、時効処理の処理方法の差による表面および内部硬さ
に及ぼす影響を示す相関図、第7図は凶窒化処理のみ、
‘B}溶体化処理、窒化・時効処理、‘C)港体化処理
、時効処理の処理方法の差による衝撃値に及ぼす影響を
示す線図である。 2・・・構造用合金鋼のカッタービット本体、2A・・
・外側の浸炭硬化層、2B・・・内側の浸炭硬化層、4
・・・析出硬化型耐熱鋼のカッタービット本体、4A・
・・外側の窒化硬化層、4B・・・内側の窒化硬化層。 第1図第2図 第3図 第4図 第5図 第6図 第了図
Fig. 1 is a schematic partial cross-sectional view showing a cutter bit made of conventional structural alloy steel carburized and hardened, and Fig. 2 shows a cutter bit made of precipitation hardening heat-resistant steel subjected to simultaneous nitriding and aging treatment according to the present invention. A partial sectional view of the same type as in FIG. 1, and FIGS. 3 and 4 show the processed material and structural alloy steel SN of the present invention at room temperature and after heating for 4000 CI hours, respectively.
A diagram showing the hardness distribution according to distance from the surface of CM-29 material after the same treatment. Figure 5 shows the tensile strength, hardness, and impact of the invention material as a result of changes in nitriding temperature (simultaneous aging treatment). Figure 6 is a correlation diagram showing the influence on the surface and internal hardness due to the difference in the treatment method of air nitriding treatment only, {B) solution treatment, nitriding aging treatment, 'C} solution treatment and aging treatment. Figure 7 is a correlation diagram showing the effects of nitriding treatment only.
It is a diagram showing the influence on the impact value due to the difference in treatment methods of 'B) solution treatment, nitriding/aging treatment, and 'C) port body treatment and aging treatment. 2... Structural alloy steel cutter bit body, 2A...
・Outer carburized hardened layer, 2B...Inner carburized hardened layer, 4
... Cutter bit body made of precipitation hardening type heat resistant steel, 4A.
...Outer nitrided hardened layer, 4B...Inner nitrided hardened layer. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Completed diagram

Claims (1)

【特許請求の範囲】[Claims] 1 ロストワツクス法により作成した鋳型に析出硬化型
耐熱鋼の溶湯を鋳造してカツタービツト素材を製造する
工程と、前記素材を溶体化処理する工程と、前記溶体化
処理した素材を窒化処理と時効処理を同時に行なう工程
と、を有して成ることを特徴とする耐熱性歯型カツター
ビツトの製造方法。
1 A process of manufacturing a Katsutervit material by casting molten precipitation-hardened heat-resistant steel into a mold created by the lost wax method, a process of solution-treating the material, and a nitriding and aging treatment of the solution-treated material. 1. A method for producing a heat-resistant tooth-shaped cutter bit, comprising the steps of:
JP11247780A 1980-08-15 1980-08-15 Method for manufacturing heat-resistant tooth-shaped cutter bits Expired JPS6028884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11247780A JPS6028884B2 (en) 1980-08-15 1980-08-15 Method for manufacturing heat-resistant tooth-shaped cutter bits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11247780A JPS6028884B2 (en) 1980-08-15 1980-08-15 Method for manufacturing heat-resistant tooth-shaped cutter bits

Publications (2)

Publication Number Publication Date
JPS5739128A JPS5739128A (en) 1982-03-04
JPS6028884B2 true JPS6028884B2 (en) 1985-07-08

Family

ID=14587607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11247780A Expired JPS6028884B2 (en) 1980-08-15 1980-08-15 Method for manufacturing heat-resistant tooth-shaped cutter bits

Country Status (1)

Country Link
JP (1) JPS6028884B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547521A (en) * 1992-11-16 1996-08-20 The Babcock & Wilcox Company Heat treatment method for lost foam cast materials
KR20030027301A (en) * 2001-09-28 2003-04-07 에이원메디칼(주) The method of exactness casting for medical forceps
CN104046912B (en) * 2013-03-15 2016-09-14 丁年花 A kind of processing method of heat resisting steel high alloy grate plate
JP2020533490A (en) * 2017-09-07 2020-11-19 スズキ ガルフィタン アクチエボラグ Methods for manufacturing cold drawn wire
CN111604496A (en) * 2020-05-29 2020-09-01 西安工业大学 Investment casting process for heat-resistant steel connecting pipe shell

Also Published As

Publication number Publication date
JPS5739128A (en) 1982-03-04

Similar Documents

Publication Publication Date Title
KR100828276B1 (en) Carbo-nitrided case hardened martensitic stainless steels
JPS61236923A (en) Rolling element bearing member
JP2005531694A (en) Surface modified stainless steel
JPH059507B2 (en)
EP3190199B1 (en) Non-tempered soft-nitrided component
JPS6028884B2 (en) Method for manufacturing heat-resistant tooth-shaped cutter bits
US2920007A (en) Elastic fluid blade with a finegrained surface
JP4752635B2 (en) Method for manufacturing soft nitrided parts
US20050269074A1 (en) Case hardened stainless steel oilfield tool
JP2611984B2 (en) Wire for piston ring
JPH07278759A (en) Austenitic heat resistant cast steel, excellent in strength at high temperature and machinability, and exhaust system parts made thereof
US3071981A (en) Roller for transmission chain and the method of producing said roller
US4124413A (en) Wear and pitting resistant cast iron
JP3743226B2 (en) Martensitic stainless steel for downhole materials
JPS5916948A (en) Soft-nitriding steel
US10450635B2 (en) High strength and high corrosion-resistance nickle-based alloy with superior hot forgeability
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
JP4307329B2 (en) Piston ring wire and piston ring
JPS6040504B2 (en) Resistance alloy soft chamber steel with excellent machinability
Hwang et al. Effects of surface hardening and residual stress on the fatigue characteristics of nitrided SACM 645 steel
JPH08165556A (en) Production of pitting resisting soft-nitrided gear
RU2509162C1 (en) Process of making parts from steel castings
US4710244A (en) Dredger teeth
KR930006291B1 (en) Manufacture of sliding member made or cast iron
JP6953871B2 (en) Carburized parts and carburized nitride parts