JPS6028371B2 - transformer - Google Patents

transformer

Info

Publication number
JPS6028371B2
JPS6028371B2 JP9340778A JP9340778A JPS6028371B2 JP S6028371 B2 JPS6028371 B2 JP S6028371B2 JP 9340778 A JP9340778 A JP 9340778A JP 9340778 A JP9340778 A JP 9340778A JP S6028371 B2 JPS6028371 B2 JP S6028371B2
Authority
JP
Japan
Prior art keywords
winding
tertiary
supplementary
transformer
tertiary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9340778A
Other languages
Japanese (ja)
Other versions
JPS5519891A (en
Inventor
純雄 梅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP9340778A priority Critical patent/JPS6028371B2/en
Publication of JPS5519891A publication Critical patent/JPS5519891A/en
Publication of JPS6028371B2 publication Critical patent/JPS6028371B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

【発明の詳細な説明】 本発明は三次巻線の漏洩インピーダンスが大きくなるよ
うに構成した変圧器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transformer configured such that the leakage impedance of the tertiary winding is increased.

一般に三次巻線を備えた変圧器においては三次巻線の漏
洩インピーダンス(以下インピーダンスと称す)を大き
くすることが要求される。
Generally, in a transformer equipped with a tertiary winding, it is required that the leakage impedance (hereinafter referred to as impedance) of the tertiary winding be increased.

すなわち、特別の考慮を払わずに設計した三次巻線付変
圧器では三次巻線のインピーダンスが4・さくなり勝ち
であり、外部回路の短絡による短絡電流が大きくなって
大容量のしや断器が必要となる。また、三次巻線の容量
は一般に一次、二次巻線の容量に比較して小さいので、
短絡電流により巻線間に働く電磁機械力に対する耐力が
少ない。従って三次巻線に流れる短絡電流を小さくする
必要があり、このため三次巻線のインピーダンスを大き
くすることが要求される。一般に大容量変圧器のインピ
ーダンスはほぼリアクタンス分に等しい。
In other words, in a transformer with a tertiary winding that is designed without special consideration, the impedance of the tertiary winding is likely to be 4.0%, and the short circuit current due to a short circuit in the external circuit becomes large, resulting in a large capacity circuit breaker. Is required. Also, the capacity of the tertiary winding is generally smaller than that of the primary and secondary windings, so
It has little resistance to electromagnetic mechanical force acting between the windings due to short-circuit current. Therefore, it is necessary to reduce the short-circuit current flowing through the tertiary winding, which requires increasing the impedance of the tertiary winding. Generally, the impedance of a large capacity transformer is approximately equal to the reactance.

すなわち、インピーダンスは巻線内および主間隙中に畜
えられる磁気エネルギーに比例い1}式で表わされる。
%Z=%IXのJ欧・dv …・・・{1)
%Z:パーセントインピーダンス%IX:パーセントリ
アクタンス B:巻線および主間隙各部の磁束密度 v:巻線および主間隙各部の体積 ‘1}式で示されるようにインピーダンスを変化させる
には′B2・dvを変化させなければならないが、これ
には磁遠密度Bを主に変化させる方法と、体積vを主に
変化させる方法がある。
That is, impedance is proportional to the magnetic energy stored in the winding and in the main gap and is expressed by the equation 1}.
%Z=%IX JEurope/dv...{1)
%Z: Percent impedance %IX: Percent reactance B: Magnetic flux density at each part of the winding and main gap v: Volume of each part of the winding and main gap '1} To change the impedance as shown by the formula 'B2・dv There are two ways to do this, one is to mainly change the magnetic density B, and the other is to mainly change the volume v.

例えば、第1図aに示す鉄」D4に三次巻線3、こ次巻
線2、一次巻線1を同D状に巻装した変圧器において、
一次巻線1〜二次巻線2間のインピーダンス(一次巻線
1と二次巻線2および主間隙の合計の体積v,2と第1
図bに示す磁束密度に比例する)をある定められた値と
し、二次巻線2〜三次巻線3間のインピーダンス(二次
巻線2と三次巻線3および主間隙の合計の体積載23と
第1図に示す磁束密度に比例する)を大きくしたい場合
、第2図aに示すように、二次巻線2と三次巻線3の主
間隙を絶縁上必要な寸法以上に大きくすることによって
なされるが、しかし変圧器が大型化して不経済となる欠
点がある。また、三次巻線3に限流リアクトルを入れる
場合もあるが、これは限流リアクトルという別製作のも
のを変圧器に取付けねばならないという欠点がある。
For example, in the transformer shown in FIG.
Impedance between the primary winding 1 and the secondary winding 2 (the total volume v of the primary winding 1, the secondary winding 2, and the main gap, 2 and the
The impedance between the secondary winding 2 and the tertiary winding 3 (which is proportional to the magnetic flux density shown in Figure b) is set to a certain value. 23, which is proportional to the magnetic flux density shown in Figure 1), the main gap between the secondary winding 2 and the tertiary winding 3 should be made larger than the required dimension for insulation, as shown in Figure 2 a. However, the disadvantage is that the transformer becomes large and uneconomical. Further, a current limiting reactor may be inserted into the tertiary winding 3, but this has the disadvantage that a separately manufactured current limiting reactor must be attached to the transformer.

本発明は上述の点を考慮したもので、経済的に三次巻線
のインピーダンスを大きくできる変圧器を得ることを目
的とするものである。
The present invention has been made in consideration of the above points, and an object of the present invention is to provide a transformer that can economically increase the impedance of the tertiary winding.

以上本発明の一実施例を図面を参照して説明する。An embodiment of the present invention will be described above with reference to the drawings.

第3図a乃至dにおいて、鉄心4に内側より三次巻線3
、補足巻線5、二次巻線2および一次巻線1を同○状に
巻装する。そして、三次巻線3の一方の端子bと補足巻
線5の一方の端子cとを三次巻線3の誘起電圧を減少さ
せる向きに接続し、三次巻線3の他方の端子aと補足巻
線5の他方の端子dを三次端子a,dとし、三次端子a
,d間の電圧が三次巻線3と補足巻線6の誘起電圧差と
なるように構成する。尚、補足巻線5と二次巻線2との
主間隙は絶縁、冷却上から決まる寸法とする。また三次
巻線3と補足巻線5との主間隙は要求されるインピーダ
ンスになるような寸法を選ぶ。次に上記本発明による変
圧器の作用効果を第2図に示した従来の変圧器と対比さ
せて説明する。
In Figures 3a to 3d, the tertiary winding 3 is attached to the iron core 4 from the inside.
, the supplementary winding 5, the secondary winding 2, and the primary winding 1 are wound in the same circle shape. Then, one terminal b of the tertiary winding 3 and one terminal c of the supplementary winding 5 are connected in a direction that reduces the induced voltage of the tertiary winding 3, and the other terminal a of the tertiary winding 3 and the supplementary winding The other terminal d of the wire 5 is the tertiary terminal a, d, and the tertiary terminal a
, d is configured to be the induced voltage difference between the tertiary winding 3 and the supplementary winding 6. Note that the main gap between the supplementary winding 5 and the secondary winding 2 has a dimension determined from the viewpoint of insulation and cooling. Further, the dimensions of the main gap between the tertiary winding 3 and the supplementary winding 5 are selected so as to provide the required impedance. Next, the effects of the transformer according to the present invention will be explained in comparison with the conventional transformer shown in FIG.

一次巻線1、二次巻線2との主間隙の合計の体積及び第
2図b、第3図bに示す磁束密度を両者とも同一とする
。すなわち、一次巻線1〜二次巻線2間のインピーダン
スを同一とする。第3図aに示す変圧器においては、三
次端子a,d間の電圧Vとし、三次巻線3と補足巻線5
の誘起電圧をそれぞれE3,E5とすると、V=E3一
E5となる。三次巻線3と補足巻線5の主間隙での磁束
密度は第3図cに示すように第2図の場合のE2/E2
−E5倍となり大きくなる。すなわち、第2図と第3図
の二次巻線2〜三次巻線3間のインピーダンスを同一に
した場合、第3図の二次巻線2と三次巻線3との主間隙
の体積は第2図の場合より4・さくすることができる。
同じ事が三次巻線3と一次巻線1間についてもいえる。
従って二次巻線2と一次巻線1の外径寸法が小さくなり
、銅線重量が低減し鉄心寸法、タンク寸法も小さくなる
ので鉄心重量、タンク重量、油量が減少する。
It is assumed that the total volume of the main gap between the primary winding 1 and the secondary winding 2 and the magnetic flux density shown in FIGS. 2b and 3b are the same. That is, the impedance between the primary winding 1 and the secondary winding 2 is made the same. In the transformer shown in Figure 3a, the voltage between the tertiary terminals a and d is V, and the tertiary winding 3 and the supplementary winding 5
If the induced voltages of are respectively E3 and E5, then V=E3-E5. The magnetic flux density at the main gap between the tertiary winding 3 and the supplementary winding 5 is E2/E2 in the case of Figure 2, as shown in Figure 3c.
-E5 times larger. That is, if the impedance between the secondary winding 2 and the tertiary winding 3 in FIGS. 2 and 3 is made the same, the volume of the main gap between the secondary winding 2 and the tertiary winding 3 in FIG. It can be made 4 times smaller than the case in Figure 2.
The same is true between the tertiary winding 3 and the primary winding 1.
Therefore, the outer diameter dimensions of the secondary winding 2 and the primary winding 1 are reduced, the weight of the copper wire is reduced, and the dimensions of the iron core and tank are also reduced, so that the weight of the iron core, the weight of the tank, and the amount of oil are reduced.

一方、三次巻線3の容量は耳き弓着となり、補足巻線5
も追加となるが、一般に三次巻線容量は小さく、巻線は
短絡機械力に耐えるためや工作上の要請で余裕のある設
計になっている場合が多いので、銅線重量の増加の割合
は一次巻線1と二次巻線2の銅線重量の減4・量にくら
べて小さい場合が多い。
On the other hand, the capacity of the tertiary winding 3 is the same as that of the tertiary winding 3, and the supplementary winding 5
However, the tertiary winding capacity is generally small, and the winding is often designed with a margin to withstand short-circuit mechanical force or due to manufacturing requirements, so the percentage increase in the weight of the copper wire is This is often smaller than the weight reduction of the copper wire between the primary winding 1 and the secondary winding 2.

従ってコンパクトで安価な三次巻線付変圧器を提供でき
る。また別製作の限流リアクトルも不用となる。さらに
、補足巻線5を一次巻線1、二次巻線2および三次巻線
3の各巻線と同一鉄○4に同D状に配置する構成として
いることから、これら同0配置された各巻線を共通に支
えるようにすることができるので、補足巻線5を設けた
ことにより特別な巻線支え構造を施す必要がなくよりコ
ンパクトな変圧器とすることが可能となる。尚、上記実
施例では三次巻線一二次巻線間と三次巻線−一次巻線間
のインピーダンスを大きくする場合について説明したが
、三次巻線−一次巻線間のインピーダンスだけを大きく
する場合には第4図aに示すように補足巻線5を二次巻
線2と一次巻線1間に配置すればよい。
Therefore, a compact and inexpensive transformer with a tertiary winding can be provided. Also, a separately manufactured current limiting reactor is not required. Furthermore, since the supplementary winding 5 is arranged in the same D shape on the same iron as each of the primary winding 1, secondary winding 2, and tertiary winding 3, each of the windings arranged in the same manner Since the wires can be supported in common, the provision of the supplementary winding 5 eliminates the need for a special winding support structure, making it possible to provide a more compact transformer. In the above embodiment, the case where the impedance between the tertiary winding and the primary winding and between the tertiary winding and the primary winding is increased is explained, but when only the impedance between the tertiary winding and the primary winding is increased For this purpose, the supplementary winding 5 may be placed between the secondary winding 2 and the primary winding 1 as shown in FIG. 4a.

このように構成すれ‘よ、第4図cに示すように、磁束
密度分布が第3図の場合より一層大きくなり、従って一
次巻線1と二次巻線2の外径をより一層小さくすること
ができる。更に第5図aに示すように、補足巻線5を一
次巻線1の外側に配置することができる。
With this configuration, as shown in Figure 4c, the magnetic flux density distribution will be much larger than in the case of Figure 3, and therefore the outer diameters of the primary winding 1 and the secondary winding 2 will be much smaller. be able to. Furthermore, a supplementary winding 5 can be arranged outside the primary winding 1, as shown in FIG. 5a.

このように構成すれば、第5図b,cに示すように磁束
密度分布が一層大きくなる。以上説明したように本発明
によれば、欲心の外周に一次巻線、二次巻線および三次
巻線を同D状に巻装し、かつ三次巻線を最内側に配置し
たものにおいて、上記三次巻線に当該三次巻線の謙起電
圧を減少させるように補足巻線を直列に接続し、かっこ
の補足巻線を上記ミ次巻線の外側にこれと同D状に配置
する構成としたので、三次巻線のインピーダンスを任意
に製作できると共に限流リアクトルを省略することがで
き、総合的に重量および油量の軽減を図ることが可能な
コンパクトで安価な信頼性の高い変圧器が提供できる。
With this configuration, the magnetic flux density distribution becomes even larger as shown in FIGS. 5b and 5c. As explained above, according to the present invention, the primary winding, the secondary winding, and the tertiary winding are wound around the outer periphery of the wire in the same D shape, and the tertiary winding is arranged at the innermost side. A supplementary winding is connected in series to the tertiary winding so as to reduce the electromotive force of the tertiary winding, and the supplementary winding in parentheses is arranged outside the tertiary winding in the same D shape. As a result, the impedance of the tertiary winding can be made arbitrarily, and the current limiting reactor can be omitted, resulting in a compact, inexpensive, and highly reliable transformer that can reduce overall weight and oil consumption. Can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは三次巻線のインピーダンスを特に大きくしな
い一般的な変圧器巻線の配置図、第1図b乃至dはそれ
ぞれ一次巻線と二次巻線間、三次巻線と二次巻線間及び
三次巻線と一次巻線間の磁束密度分布を示す概略図、第
2図aは従来の変圧器における三次巻線のインピーダン
スを大きくした変圧器巻線の配置図、第2図b乃至dは
それぞれ一次巻線間と二次巻線、三次巻線と二次巻線間
及び三次巻線と二次巻線間の磁束密度分布を示す概略図
、第3図aは本発明による変圧器の一実施例を示す巻線
の配置図、第3図b乃至dはそれぞれ一次巻線と二次巻
線間、三次巻線と二次巻線間及び三次巻線と一次巻線間
の磁束密度を示す概略図、第4図aは本発明の他の実施
例を示す巻線配置図、第4図b乃至dはそれぞれ一次巻
線と二次巻線間、三次巻線と二次巻線間及び三次巻線の
磁束密度分布を示す概略図、第5図aは本発明の他の実
施例を示す巻線配置図、第5図b乃至dはそれぞれ一次
巻線と二次巻線間、三次巻線と二次巻線間及び三次巻線
と一次巻線間の磁束密度分布を示す概略図である。 1…・・・一次巻線、2・・・・・・二次巻線、3…・
・・三次巻線、4・・・・・・鉄心、5…・・・補足巻
線。 第1図第2図 第3図 第4図 第5図
Figure 1a is a typical transformer winding arrangement where the impedance of the tertiary winding is not particularly large. A schematic diagram showing the magnetic flux density distribution between the wires and between the tertiary winding and the primary winding. Figure 2a is a layout diagram of the transformer winding in which the impedance of the tertiary winding is increased in a conventional transformer. Figure 2b to d are schematic diagrams showing the magnetic flux density distribution between the primary winding and the secondary winding, between the tertiary winding and the secondary winding, and between the tertiary winding and the secondary winding, respectively, and FIG. 3a is according to the present invention. Winding arrangement diagrams showing one embodiment of the transformer, Figures 3b to 3d show the locations between the primary winding and the secondary winding, between the tertiary winding and the secondary winding, and between the tertiary winding and the primary winding, respectively. FIG. 4a is a winding arrangement diagram showing another embodiment of the present invention, and FIGS. 4b to 4d are a schematic diagram showing the magnetic flux density between the primary winding and the secondary winding, and between the tertiary winding and the secondary winding. A schematic diagram showing the magnetic flux density distribution between the secondary windings and the tertiary winding, FIG. 5a is a winding arrangement diagram showing another embodiment of the present invention, and FIGS. FIG. 2 is a schematic diagram showing magnetic flux density distribution between windings, between a tertiary winding and a secondary winding, and between a tertiary winding and a primary winding. 1...Primary winding, 2...Secondary winding, 3...
...Tertiary winding, 4...Iron core, 5...Supplementary winding. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 鉄心の外周に一次巻線、二次巻線および三次巻線を
同心状に巻装し、かつ前記三次巻線を最内側に配置した
ものにおいて、前記三次巻線に当該三次巻線の誘起電圧
を減少させるように補足巻線を直列に接続し、かつこの
補足巻線を前記三次巻線の外側にこれと同心状に配置し
て成ることを特徴とする変圧器。 2 補足巻線を三次巻線と二次巻線の間に配置して成る
特許請求の範囲第1項記載の変圧器。 3 補足巻線を二次巻線と一次巻線の間に配置して成る
特許請求の範囲第1項記載の変圧器。 4 補足巻線を最外側に配置して成る特許請求の範囲第
1項記載の変圧器。
[Scope of Claims] 1. A primary winding, a secondary winding, and a tertiary winding are wound concentrically around the outer periphery of an iron core, and the tertiary winding is arranged on the innermost side, and the tertiary winding is A transformer characterized in that a supplementary winding is connected in series so as to reduce the induced voltage of the tertiary winding, and the supplementary winding is arranged outside the tertiary winding and concentrically therewith. . 2. The transformer according to claim 1, wherein the supplementary winding is arranged between the tertiary winding and the secondary winding. 3. The transformer according to claim 1, wherein the supplementary winding is arranged between the secondary winding and the primary winding. 4. The transformer according to claim 1, wherein the supplementary winding is arranged at the outermost side.
JP9340778A 1978-07-31 1978-07-31 transformer Expired JPS6028371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9340778A JPS6028371B2 (en) 1978-07-31 1978-07-31 transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9340778A JPS6028371B2 (en) 1978-07-31 1978-07-31 transformer

Publications (2)

Publication Number Publication Date
JPS5519891A JPS5519891A (en) 1980-02-12
JPS6028371B2 true JPS6028371B2 (en) 1985-07-04

Family

ID=14081436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9340778A Expired JPS6028371B2 (en) 1978-07-31 1978-07-31 transformer

Country Status (1)

Country Link
JP (1) JPS6028371B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181520A1 (en) * 2018-03-19 2019-09-26 富士電機株式会社 Static induction electric appartus

Also Published As

Publication number Publication date
JPS5519891A (en) 1980-02-12

Similar Documents

Publication Publication Date Title
JP2737876B2 (en) Reactor
JPS6028371B2 (en) transformer
JPS5923455B2 (en) 3 winding transformer
JP3343945B2 (en) Transformer winding
JP2000331850A (en) High-voltage generating coil
JPH0534090Y2 (en)
JPS6214656Y2 (en)
JPS5821309A (en) On-load tap-changing transformer
JPS6252931B2 (en)
JP3556817B2 (en) Tap-switching autotransformer under load
JPH05159952A (en) Zero-phase current transformer and winding method therefor
JPH0430408A (en) Transformer
JPH041711Y2 (en)
JPH0311875Y2 (en)
JPS6257206A (en) Winding of transformer
JPS6228736Y2 (en)
JPS586290B2 (en) On-load tap-changing transformer
JPH02895Y2 (en)
JPS6040688B2 (en) transformer
JPH09205024A (en) Electromagnetic induction machine
JPS586292B2 (en) transformer
JPH06244039A (en) Winding of transformer
JPH043093B2 (en)
JPS6320094Y2 (en)
JPH0236254Y2 (en)