JPH0430408A - Transformer - Google Patents

Transformer

Info

Publication number
JPH0430408A
JPH0430408A JP2136109A JP13610990A JPH0430408A JP H0430408 A JPH0430408 A JP H0430408A JP 2136109 A JP2136109 A JP 2136109A JP 13610990 A JP13610990 A JP 13610990A JP H0430408 A JPH0430408 A JP H0430408A
Authority
JP
Japan
Prior art keywords
transformer
impedance voltage
iron core
magnetic material
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2136109A
Other languages
Japanese (ja)
Inventor
Masaaki Kosaka
正明 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2136109A priority Critical patent/JPH0430408A/en
Publication of JPH0430408A publication Critical patent/JPH0430408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulation Of General Use Transformers (AREA)

Abstract

PURPOSE:To obtain a transformer having high percent impedance voltage by interposing a magnetic material between windings. CONSTITUTION:The title transformer is provided with an iron core 1, a primary winding 2 and a secondary winding 3 to be wound around the iron core 1, and a magnetic material 4 which is formed by winding around the iron core 1 provided between the above-mentioned windings. As the relative permeability of the magnetic material is large, leakage inductance is increased, and percent impedance voltage can be increased sufficiently without changing the overall size of a transformer and the size of a cooler. Also, the percent impedance voltage value can be adjusted in a wide range only by changing the thickness in axial direction and the permeability of the magnetic material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高い%インピーダンス電圧を有する変圧器
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to transformers with high % impedance voltage.

〔従来の技術〕[Conventional technology]

変圧器の%インピーダンス電圧とは、定格電流を流した
ときに変圧器の漏れインピーダンスによって生ずる電圧
降下分(インピーダンス電圧という)の定格電圧に対す
る百分率として定義され、その変圧器の結線される系統
の安定度や短絡容量などに大きく関係する値である。す
なわち、変圧器の%インピーダンス電圧があまり大きす
ぎると電圧変動率が大きくなりすぎ、またあまり小さす
ぎても系統短絡時の事故電流が増大し変圧器のみでなく
他の直列機器などが機械的または熱的に青かされる恐れ
がある。従うて、%インピーダンス電圧は通常10%前
後が標準とされているがユーザの仕様によって決められ
、要求された値に納まるように変圧器が設計される。
The % impedance voltage of a transformer is defined as the percentage of the voltage drop (referred to as impedance voltage) caused by the leakage impedance of the transformer when the rated current is applied to the rated voltage, and it improves the stability of the system to which the transformer is connected. This value is greatly related to the power consumption and short-circuit capacity. In other words, if the % impedance voltage of the transformer is too large, the voltage fluctuation rate will be too large, and if it is too small, the fault current in the event of a short circuit will increase, causing not only the transformer but also other series equipment to become mechanically or There is a risk that it will turn blue due to heat. Therefore, although the standard % impedance voltage is usually around 10%, it is determined by the user's specifications, and the transformer is designed to fit within the required value.

第2図は従来の変圧器にかかる構成例を示す片側断面図
であり、鉄心1と、この鉄心lを巻回する1次巻!2お
よび2次t1&lI3より構成されている。
FIG. 2 is a half-sectional view showing an example of the configuration of a conventional transformer, showing an iron core 1 and a primary winding around this iron core 1! 2 and 2nd order t1&lI3.

第2図の構成において、1次側に換算された漏れインダ
クタンスL0は次式となることはよく知られている (
例えば、大岡登「変圧器」、昭和43年、東京電機大学
出版局、り、173) 6h ここで、 μ。:真空の透磁率(4πXl0−’ II/■)N 
:工次巻NlA2の巻数 1 :1次巻線2および2次巻線3の平均周長の平均値
(m) α :1次tI&lI2と2次巻線3との絶縁間隙(m
) dl :1次巻線2の半径方向幅(m)d3 :2次巻
線3の半径方向幅(m)h :1次巻線2.2次@wA
3の高さ(m)kは補正係数であり、次式による。
In the configuration shown in Fig. 2, it is well known that the leakage inductance L0 converted to the primary side is expressed by the following formula (
For example, Noboru Ooka, "Transformer", 1968, Tokyo Denki University Press, 173) 6h where, μ. : Vacuum permeability (4πXl0-' II/■)N
: Number of turns of secondary winding NlA2 1 : Average value of average circumference of primary winding 2 and secondary winding 3 (m) α : Insulation gap between primary tI & lI2 and secondary winding 3 (m
) dl: Radial width of primary winding 2 (m) d3: Radial width of secondary winding 3 (m) h: Primary winding 2. Secondary @wA
The height (m) k of 3 is a correction coefficient and is based on the following equation.

π h 1次側の定格電流を工、1次側の定格電圧を■、周波数
をfとすると、パーセントインピーダンス電圧(%XZ
*)は前述の定義より、 (%I Z@)” (2πf Le ’ I/V) x
ioo   (3)であるから、変圧器の容量をP(−
Vl)とすると、 (V/N)”h d、  +d。
π h If the rated current of the primary side is , the rated voltage of the primary side is
*) is from the above definition, (%I Z@)” (2πf Le ' I/V) x
ioo (3), so the capacity of the transformer is P(-
Vl), then (V/N)”h d, +d.

+          )            +
41となり、(4式より (%IZ*)を算出すること
ができる。
+ ) +
41, and (%IZ*) can be calculated from equation 4.

従って、変圧器の%インピーダンス電圧をより高い値に
調整するためには、(4)式よりαを増加させる、また
はり、V/Nを減少させるなどの手段が用いられていた
Therefore, in order to adjust the % impedance voltage of the transformer to a higher value, measures such as increasing α from equation (4) or decreasing V/N have been used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前述したような従来の装置は高い%イン
ピーダンス電圧が要求される場合には変圧器全体の寸法
や重量が増加する、または冷却器が大型化するなどの問
題点かあうた。
However, the conventional device as described above has problems such as an increase in the size and weight of the entire transformer or an increase in the size of the cooler when a high % impedance voltage is required.

すなわち、αを大きくするとSwA径の増加、しいては
変圧器全体の寸法や重量が増加する。また、hを小さく
することは、巻線の半径方向幅(atdX)の増加につ
ながるので、(4)式より判るように%■z、はそれ程
増えずあまり効果的ではない。
That is, when α is increased, the diameter of SwA increases, which in turn increases the size and weight of the entire transformer. Furthermore, since reducing h leads to an increase in the radial width (atdX) of the winding, as can be seen from equation (4), %z does not increase much and is not very effective.

さらに、V/Nが小さくなるようにNを増やす方法も、
t11aw4材が増える (いわゆる銅機器化する)た
めに負荷損が増大し冷却器を大型にしなければならずコ
ストアップにつながっていた。
Furthermore, there is also a method of increasing N so that V/N becomes smaller.
As the amount of T11AW4 material increased (so-called copper equipment), the load loss increased and the cooler had to be made larger, leading to an increase in costs.

この発明の目的は、巻線間に磁性体を介在させることに
より高い%インピーダンス電圧を有する変圧器を提供す
ることにある。
An object of the present invention is to provide a transformer having a high % impedance voltage by interposing a magnetic material between the windings.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、鉄心と
、この鉄心を巻回する1次巻線および2次巻線とよりな
り、前記1次巻線と前記2次巻線との間に設けられ前記
鉄心を周回するように形成された磁性体を備えてなるも
のとする。
In order to solve the above problems, the present invention includes an iron core, a primary winding and a secondary winding around which the iron core is wound, and a gap between the primary winding and the secondary winding. A magnetic body is provided in the iron core and is formed to orbit the iron core.

〔作用〕[Effect]

この発明の構成によれば、1次@線と2次@線との間に
鉄心を周回するように形成された磁性体を備えたことに
より、磁性体の比透磁率が大きいので漏れインダクタン
スが増加し、それによって変圧器が高い%インピーダン
ス電圧を有するようになる。
According to the configuration of the present invention, by providing the magnetic body formed so as to circulate around the iron core between the primary @ wire and the secondary @ wire, the leakage inductance is reduced because the relative magnetic permeability of the magnetic body is large. increases, thereby causing the transformer to have a high % impedance voltage.

(実施例〕 以下この発明を実施例に基づいて説明する。(Example〕 The present invention will be explained below based on examples.

第1図はこの発明の実施例にかかる変圧器の構成を示す
片側断面図であり、鉄心1と、この鉄心1を巻回する1
次巻線2および2次巻線3と、これらの巻線間に設けら
れ鉄心1を周回するように形成された磁性体4とを備え
た構成となっている。
FIG. 1 is a half-sectional view showing the configuration of a transformer according to an embodiment of the present invention, and includes an iron core 1 and a winding 1 around which the iron core 1 is wound.
It has a configuration including a secondary winding 2 and a secondary winding 3, and a magnetic body 4 provided between these windings and formed so as to go around the iron core 1.

第1図の実施例における漏れインダクタンスLの算出式
を誘導すると次式が得られ、実測値ともよく一致するこ
とが判った。
When the equation for calculating the leakage inductance L in the embodiment shown in FIG. 1 was derived, the following equation was obtained, and it was found that it matched well with the actually measured value.

h 十μ。μ3  N”  J T −(51ここで、T、
μ、はそれぞれ磁性体4の半径方向厚さ〔m〕、比透磁
率であり、その他の記号は(1)式における定義と同じ
とする。
h 10μ. μ3 N” J T − (51 where, T,
μ is the radial thickness [m] and relative magnetic permeability of the magnetic body 4, respectively, and other symbols are the same as defined in equation (1).

(5)式より%インピーダンス電圧(%1z)は、(V
/N)”h d、  +d。
From formula (5), the % impedance voltage (%1z) is (V
/N)”h d, +d.

+ )十μ。+ ) tenμ.

T) となる。T) becomes.

(6)式において、 (α−T) に係わる項が@線間 の絶縁間隙の部分に対応する漏れインダクタンス分、(
d + + d 婁)/ 3に係わる項が1次巻線2お
よび2次巻線30部分に対応する漏れインダクタンス分
、μsTに係わる項が磁性体4の部分に対応する漏れイ
ンダクタンス分である。(6)式を従来の構造における
(4式と比べると、αなる項が(α−T)に減っている
がμ、Tなる項がこれに代わって増えている。μ3は数
百ないし数百の値となるので全体としては(4式より(
6)式の方の (%IZ)が高くなり、磁性体4の介装
だけによって%インピーダンス電圧を効果的に高めるこ
とができることを発見した。
In equation (6), the term related to (α-T) is the leakage inductance corresponding to the insulation gap between the @ wires, (
The term related to d + + d 3) is the leakage inductance corresponding to the primary winding 2 and secondary winding 30 portion, and the term related to μsT is the leakage inductance corresponding to the magnetic body 4 portion. Comparing Equation (6) with Equation (4) in the conventional structure, the term α has been reduced to (α-T), but the terms μ and T have increased in its place. Since the value is 100, the overall value is (from formula 4, (
It has been discovered that (%IZ) of formula 6) becomes higher, and that the %impedance voltage can be effectively increased only by interposing the magnetic material 4.

たとえば、α−0,02Cm) 、 dt −dg −
0,06(m) 、 T=O,OOl  (m) 、l
5−100の場合における(6)式および(4)式の%
インピーダンス電圧の比を求めると、 (%IZ)/(
%I Z 、) −0,1610,06−2,67とな
り、かなり厚さTの薄い磁性体4でも容易に%インピー
ダンス電圧を高めることができる。従って、絶縁上から
必要なα寸法をTだけ増加させたとしても、Tが薄くて
済むので変圧器の全体寸法や重量の増加にはほとんど影
響しない。
For example, α-0,02Cm), dt-dg-
0,06(m), T=O,OOl(m),l
% of formula (6) and formula (4) in case of 5-100
Calculating the ratio of impedance voltage, (%IZ)/(
%I Z , ) -0,1610,06-2,67, and the % impedance voltage can be easily increased even with a fairly thin magnetic body 4 having a thickness T. Therefore, even if the required α dimension is increased by T from the viewpoint of insulation, since T can be made thinner, the increase in the overall size and weight of the transformer is hardly affected.

第1図の実施例において、磁性体4が大同性けい素鋼板
ならば、その方向をtL線軸方間に合わせた方がμ、が
大きくなるので有利である。また、第1図の実施例では
磁性体4が1次巻線2と2次巻線3との対向する面全体
にわたって配されているが、この発明の異なる実施例と
して磁性体4が複数に分割され巻線間に磁性体のギャッ
プが生じている場合や、磁性体4の軸方向高さがhより
小さい場合も、%インピーダンス電圧は(6)式よりは
小さいが、第2図の従来の構造の%インピーダンス電圧
よりは大きくなり、充分に%インピーダンス電圧を高め
ることができる。
In the embodiment shown in FIG. 1, if the magnetic body 4 is an isotropic silicon steel plate, it is advantageous to align the direction with the axial direction of the tL line because μ becomes larger. In addition, in the embodiment shown in FIG. 1, the magnetic body 4 is arranged over the entire opposing surface of the primary winding 2 and the secondary winding 3, but in a different embodiment of the present invention, a plurality of magnetic bodies 4 are arranged. Even when the magnetic body is divided and a gap is created between the windings, or when the axial height of the magnetic body 4 is smaller than h, the % impedance voltage is smaller than the formula (6), but the conventional method shown in Fig. 2 The % impedance voltage is larger than the % impedance voltage of the structure, and the % impedance voltage can be sufficiently increased.

また、第1図の実施例は内鉄形変圧器の例であるが、こ
の発明を外鉄形変圧器の場合にも適用することによって
%インピーダンス電圧を高めることもできる。
Further, although the embodiment shown in FIG. 1 is an example of an inner iron type transformer, the % impedance voltage can also be increased by applying the present invention to an outer iron type transformer.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、1次巻線と2次巻線との間に
鉄心を周回する磁性体が備えられたことにより、従来の
装置では%インピーダンス電圧を高めると変圧器の全体
寸法が大きくなったり、冷却器が大型化するという欠点
があったのが解決され、変圧器の全体寸法や冷却器の大
きさを変えずに%インピーダンス電圧を充分に高めるこ
とができる装置を提供することができ、高い%インピー
ダンス仕様の変圧器のコンパクト化が図れるという利点
が得られる。
As described above, in this invention, a magnetic material surrounding an iron core is provided between the primary winding and the secondary winding, so that when the % impedance voltage is increased, the overall dimensions of the transformer are reduced. To provide a device which solves the disadvantages of increasing the size of the transformer and the size of the cooler, and can sufficiently increase the % impedance voltage without changing the overall dimensions of the transformer or the size of the cooler. This has the advantage that a transformer with a high % impedance specification can be made more compact.

また、磁性体の半径方向軍さまたは透磁率を変えるだけ
で%インピーダンス電圧値を広範囲に調整することがで
きるという効果も得られる。
Another advantage is that the % impedance voltage value can be adjusted over a wide range simply by changing the radial strength or magnetic permeability of the magnetic material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例にかかる変圧器の構成を示す
片側断面図、第2図は従来の変圧器にかかる構成例を示
す片側断面図である。
FIG. 1 is a half sectional view showing the structure of a transformer according to an embodiment of the present invention, and FIG. 2 is a half sectional view showing an example of the structure of a conventional transformer.

Claims (1)

【特許請求の範囲】[Claims] 1)鉄心と、この鉄心を巻回する1次巻線および2次巻
線とよりなり、前記1次巻線と前記2次巻線との間に設
けられ前記鉄心を周回するように形成された磁性体を備
えてなることを特徴とする変圧器。
1) It consists of an iron core and a primary winding and a secondary winding that are wound around the iron core, and is formed between the primary winding and the secondary winding so as to go around the iron core. A transformer characterized by comprising a magnetic material.
JP2136109A 1990-05-25 1990-05-25 Transformer Pending JPH0430408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2136109A JPH0430408A (en) 1990-05-25 1990-05-25 Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2136109A JPH0430408A (en) 1990-05-25 1990-05-25 Transformer

Publications (1)

Publication Number Publication Date
JPH0430408A true JPH0430408A (en) 1992-02-03

Family

ID=15167504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2136109A Pending JPH0430408A (en) 1990-05-25 1990-05-25 Transformer

Country Status (1)

Country Link
JP (1) JPH0430408A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005015725A1 (en) * 2003-08-11 2006-10-12 サンケン電気株式会社 Switching power supply
JP2009193977A (en) * 2007-02-07 2009-08-27 Zhejiang Univ Integrated device, and llc resonant converter mounting it
JP2019009177A (en) * 2017-06-21 2019-01-17 国立大学法人信州大学 Magnetic coated wire and transformer using the same
CN113611494A (en) * 2021-08-11 2021-11-05 保定天威集团特变电气有限公司 Structure of high-impedance transformer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005015725A1 (en) * 2003-08-11 2006-10-12 サンケン電気株式会社 Switching power supply
US7405951B2 (en) 2003-08-11 2008-07-29 Sanken Electric Co., Ltd. Switching power supply device
JP2009193977A (en) * 2007-02-07 2009-08-27 Zhejiang Univ Integrated device, and llc resonant converter mounting it
JP2019009177A (en) * 2017-06-21 2019-01-17 国立大学法人信州大学 Magnetic coated wire and transformer using the same
CN113611494A (en) * 2021-08-11 2021-11-05 保定天威集团特变电气有限公司 Structure of high-impedance transformer

Similar Documents

Publication Publication Date Title
US4364020A (en) Amorphous metal core laminations
JPH0430408A (en) Transformer
CA2347690A1 (en) Transformer winding
CN207425578U (en) A kind of New single-phase pressure regulator loop construction
JP3343945B2 (en) Transformer winding
US6078239A (en) High frequency transformer
JPH0132731Y2 (en)
JPH0129778Y2 (en)
JPH0534090Y2 (en)
JPH0786059A (en) Converter transformer
JP2001257120A (en) Multiple cylindrical choke coil
CN1494094A (en) Lightning protection antiinterference capactive transformer
JPH04155907A (en) Transformer
JPS59168618A (en) Winding for transformer
JPS6012257Y2 (en) electromagnetic induction winding
KR900007407B1 (en) Winding method for a autotransformer
JPS6030106A (en) Winding composition of high frequency transformer
JPS586290B2 (en) On-load tap-changing transformer
JP3079446U (en) Large current coil.
JPS62219606A (en) High-frequency and high-voltage transformer
JPS6333804A (en) Single-phase transformer
JPS6144418Y2 (en)
JPS62219605A (en) High-frequency transformer
CN110600245A (en) Transformer winding method
JPS615510A (en) Structure of transformer winding