JP2020533490A - Methods for manufacturing cold drawn wire - Google Patents

Methods for manufacturing cold drawn wire Download PDF

Info

Publication number
JP2020533490A
JP2020533490A JP2020535291A JP2020535291A JP2020533490A JP 2020533490 A JP2020533490 A JP 2020533490A JP 2020535291 A JP2020535291 A JP 2020535291A JP 2020535291 A JP2020535291 A JP 2020535291A JP 2020533490 A JP2020533490 A JP 2020533490A
Authority
JP
Japan
Prior art keywords
esr
wire
molten metal
melt
bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020535291A
Other languages
Japanese (ja)
Inventor
レッフロート、ペーテル
トゥーレブルン、ダービド
ピーテルス、ヤーン
エリックソン、ウーラ
Original Assignee
スズキ ガルフィタン アクチエボラグ
スズキ ガルフィタン アクチエボラグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スズキ ガルフィタン アクチエボラグ, スズキ ガルフィタン アクチエボラグ filed Critical スズキ ガルフィタン アクチエボラグ
Publication of JP2020533490A publication Critical patent/JP2020533490A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/12Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • B22F2009/0852Electroslag melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

粒子冶金用スチールから冷間引抜きされたワイヤを製造するための方法であって、重量%で、C 0.03〜0.15、Si 0.01〜1.2、Mn 0.1〜1.5、Cr 15〜20、Ni 5〜10、Al 0.5〜1.5、任意にはN、P、S、Cu、Co、W、Mo、Nb、Ti、Zr、TA、B、Be、Bi、Se、Mg、Ca、Hf、V、およびREMの群から選択される最大2つの元素を含む溶融金属のバルクの調製工程;金属粉末を提供するためにエレクトロスラグ精錬およびアトマイズ化を使用する工程、金属粉末でカプセルの充填および封入する工程;十分な密度のビレットを提供するためにカプセルを圧縮成形する工程;ビレットを熱間加工し、およびワイヤ圧延により仕上げを行う工程;少なくとも30%のエリア減少を有するアニールされたワイヤを冷間引抜きする工程を含む方法。A method for producing a wire cold drawn from a steel for particle metallurgy, in which the weight is C 0.03 to 0.15, Si 0.01 to 1.2, Mn 0.1 to 1. 5, Cr 15 to 20, Ni 5 to 10, Al 0.5 to 1.5, optionally N, P, S, Cu, Co, W, Mo, Nb, Ti, Zr, TA, B, Be, The process of preparing a bulk of a molten metal containing up to two elements selected from the group Bi, Se, Mg, Ca, Hf, V, and REM; using electroslag refining and atomization to provide the metal powder. Steps, filling and encapsulating capsules with metal powder; compression molding of capsules to provide billets of sufficient density; hot working of billets and finishing by wire rolling; at least 30% A method comprising the step of cold drawing an annealed wire having area reduction.

Description

本発明は、析出硬化可能な、特には17−7PHと称される種類の、ステンレススチールの冷間引抜きワイヤおよびワイヤばねを製造するための方法に関する。 The present invention relates to methods for making cold drawn wires and wire springs of stainless steel that are precipitation harden, especially of the type referred to as 17-7 PH.

約17%のCr、約7%のNi、および任意の析出硬化元素、通常はAlを含む硬化系ステンレスは、1940年代に開発された。それは、非特許文献1に開示されている。この文献においてすでに、ばねのための材料としては鋼の適切性が提案されていた。良好な腐食抵抗性と組み合わされた良好なばね特性が、鋼を腐食性環境下におけるばね材料として広く使用されている。この種の環境は、ディーゼルエンジンのための、より具体的にはターボディーゼルエンジンのための噴射ポンプである。この目的のために使用されるばねは、ばねの非常に高い耐疲労特性と組み合わされた、良好な腐食抵抗性(これは17−7PH鋼が有している)を有していなければならない。 Hardened stainless steels containing about 17% Cr, about 7% Ni, and any precipitation hardening element, usually Al, were developed in the 1940s. It is disclosed in Non-Patent Document 1. Already in this document, the suitability of steel as a material for springs has been proposed. Good spring properties combined with good corrosion resistance make steel widely used as a spring material in corrosive environments. This type of environment is an injection pump for diesel engines, more specifically for turbo diesel engines. The springs used for this purpose must have good corrosion resistance, which is what 17-7PH steel has, combined with the very high fatigue resistance of the spring.

耐疲労特性は、ばねワイヤの表面に高度に依存する。ばねが高い耐疲労特性をもつためには、ワイヤは疲労破壊を生じさせ得るいかなる目に見える欠陥をも有していないべきである。表面層は、いかなる大きなスラグ巻き込みまたはより小さなスラグ巻き込みの広い範囲の堆積を含む大きなゾーン(これらもまた破壊を生じさせ得る)をもまた含むべきではない。 Fatigue resistance is highly dependent on the surface of the spring wire. In order for the spring to have high fatigue resistance properties, the wire should not have any visible defects that could cause fatigue failure. The surface layer should also not contain large zones (which can also cause destruction) containing a wide range of deposits of any large slag entrainment or smaller slag entrainment.

特許文献1は、冷間引抜きワイヤを製造するための方法を開示しており、ここで、鋳鋼は再溶融されそしてESR処理へと付される。ESRインゴットは熱間加工され、線材圧延によって仕上げられる。圧延された線材は酸洗されそして冷間引抜される。ESR処理は、大きなスラグ巻き込みおよびより小さなスラグ巻き込みの広い範囲の堆積を含む大きなゾーンを避けるために行われる。これは、従前のプロセスと比較して大きな改良であった。 Patent Document 1 discloses a method for producing a cold drawn wire, where the cast steel is remelted and subjected to ESR treatment. The ESR ingot is hot worked and finished by rolling wire. The rolled wire is pickled and cold drawn. The ESR treatment is performed to avoid large zones containing large slag entrainment and widespread deposition of smaller slag entrainment. This was a major improvement over the previous process.

米国特許第6,383,316号明細書U.S. Pat. No. 6,383,316

The Iron Age, March 1950, pp79-83The Iron Age, March 1950, pp79-83

本発明は、17−7PHばねワイヤおよびワイヤばねを製造するための新規の経路を提案するものである。新規の経路は、インゴットを提供するための溶融金属のバルクを鋳造すること、ESR溶融物を提供するためにインゴットをエレクトロスラグ精錬すること、金属粉末を提供するためにESR溶融物をアトマイズ化すること、粉末をビレットへと熱間静水圧プレスすること、およびビレットをワイヤへと加工すること、を含む。この新しい手順は、巻き込みのサイズをさらに低減する。さらに、より小さなスラグ巻き込みの広い範囲の堆積を含む大きなゾーンを本質的に除去する。 The present invention proposes novel routes for manufacturing 17-7PH spring wires and wire springs. New routes are casting bulk of molten metal to provide ingots, electroslag refining ingots to provide ESR melts, atomizing ESR melts to provide metal powders. This includes hot hydrostatic pressing of the powder into billets and processing of billets into wires. This new procedure further reduces the size of entrainment. In addition, it essentially eliminates large zones containing a wide range of deposits with smaller slag involvement.

より具体的には、本方法は、溶融金属のバルクの調製を含み、ここで、溶融金属は、重量%で、

Figure 2020533490
任意には、
N、P、S、Cu、Co、W、Mo、Nb、Ti、Zr、TA、B、Be、Bi、Se、Mg、Ca、Hf、V、REMの群から選択される最大2つの元素、および
不純物を除いて残部がFe
を含む。 More specifically, the method comprises the preparation of a bulk of the molten metal, wherein the molten metal is by weight%.
Figure 2020533490
Optionally,
Up to two elements selected from the group of N, P, S, Cu, Co, W, Mo, Nb, Ti, Zr, TA, B, Be, Bi, Se, Mg, Ca, Hf, V, REM, And the rest is Fe except for impurities
including.

本発明の一実施形態において、スチールは、好ましくは0.005〜0.15重量%、より好ましくは0.01〜0.15重量%の少量のNで意図的に合金化される。スチールは、また、少量のTi、VまたはNbで意図的に合金化されていてもよい。
好ましくは、重量%で、

Figure 2020533490
である。
好ましくは、Ti、VまたはNbの総量は、0.01〜0.2重量%までに限定される。
好ましくは、任意の元素は重量%で、
Figure 2020533490
に限定される。
REMは、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Y、Tb、Dy、Ho、Er、Tm、Yb、およびLuの元素のうち少なくとも一つを含む。 In one embodiment of the invention, the steel is deliberately alloyed with a small amount of N, preferably 0.005 to 0.15% by weight, more preferably 0.01 to 0.15% by weight. The steel may also be deliberately alloyed with a small amount of Ti, V or Nb.
Preferably by weight
Figure 2020533490
Is.
Preferably, the total amount of Ti, V or Nb is limited to 0.01-0.2% by weight.
Preferably, any element is by weight%
Figure 2020533490
Limited to.
REM contains at least one of the elements Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Y, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

溶融金属のバルクは、インゴットの形に、または、好ましくは、カットアップされるストランドに鋳造される。インゴットまたはカットアップされたストランドは、その後、好ましくは電極の形に熱間加工された後に、エレクトロスラグ精錬、いわゆるESR再溶融される。 The bulk of the molten metal is cast in the form of an ingot, or preferably into a strand that is cut up. The ingot or cut-up strands are then hot-worked, preferably in the form of electrodes, and then electroslag refined, so-called ESR remelted.

ESRは、エレクトロスラグ精錬の略であり、また、エレクトロスラグ再溶融とも称される。ESR処理において、公知の技術にしたがって使用され、および、ESR再溶融プロセスにおいては溶融物を形成し、液滴が下部にある溶融金属の池へとスラグ溶融物を介して沈むように、再溶融される電極が液滴に溶融されている、従来のスラグ混合物、ESR溶融物が使用され得る。例えば、公知であるスラグ混合物であり、約30%のCaF2、CaO、およびAl23のそれぞれおよび通常、石灰留分中の一定の量のMgOおよび1%〜数%のSiO2を含むスラグ混合物が使用され得る。 ESR is an abbreviation for electroslag refining and is also referred to as electroslag remelting. Used according to known techniques in the ESR process, and in the ESR remelting process it forms a melt and is remelted so that the droplets sink through the slag melt into the underlying molten metal pond. Conventional slag mixtures, ESR melts, in which the electrodes are melted into droplets can be used. For example, a known slag mixture containing about 30% CaF 2 , CaO, and Al 2 O 3 respectively and usually a constant amount of MgO and 1% to a few% SiO 2 in the lime fraction. A slag mixture can be used.

本発明にしたがって、溶解電極が様々なサイズのスラグ巻き込みを含むステンレス17−7PH鋼からなる場合、ESR溶融物は、再溶融操作の前と異なるスラグイメージを得るであろう。再溶融操作の前にスチール中に存在しているより大きいスラグ粒子のためのスクリーンとしてESRスラグが機能しているようである。少なくとも、これは、ばねワイヤの疲労強度に対する有害な効果をもつことが証明されたスラグ、すなわちCaO、Al23およびMgOの型のスラグにとっては真実であるようである。より小さなスラグ巻き込みはより均一に分布されおよびスラグ堆積の可能なゾーンはより小さく、したがってより無害になる一方、この種類のより小さなスラグ巻き込みの再溶融された材料中での量は、低い程度にしか影響を受けない。 According to the present invention, if the melting electrode is made of stainless 17-7PH steel with slag entrainment of various sizes, the ESR melt will obtain a different slag image than before the remelt operation. The ESR slag appears to function as a screen for the larger slag particles present in the steel prior to the remelt operation. At the very least, this seems to be true for slags of the CaO, Al 2 O 3 and MgO types that have proven to have a detrimental effect on the fatigue strength of spring wires. While smaller slag entrainments are more evenly distributed and possible zones of slag deposition are smaller and therefore more harmless, the amount of smaller slag entrainments of this type in the remelted material is to a lesser extent. Only affected.

ESR再溶融操作のあいだ、溶融金属の最初の調製に関連して添加されたアルミニウムの一定量が失われ得る。したがって、ESR再溶融操作に関連して、より多くのアルミニウムが損失を埋めるために溶融池に供給されるべきであり、これによってESR再溶融操作後に得られるESR溶融物は0.5〜1.5Alを含むであろう。 During the ESR remelt operation, a certain amount of aluminum added in connection with the initial preparation of the molten metal can be lost. Therefore, in connection with the ESR remelt operation, more aluminum should be supplied to the molten pool to fill the loss, which results in an ESR melt obtained after the ESR remelt operation of 0.5-1. Will contain 5Al.

ESR溶融物は、金属粉末を提供するためにアトマイズ化される。アトマイズ化は、好ましくは、ガスアトマイズによる。ガスアトマイズ化は、窒素および/またはアルゴンガスのジェットにより行われ得る。 The ESR melt is atomized to provide a metal powder. Atomization is preferably by gas atomization. Gas atomization can be done with a jet of nitrogen and / or argon gas.

ESR溶融物は好ましくは、液体金属が炉の底部のドレインを介して炉の下のアトマイジングチャンバーへと排出される種類の溶融炉で調製される。例えば、ALD Vacuum technologies GMBH製のESR−CIGを用いて、ただしスプレー形成の代わりに金属粉末を提供するためにアトマイズ化が行われる。 The ESR melt is preferably prepared in a type of melting furnace in which the liquid metal is discharged through the drain at the bottom of the furnace into the atomizing chamber below the furnace. For example, ESR-CIG manufactured by ALD Vacum technologies GMBH is used, but atomized to provide a metal powder instead of spray formation.

代替的には、ESR溶融物は、溶融物を空気に触れさせることなく、ここに参照によって組み込まれる国際公開第2013/129996号に記載される種類の溶融炉へと運ばれてもよい。このような種類の炉では、液体金属がまた、炉の底部のドレインを介して炉の下のアトマイジングチャンバーへと排出される。炉中のESR溶融物は、不活性ガス、真空、または溶融物の表面を覆うスラグによって保護され得る。 Alternatively, the ESR melt may be transported to a melting furnace of the type described in WO 2013/129996 incorporated herein by reference without exposing the melt to air. In these types of furnaces, liquid metal is also discharged through the drain at the bottom of the furnace into the atomizing chamber below the furnace. The ESR melt in the furnace can be protected by an inert gas, vacuum, or slag over the surface of the melt.

代替的には、傾斜可能なESR炉および別個のタンディッシュが設けられていてもよく、この両方は、保護的環境を含む封入チャンバー中に備えられている。アトマイズ化チャンバーはタンディッシュの下に備えられる。また、この炉およびタンディッシュの組み合わせにおいて、溶融金属の酸素への曝露は最小限にされる。 Alternatively, a tiltable ESR furnace and a separate tundish may be provided, both of which are provided in an encapsulation chamber containing a protective environment. The atomizing chamber is provided under the tundish. Also, in this furnace and tundish combination, exposure of the molten metal to oxygen is minimized.

アトマイズ化の後、アトマイズされた粉末は、好ましくは再酸化を避けるために保護的環境下で冷却される。任意には、アトマイズ化された粉末は、所望の粉末寸法にふるい分けられ得る。例えば、最大で250μmなどである。 After atomization, the atomized powder is preferably cooled in a protective environment to avoid reoxidation. Optionally, the atomized powder can be screened to the desired powder size. For example, the maximum is 250 μm.

カプセルが金属粉末で充填される。充填後、カプセルは封入される、カプセルはその後、任意には、例えばAsea QI 100などの冷間静水圧プレスで、少なくとも1000bar、好ましくは約4000barの圧力で圧縮成形される。カプセルは、その後、任意には、前加熱炉に静置され、ここで、外的に圧力が加えられることなく、温度が900〜1250℃、例えば1130℃へと段階的に上昇される。カプセルはその後、例えばHIPen Asea QI 80などの熱間静水圧プレスへと移動され、ここで、少なくとも500barを越える、例えば1000barの圧力が、900〜1250℃、例えば1150℃の温度で適用される。熱間静水圧プレスでのカプセルの圧縮成形は、十分な密度のビレットを提供する。好ましくは、温度は、材料が液相の存在なく固化されるように制御される。冷間静水圧プレス工程およびそれに続く前加熱工程は主に、経済的理由からプロセスに使用され、ならびに、事前の冷間プレスまたは前加熱なしに封入されたカプセルを直接、熱間静水圧プレスへと移動させることもおそらくできるであろう。 The capsule is filled with metal powder. After filling, the capsule is encapsulated, the capsule is then compression molded, optionally in a cold hydrostatic press such as Asia QI 100, at a pressure of at least 1000 bar, preferably about 4000 bar. The capsule is then optionally placed in a preheating furnace, where the temperature is stepped up to 900-1250 ° C., eg 1130 ° C., without external pressure. The capsules are then transferred to a hot hydrostatic press, such as the HI Pen Asia QI 80, where a pressure of at least 500 bar, eg 1000 bar, is applied at a temperature of 900-1250 ° C, eg 1150 ° C. Compression molding of capsules in a hot hydrostatic press provides a sufficiently dense billet. Preferably, the temperature is controlled so that the material solidifies in the absence of a liquid phase. The cold hydrostatic press process and subsequent preheating steps are mainly used in the process for economic reasons, and the encapsulated capsules directly to the hot hydrostatic press without prior cold pressing or preheating. You can probably move it.

熱間静水圧プレスからのビレットは、その後、すり砕かれるロッドへと熱間加工されおよびワイヤへと熱間圧延される。ワイヤへと熱間圧延されたワイヤは、その後、機械的脱スケール化および/または化学的脱スケール化(酸洗)によって脱スケール化される。 Billets from a hot hydrostatic press are then hot-worked into ground rods and hot-rolled into wires. The wire hot-rolled into wire is then descaled by mechanical descaling and / or chemical descaling (pickling).

脱スケール化されたワイヤは、その後、0.5〜2時間のあいだ、900〜1000℃の範囲の温度でアニーリングされる。アニールされたワイヤは、冷間引抜きされ、少なくとも30%エリア減少を有している。 The descaled wire is then annealed at a temperature in the range 900-1000 ° C. for 0.5-2 hours. The annealed wire is cold drawn and has an area reduction of at least 30%.

冷間引抜きされたワイヤは、ばねに、好ましくはらせん状の形状のばねに巻かれる。ばねは、0.5〜2時間のあいだ、450〜500℃の温度で適宜、析出硬化され、その後、空気中で冷却される。 The cold drawn wire is wound around a spring, preferably a spirally shaped spring. The springs are appropriately precipitation hardened at a temperature of 450 to 500 ° C. for 0.5 to 2 hours and then cooled in air.

完成されたばねにおける材料の構造は、マルテンサイト中にアルミニウムおよびニッケルの、好ましくはAlNi3の析出相を含む50〜70体積%の焼戻しマルテンサイト、ならびに、残部としてオーステナイトおよび最大5%のδ−フェライトを含む。 The structure of the material in the finished spring is 50-70% by volume tempered martensite containing a precipitated phase of aluminum and nickel, preferably AlNi 3 in martensite, as well as austenite as the balance and up to 5% δ-ferrite. including.

冷間引抜きされたばねワイヤの断面形状は、円形であってもよい。しかしながら、本発明はこのような断面を有するワイヤに限定される訳ではなく、らせん状の形状に巻かれる完成されたばねにおいてより好ましい張力の分布をもたらし得る他の形状を有するワイヤ、すなわち、楕円形の断面を有するワイヤにも適用され得る。矩形の断面もまた想定され得る。 The cross-sectional shape of the cold drawn spring wire may be circular. However, the present invention is not limited to wires having such a cross section, but wires having other shapes that can provide a more favorable tension distribution in a finished spring wound in a spiral shape, i.e. oval. It can also be applied to wires having a cross section of. A rectangular cross section can also be envisioned.

本発明の変形にしたがい、新規の経路は、金属粉末を提供するために溶融金属のバルクをアトマイズ化すること、粉末をビレットへと熱間静水圧プレスすること、および、ビレットをワイヤへと加工することを含み、粒子冶金用スチールから冷間引抜きされたワイヤを製造するための方法であって、以下の工程:
重量%で、

Figure 2020533490
任意には、
N、P、S、Cu、Co、W、Mo、Nb、Ti、Zr、TA、B、Be、Bi、Se、Mg、Ca、Hf、V、およびREMの群から選択される最大2つの元素、および
不純物を除いて残部がFe
を含む溶融金属のバルクの調製;
溶融金属のアトマイズ化およびそれによって金属粉末を提供すること;
金属粉末を用いたカプセルの充填;
カプセルの封入;
任意には、冷間静水圧プレスによる該カプセルの圧縮成形;
任意には、該カプセルの前加熱;
十分な密度のビレットを提供するための、熱間静水圧プレスによるカプセルの圧縮成形;
ビレットの熱間加工およびワイヤ圧延による仕上げ;
得られた圧延ワイヤの脱スケール化;
脱スケール化されたワイヤのアニーリング;および
少なくとも30%のエリア減少を有するアニールされたワイヤの冷間引抜き
を含む方法を提供する。 Following a variant of the invention, the novel pathways are atomizing the bulk of the molten metal to provide a metal powder, hot hydrostatic pressing of the powder into billets, and processing of billets into wires. A method for producing cold drawn wire from particle metallurgical steel, including the following steps:
By weight%
Figure 2020533490
Optionally,
Up to two elements selected from the group N, P, S, Cu, Co, W, Mo, Nb, Ti, Zr, TA, B, Be, Bi, Se, Mg, Ca, Hf, V, and REM. , And the rest is Fe except for impurities
Preparation of bulk of molten metal containing;
Atomizing molten metal and thereby providing metal powder;
Filling capsules with metal powder;
Encapsulation;
Optionally, compression molding of the capsule by a cold hydrostatic press;
Optionally, preheating the capsule;
Compression molding of capsules by hot hydrostatic press to provide billets of sufficient density;
Hot working of billets and finishing by wire rolling;
Descaling of the obtained rolled wire;
Descaling wire annealing; and methods including cold drawing of annealed wire with an area reduction of at least 30% are provided.

より具体的には、本方法は、溶融金属のバルクの調製を含み、ここで、溶融金属は、重量%で、

Figure 2020533490
任意には、
N、P、S、Cu、Co、W、Mo、Nb、Ti、Zr、T、B、Be、Bi、Se、Mg、Ca、Hf、V、REMの群から選択される最大2つの元素、および
不純物を除いて残部がFe
を含む。 More specifically, the method comprises the preparation of a bulk of the molten metal, wherein the molten metal is by weight%.
Figure 2020533490
Optionally,
Up to two elements selected from the group N, P, S, Cu, Co, W, Mo, Nb, Ti, Zr, Ta , B, Be, Bi, Se, Mg, Ca, Hf, V, REM , And the rest is Fe except for impurities
including.

本発明の変形にしたがい、新規の経路は、金属粉末を提供するために溶融金属のバルクをアトマイズ化すること、粉末をビレットへと熱間静水圧プレスすること、および、ビレットをワイヤへと加工することを含み、粒子冶金用スチールから冷間引抜きされたワイヤを製造するための方法であって、以下の工程:
重量%で、

Figure 2020533490
任意には、
N、P、S、Cu、Co、W、Mo、Nb、Ti、Zr、T、B、Be、Bi、Se、Mg、Ca、Hf、V、およびREMの群から選択される最大2つの元素、および
不純物を除いて残部がFe
を含む溶融金属のバルクの調製;
溶融金属のアトマイズ化およびそれによって金属粉末を提供すること;
金属粉末を用いたカプセルの充填;
カプセルの封入;
任意には、冷間静水圧プレスによる該カプセルの圧縮成形;
任意には、該カプセルの前加熱;
十分な密度のビレットを提供するための、熱間静水圧プレスによるカプセルの圧縮成形;
ビレットの熱間加工およびワイヤ圧延による仕上げ;
得られた圧延ワイヤの脱スケール化;
脱スケール化されたワイヤのアニーリング;および
少なくとも30%のエリア減少を有するアニールされたワイヤの冷間引抜き
を含む方法を提供する。 Following a variant of the invention, the novel pathways are atomizing the bulk of the molten metal to provide a metal powder, hot hydrostatic pressing of the powder into billets, and processing of billets into wires. A method for producing cold drawn wire from particle metallurgical steel, including the following steps:
By weight%
Figure 2020533490
Optionally,
Up to two selected from the group N, P, S, Cu, Co, W, Mo, Nb, Ti, Zr, Ta , B, Be, Bi, Se, Mg, Ca, Hf, V, and REM. The rest is Fe except for elements and impurities
Preparation of bulk of molten metal containing;
Atomizing molten metal and thereby providing metal powder;
Filling capsules with metal powder;
Encapsulation;
Optionally, compression molding of the capsule by a cold hydrostatic press;
Optionally, preheating the capsule;
Compression molding of capsules by hot hydrostatic press to provide billets of sufficient density;
Hot working of billets and finishing by wire rolling;
Descaling of the obtained rolled wire;
Descaling wire annealing; and methods including cold drawing of annealed wire with an area reduction of at least 30% are provided.

Claims (7)

粒子冶金用スチールから冷間引抜きされたワイヤを製造するための方法であって、以下の工程:
重量%で、
Figure 2020533490
任意には、
N、P、S、Cu、Co、W、Mo、Nb、Ti、Zr、TA、B、Be、Bi、Se、Mg、Ca、Hf、V、およびREMの群から選択される最大2つの元素、および
不純物を除いて残部がFe
を含む溶融金属のバルクの調製工程;
前記調製された溶融金属を、インゴットの形に、または、好ましくは、カットアップされるストランドに鋳造する工程;
前記インゴットまたはカットアップストランドの、好ましくは電極の形に熱間加工された後の、エレクトロスラグ精錬、いわゆるESR再溶融する工程であって、ESR溶融物を提供する、または、ESRインゴットの形成および前記ESRインゴットを再溶融するための工程;
前記ESR溶融物をアトマイズ化し、およびそれによって金属粉末を提供する工程;
金属粉末を用いてカプセルを充填する工程;
カプセルを封入する工程;
任意には、冷間静水圧プレスにより前記カプセルを圧縮成形する工程;
任意には、前記カプセルを前加熱する工程;
十分な密度のビレットを提供するために熱間静水圧プレスにより前記カプセルを圧縮成形する工程;
前記ビレットを熱間加工し、およびワイヤ圧延により仕上げを行う工程;
得られた圧延ワイヤを脱スケール化する工程;
前記脱スケール化されたワイヤをアニーリングする工程;および
少なくとも30%のエリア減少を有するアニールされたワイヤを冷間引抜きする工程
を含む方法。
A method for producing cold drawn wire from particle metallurgical steel, the following steps:
By weight%
Figure 2020533490
Optionally,
Up to two elements selected from the group N, P, S, Cu, Co, W, Mo, Nb, Ti, Zr, TA, B, Be, Bi, Se, Mg, Ca, Hf, V, and REM. , And the rest is Fe except for impurities
Bulk preparation process of molten metal containing
The step of casting the prepared molten metal in the form of an ingot, or preferably into a cut-up strand;
Electroslag refining, a so-called ESR remelting step after hot working of the ingot or cut-up strand, preferably in the form of an electrode, to provide an ESR melt or to form an ESR ingot and Steps for remelting the ESR ingot;
The step of atomizing the ESR melt and thereby providing a metal powder;
The process of filling capsules with metal powder;
The process of encapsulating the capsule;
Optionally, a step of compression molding the capsule by a cold hydrostatic press;
Optionally, a step of preheating the capsule;
The step of compression molding the capsule with a hot hydrostatic press to provide a billet of sufficient density;
The process of hot-working the billet and finishing by wire rolling;
Step of descaling the obtained rolled wire;
A method comprising the step of annealing the descaled wire; and the step of cold drawing the annealed wire having an area reduction of at least 30%.
前記溶融金属のバルクが、重量%で、
N 0.005〜0.15.好ましくは、0.01〜0.15
を含む請求項1記載の方法。
The bulk of the molten metal is by weight%
N 0.005-0.15. Preferably 0.01 to 0.15
The method according to claim 1.
前記溶融金属のバルクが、重量%で、
Figure 2020533490
を含む請求項1記載の方法。
The bulk of the molten metal is by weight%
Figure 2020533490
The method according to claim 1.
前記溶融金属のバルクが、以下の元素:
Figure 2020533490
のうちの少なくとも一つを含み、および
以下の条件:
Figure 2020533490
を満たす請求項1〜3のいずれか1項に記載の方法。
The bulk of the molten metal is the following elements:
Figure 2020533490
Including at least one of, and the following conditions:
Figure 2020533490
The method according to any one of claims 1 to 3.
ESR炉の下のアトマイジングチャンバーで前記ESR溶融物をアトマイズ化する工程をさらに含む請求項1〜4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, further comprising a step of atomizing the ESR melt in an atomizing chamber under an ESR furnace. 前記再溶融されたESRインゴットを、不活性ガス、真空中で、または溶融物の表面を覆うスラグによって保護する工程;
溶融物を含む炉の底部のドレインを介してアトマイジングチャンバーへと液体金属を排出することにより前記再溶融されたESRインゴットをアトマイズ化する工程
をさらに含む請求項1〜4のいずれか1項に記載の方法。
The step of protecting the remelted ESR ingot with an inert gas, in vacuum, or with a slag covering the surface of the melt;
One of claims 1 to 4, further comprising a step of atomizing the remelted ESR ingot by discharging the liquid metal into the atomizing chamber through a drain at the bottom of the furnace containing the melt. The method described.
請求項1〜6のいずれか1項に記載の方法により冷間引抜きされたワイヤを製造する工程;
前記冷間引抜きされたワイヤから、好ましくはらせん状の形状にばねを巻く工程;
好ましくは0.5〜2時間のあいだ、450〜500℃の温度で、ばねを析出硬化する工程
を含むばねを製造するための方法。
A step of manufacturing a cold drawn wire by the method according to any one of claims 1 to 6.
A step of winding a spring from the cold drawn wire into a preferably spiral shape;
A method for producing a spring comprising the step of precipitation hardening the spring, preferably at a temperature of 450-500 ° C. for 0.5-2 hours.
JP2020535291A 2017-09-07 2017-09-07 Methods for manufacturing cold drawn wire Pending JP2020533490A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/072511 WO2019048047A1 (en) 2017-09-07 2017-09-07 Method of producing a cold drawn wire

Publications (1)

Publication Number Publication Date
JP2020533490A true JP2020533490A (en) 2020-11-19

Family

ID=59799397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020535291A Pending JP2020533490A (en) 2017-09-07 2017-09-07 Methods for manufacturing cold drawn wire

Country Status (5)

Country Link
US (1) US20210032719A1 (en)
EP (1) EP3679168A1 (en)
JP (1) JP2020533490A (en)
CN (1) CN111315905A (en)
WO (1) WO2019048047A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112226594B (en) * 2020-10-19 2022-06-07 江苏永钢集团有限公司 Production method for reducing abnormal 50CrV tissue

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04311506A (en) * 1991-04-08 1992-11-04 Hitachi Metals Ltd Wire rod for piston ring
JPH0525591A (en) * 1991-07-16 1993-02-02 Hitachi Metals Ltd Wire for piston ring and its manufacture
JP2002508443A (en) * 1997-12-17 2002-03-19 ハルーデックス ガーフィッタン アクチエボラグ Cold drawn wire and method of making such wire
JP2003513167A (en) * 1999-10-22 2003-04-08 シーアールエス ホールディングス,インコーポレイテッド High strength stainless steel that can be cut

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028884B2 (en) * 1980-08-15 1985-07-08 株式会社利根ボ−リング Method for manufacturing heat-resistant tooth-shaped cutter bits
JP3245781B2 (en) * 1992-10-06 2002-01-15 大同特殊鋼株式会社 Stainless steel for single wire drawing and its manufacturing method
US5649993A (en) * 1995-10-02 1997-07-22 General Electric Company Methods of recycling oversray powder during spray forming
US8808472B2 (en) * 2000-12-11 2014-08-19 Uddeholms Ab Steel alloy, holders and holder details for plastic moulding tools, and tough hardened blanks for holders and holder details
CN1740350A (en) * 2005-09-16 2006-03-01 浙江工业大学 The laser reinforcing process of the intake side of turbine vane
EP2334456B1 (en) * 2008-09-12 2012-05-09 L. Klein AG Free-machining powder metallurgy lead-free steel articles and method of making same
JP2013044046A (en) * 2011-08-26 2013-03-04 Daido Steel Co Ltd Method for manufacturing high-clean steel
JP2015513613A (en) 2012-02-29 2015-05-14 エラスティール,クロスター,エイビー Metal spray powdering system and method for spray manufacturing metal powder
CN103276302A (en) * 2013-06-14 2013-09-04 兰州理工大学 High-alumina 17-7 PH stainless steel and preparation method thereof
EP3161174B1 (en) * 2014-06-27 2018-06-06 Nuovo Pignone S.r.l. Component of a turbomachine, turbomachine and process for making the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04311506A (en) * 1991-04-08 1992-11-04 Hitachi Metals Ltd Wire rod for piston ring
JPH0525591A (en) * 1991-07-16 1993-02-02 Hitachi Metals Ltd Wire for piston ring and its manufacture
JP2002508443A (en) * 1997-12-17 2002-03-19 ハルーデックス ガーフィッタン アクチエボラグ Cold drawn wire and method of making such wire
JP2003513167A (en) * 1999-10-22 2003-04-08 シーアールエス ホールディングス,インコーポレイテッド High strength stainless steel that can be cut

Also Published As

Publication number Publication date
WO2019048047A1 (en) 2019-03-14
CN111315905A (en) 2020-06-19
US20210032719A1 (en) 2021-02-04
EP3679168A1 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
EP3441497B1 (en) Lightweight steel sheet with enhanced elastic modulus, and manufacturing method thereof
SE539732C2 (en) Method of producing a cold drawn wire
JP2004514060A5 (en)
WO1998045493A1 (en) Composite work roll for cold rolling
CN104178697A (en) High-temperature-resistant aseismic reinforcement and production method thereof
JPH08506143A (en) Engineering Ferras Metals
JP2020533490A (en) Methods for manufacturing cold drawn wire
JPWO2018042749A1 (en) Die casting sleeve and method of manufacturing the same
KR100571438B1 (en) Cold drawn wire and manufacturing method thereof
EP2465964B1 (en) Hadfield steel with Hafnium
JP6788611B2 (en) Mold flux, continuous casting method using it, and slabs produced by this
CN110541121A (en) Non-magnetic steel and processing method thereof
JP3751433B2 (en) High-speed cast iron material with excellent wear resistance at high temperatures
JP2003027109A (en) Method for producing oxide dispersion type alloy
JP6809243B2 (en) Continuously cast steel slabs and their manufacturing methods
JP2525961B2 (en) Manufacturing method of high toughness seamless steel pipe with fine grain structure
US5405460A (en) Fe-Cr-Al alloy steel sheet and process for producing the same
RU2415183C1 (en) Procedure for fabrication of forged pieces of low carbon ferrite-pearlite steels
SE1650299A1 (en) Method of producing a cold drawn wire
JP3277638B2 (en) Wear-resistant composite rolls for rolling section steel
JPS6320412A (en) Hot working method for austenitic stainless steel containing mo and n
KR20210037114A (en) Ingot manufacturing method using electro slag remelting process and manufacturing method of mold steel for high clean die casting using the same
CN115637379B (en) High-carbon alloy and preparation method thereof
JP2020509225A (en) High Strength Austenitic Corrosion Resistant Welded Structural Steel for Cryogenic Use and Manufacturing Method
CN115094294B (en) Self-fluxing high-entropy alloy powder and preparation and application methods thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200605

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211130