JPH04155907A - Transformer - Google Patents

Transformer

Info

Publication number
JPH04155907A
JPH04155907A JP2282768A JP28276890A JPH04155907A JP H04155907 A JPH04155907 A JP H04155907A JP 2282768 A JP2282768 A JP 2282768A JP 28276890 A JP28276890 A JP 28276890A JP H04155907 A JPH04155907 A JP H04155907A
Authority
JP
Japan
Prior art keywords
transformer
core
reduced
winding
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2282768A
Other languages
Japanese (ja)
Inventor
Masusaku Okumura
奥村 益作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2282768A priority Critical patent/JPH04155907A/en
Publication of JPH04155907A publication Critical patent/JPH04155907A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To hold down a copper loss for preventing a temperature rise in a transformer by using a short copper wire which has a large cross section for primary and secondary coils which are wound around an amorphous metal- made core having a relatively large cross sectional magnetic path. CONSTITUTION:A transformer 10, being formed of amorphous metal, has a shell-type single-phase core 12 which has a relatively large cross sectional magnetic path. Primary coils 16a and 16b which are wound around a core 12 are connected in parallel and are located alternately in lamination with the winding of each layer of a secondary coil 18 put between the windings of each layer of the primary coils 16a and 16b. A voltage allotted to each turn (V/T) is set large and a cross section of a copper wire used for the primary coils 16 and 16b and secondary coils 18 is 1.5 times the conventional one. Therefore, the number of turns can be reduced to 1/1.5 or smaller. Consequently, a coil resistance is reduced to 1/5 or lower of the conventional one, being followed by the reduction of a copper loss to nearly 1/3 to 1/5 of the conventional one. As a result, an efficiency can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は変圧器に関し、特にたとえば電子機器の電源
回路や送配電に用いられる、変圧器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transformer, and particularly to a transformer used for example in a power supply circuit of electronic equipment or in power transmission and distribution.

(従来技術〕 従来の一般的な変圧器としては第4図に示す変圧器1が
ある。変圧器1は、一般に、効率を最大にすべく、鉄損
と銅損とがほぼ等しくなるように設計される。すなわち
、変圧器1は、けい素鋼板からなるコア2に、多数巻回
された1次巻線3および2次巻線4を順次巻回し、巻線
1ターン当りの分担電圧(V/T)は比較的小さく設計
されている。具体的には、6.6kV/220Vで10
kVAの柱上変圧器においては、別表に示すように、コ
ア2の断面積が70C11”、1次巻線3に用いられる
銅線の断面積が1.3m+”、そして2次巻線4に用い
られる銅線の断面積が33■2、コア2の窓寸法りが3
50鵬に設定され、1ターン当りの分担電圧が2.OV
/Tに設計されたものがあった。
(Prior Art) As a conventional general transformer, there is a transformer 1 shown in Fig. 4.In general, the transformer 1 is designed so that iron loss and copper loss are approximately equal in order to maximize efficiency. That is, the transformer 1 is designed by sequentially winding a large number of turns of a primary winding 3 and a secondary winding 4 around a core 2 made of a silicon steel plate, so that the shared voltage ( V/T) is designed to be relatively small.Specifically, at 6.6kV/220V, 10
In a kVA pole transformer, as shown in the attached table, the cross-sectional area of the core 2 is 70C11", the cross-sectional area of the copper wire used for the primary winding 3 is 1.3 m+", and the cross-sectional area of the secondary winding 4 is 70C11". The cross-sectional area of the copper wire used is 33×2, and the window size of core 2 is 3.
50 peng, and the shared voltage per turn is 2. O.V.
There was one designed in /T.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように設計された変圧器1では、巻線抵抗が比較的
大きく、したがって銅損が大きくなり、変圧器lの内部
の温度上昇が大きかった。そのために、その放熱構造と
しては放熱フィンを設けるなど、変圧器の構造が複雑か
つ大型化して、信頼性を維持するようにしていた。
In the transformer 1 designed in this way, the winding resistance was relatively large, so the copper loss was large, and the temperature inside the transformer 1 increased significantly. For this reason, the structure of the transformer has become complicated and large, such as by providing heat radiation fins, in order to maintain reliability.

一方、最近ではアモルファス金属を用いてコアを形成し
、鉄損を少なくすることが実用化されているが、銅損に
ついては殆ど考慮が払われていない。したがって、従来
の変圧器にアモルファス金属コアを使用しても効率はあ
まりよくなかった。
On the other hand, although it has recently been put into practical use to form a core using an amorphous metal to reduce iron loss, little consideration has been given to copper loss. Therefore, the use of amorphous metal cores in conventional transformers has not been very efficient.

また、変圧器1では、漏れインダクタンスも大きいため
に、巻線抵抗が大きいこととも相まって、電圧変動率が
4〜5%と大きかった。
Further, in the transformer 1, since the leakage inductance was also large, the voltage fluctuation rate was as large as 4 to 5%, together with the large winding resistance.

それゆえに、この発明の主たる目的は、信鎖性および効
率を向上するとともに、電圧変動率を改善できる、変圧
器を提供することである。
Therefore, the main objective of the present invention is to provide a transformer that can improve reliability and efficiency as well as improve voltage fluctuation rate.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、アモルファス金属によって形成されるその
磁路断面積の比較的大きいコア、およびそれぞれが比較
的太く比較的短い銅線によって形成されかつコアに巻回
される1次巻線および2次巻線を備える、変圧器である
The present invention has a core formed of an amorphous metal with a relatively large magnetic path cross section, and a primary winding and a secondary winding each formed of a relatively thick and relatively short copper wire and wound around the core. It is a transformer with a wire.

〔作用〕[Effect]

1次巻線および2次巻線に、断面積の大きい銅線を用い
かつその長さを短くしているので、巻線抵抗およびそれ
に起因する銅損が小さくなる。また、コアをアモルファ
ス金属によって形成し、その磁路断面積を比較的大きく
するが、鉄損は相対的に減少される。さらに、1次巻線
によって2次巻線を挟み込むように交互に積層配置した
場合には、1次巻線と2次巻線との磁気結合度を高める
ことができ、漏れインダクタンスも小さくなる。
Since copper wire with a large cross-sectional area is used for the primary winding and the secondary winding and the length thereof is short, the winding resistance and the copper loss caused by it are reduced. Furthermore, although the core is made of amorphous metal and the cross-sectional area of the magnetic path is made relatively large, iron loss is relatively reduced. Furthermore, when the secondary windings are alternately stacked so as to be sandwiched between the primary windings, the degree of magnetic coupling between the primary windings and the secondary windings can be increased, and leakage inductance can also be reduced.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、1次巻線および2次巻線の巻線抵抗
を小さくできるので、巻線の発熱すなわち銅損も小さく
なり、効率が向上する。また、変圧器の内部の温度上昇
を抑えることができる。したがって、変圧器の熱劣化を
抑制でき、信軌性の向上および長寿命化が期待できるば
かりでなく、絶縁の耐熱性能が従来よりも低いものでも
実用可能になる。
According to this invention, since the winding resistance of the primary winding and the secondary winding can be reduced, heat generation in the windings, that is, copper loss, is also reduced, and efficiency is improved. Moreover, the temperature rise inside the transformer can be suppressed. Therefore, thermal deterioration of the transformer can be suppressed, and not only can improved reliability and longer lifespan be expected, but it can also be put to practical use even if the heat resistance of the insulation is lower than before.

また、銅損のみならず、鉄損をも小さ(できるので、効
率が飛躍的に向上する。
In addition, not only copper loss but also iron loss can be reduced, resulting in a dramatic improvement in efficiency.

さらに、1次巻線によって2次巻線を挟み込むように交
互に積層配置すれば、漏れインダクタンスも小さくなる
ので、巻線抵抗の減少とも相まって、電圧変動率を改善
できる。
Furthermore, if the secondary windings are alternately stacked so as to be sandwiched between the primary windings, the leakage inductance is also reduced, which, together with the reduction in the winding resistance, can improve the voltage fluctuation rate.

この発明の上述の目的、その他の目的、特徴および利点
は、図面を参照して行う以下の実施例の詳細な説明から
一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

〔実施例〕〔Example〕

第1図を参照して、この実施例の変圧器10は、アモル
ファス金属によって形成され、その磁路断面積の比較的
大きい外鉄形単相コア12を含む、コア12の中央11
14には、それぞれソレノイド構造の2つの1次巻線1
6aおよび16bと1つの2次巻線18が巻回されてい
る。すなわち、第2図かられかるように、コア12に巻
回される1次巻線16a、16bは並列接続され、また
、1次巻線16a、16bと2次巻線18との磁気結合
度を高めるぺ(,1次巻線16a、16bの各層の巻線
で、2次巻線18の各層の巻線を挟み込むように交互に
積層配置される。
Referring to FIG. 1, a transformer 10 of this embodiment includes an outer iron type single-phase core 12 formed of amorphous metal and having a relatively large magnetic path cross section.
14 includes two primary windings 1 each having a solenoid structure.
6a and 16b and one secondary winding 18 are wound thereon. That is, as can be seen from FIG. 2, the primary windings 16a, 16b wound around the core 12 are connected in parallel, and the degree of magnetic coupling between the primary windings 16a, 16b and the secondary winding 18 is The windings in each layer of the primary windings 16a and 16b are alternately stacked so as to sandwich the windings in each layer of the secondary winding 18.

ここで、注目すべきは、巻数1ターン当りの分担電圧(
V/T)を大きくし、1次巻線16a。
What should be noted here is the shared voltage per turn (
V/T) and increase the primary winding 16a.

16bおよび2次巻線18にそれぞれ用いられる銅線の
断面積を従来の1.5倍以上にしていることである。そ
のため、ターン数を従来に比べて1/1.5以下にする
ことができるので、巻線抵抗が従来の175以下になり
、巻線抵抗の減少に起因して銅損を従来の略1/3〜1
15に低下でき、効率を向上できる。
The cross-sectional area of the copper wire used for each of the coil 16b and the secondary winding 18 is 1.5 times or more larger than that of the conventional coil. Therefore, the number of turns can be reduced to 1/1.5 or less compared to the conventional one, so the winding resistance is reduced to 175 or less compared to the conventional one, and due to the reduction in the winding resistance, the copper loss is reduced to about 1/1/1 of the conventional one. 3-1
15, improving efficiency.

また、このように銅損を大幅に減少できるので、変圧器
10の内部の温度上昇を従来の1/2〜1/3に抑える
ことができ、変圧器10の熱劣化を抑制し、信鯨性の向
上および長寿命化が期待できる。同時に、絶縁の耐熱性
能が従来より低いものでも実用可能になる。具体的には
、従来、地下室の変電所などで用いられている樹脂モー
ルド。
In addition, since copper loss can be significantly reduced in this way, the temperature rise inside the transformer 10 can be suppressed to 1/2 to 1/3 of the conventional temperature, suppressing thermal deterioration of the transformer 10, and improving the reliability of the transformer. It can be expected to improve performance and extend lifespan. At the same time, it becomes practical even if the heat resistance of the insulation is lower than before. Specifically, it is a resin mold that has traditionally been used in substations in basements.

都市防災形のH種絶縁変圧器に換えて、本件の変圧器1
0に一般的な絶縁材料により絶縁したものを用いること
ができる。また、従来のように、変圧器10に放熱フィ
ンなどを設ける必要がなくなり、変圧器の簡単かつ小型
化が図れる。
In place of the urban disaster prevention type H class insulation transformer, transformer 1 of this case
0 can be insulated with a general insulating material. Further, it is not necessary to provide the transformer 10 with heat dissipation fins as in the conventional case, and the transformer can be made simple and compact.

さらに注目すべきは、コア12をアモJレファス金属に
よって形成し、その磁路断面積を比較的大きくして従来
の1.5倍以上に設定していることである。これにより
コア120鉄損はその分大きくなるが、銅損の減少と相
まって総合効率の飛躍的向上が図れる。
What is further noteworthy is that the core 12 is made of Amo J Refus metal, and its magnetic path cross-sectional area is set to be relatively large, 1.5 times or more compared to the conventional one. As a result, the core 120 iron loss increases accordingly, but combined with the reduction in copper loss, the overall efficiency can be dramatically improved.

そして、この実施例では、1次巻線16a、16bは並
列接続され、交互に積層配置されている。これにより1
次巻線15a、16bおよび2次巻線18の漏れインダ
クタンスを従来の115以下にでき、巻線抵抗の減少(
従来の115以下)とも相まって電圧変動率を改善でき
、第3図の線Aに示すように従来の115以下となる。
In this embodiment, the primary windings 16a and 16b are connected in parallel and alternately stacked. This results in 1
The leakage inductance of the secondary windings 15a, 16b and the secondary winding 18 can be reduced to 115 or less compared to the conventional one, and the winding resistance can be reduced (
The voltage fluctuation rate can be improved, and as shown by line A in FIG. 3, the voltage fluctuation rate can be reduced to 115 or less than the conventional value.

因みに、線Bは従来の電圧変動率を示す。Incidentally, line B shows the conventional voltage fluctuation rate.

ここで、6.6kV/220Vで10kVAの柱上変圧
器について、本件発明者等が行った実験結果を別表に示
す。
Here, the results of experiments conducted by the inventors on a 6.6 kV/220 V, 10 kVA pole transformer are shown in the attached table.

まず、別表の中欄の実験例1を、左欄の従来と比較する
。実験例1は、コア12の断面積を140CI”、1次
巻線16a、16bに用いられる銅線の断面積を2.6
閤z、2次巻線18に用いられる銅線の断面積を66閣
2とそれぞれ従来の2倍に、また、コア12の窓寸法り
を400−と従来より大きく設定し、巻IJIA1ター
ン当りの分担電圧を4.OV/Tと従来の2倍に設計し
ている。
First, Experimental Example 1 in the middle column of the attached table will be compared with the conventional example in the left column. In Experimental Example 1, the cross-sectional area of the core 12 was 140CI'', and the cross-sectional area of the copper wire used for the primary windings 16a and 16b was 2.6 CI''.
The cross-sectional area of the copper wire used for the secondary winding 18 is 66 times larger than the conventional one, and the window size of the core 12 is set to 400 mm, which is larger than the conventional one. The shared voltage of 4. It is designed to be twice as OV/T as the conventional one.

その結果、従来に比べて、巻線抵抗rを1/6に減少で
き、銅損Pcを70W(従来270W)、鉄損Piを5
0W(従来100W)に減少できるので、損失(=Pc
+Pi)を120Wと従来(370W)の略1/3に減
少できる。
As a result, compared to the conventional method, the winding resistance r can be reduced to 1/6, the copper loss Pc is reduced to 70 W (previously 270 W), and the iron loss Pi is reduced to 5
Since it can be reduced to 0W (conventionally 100W), the loss (=Pc
+Pi) can be reduced to 120W, approximately 1/3 of the conventional (370W).

また、漏れリアクタンスXLを従来の1/8に減少でき
、巻線抵抗rの減少(従来の1/6)と相まって、電圧
変動率が0.9%と従来(4,5%)の115に改善で
きる。
In addition, the leakage reactance XL can be reduced to 1/8 of the conventional value, and combined with the reduction of the winding resistance r (1/6 of the conventional value), the voltage fluctuation rate is 0.9%, which is 115% compared to the conventional (4.5%). It can be improved.

次いで、別表の右横の実験例2を、左欄の従来と比較す
る。実験例2は、1次巻線16a、16bおよび2次巻
線18にそれぞれ用いられる銅線の断面積を実験例1と
同様にし、コア12の断面積をさらに太きく210cm
”と従来の3倍にし、また、コア12の窓寸法りもさら
に大きく500閣に設定し、巻線1ターン当りの分担電
圧を6゜OV/Tと従来の3倍に設計している。
Next, Experimental Example 2 on the right side of the attached table will be compared with the conventional example on the left side. In Experimental Example 2, the cross-sectional areas of the copper wires used for the primary windings 16a, 16b and the secondary winding 18 were the same as in Experimental Example 1, and the cross-sectional area of the core 12 was made thicker to 210 cm.
In addition, the window size of the core 12 has been set even larger to 500 mm, and the shared voltage per turn of the winding has been designed to be 6° OV/T, three times the conventional size.

その結果、従来に比べて、巻線抵抗rを1/11に減少
でき、銅損Pcを45W、鉄損Piを75Wに減少でき
るので、損失を120Wと従来の略1/3に減少できる
。また、漏れリアクタンスXLを従来の1/14に減少
でき、巻線抵抗rの減少(従来の1/11)と相まって
、電圧変動率が0.5%と従来の1/9に改善できる。
As a result, the winding resistance r can be reduced to 1/11 compared to the conventional one, the copper loss Pc can be reduced to 45 W, and the iron loss Pi can be reduced to 75 W, so that the loss can be reduced to 120 W, which is about 1/3 of the conventional one. Furthermore, the leakage reactance XL can be reduced to 1/14 of the conventional value, and combined with the reduction of the winding resistance r (1/11 of the conventional value), the voltage fluctuation rate can be improved to 0.5%, 1/9 of the conventional value.

なお、1次巻線16a、16bは並列接続に限定されず
、必要な電流容量と電圧に応じて直列接続されてもよい
、また、1次、2次巻線の分割数をさらに増加させ、各
接続を直並列にしてもよい。さらに、構成部材各々の寸
法は、変圧器の用途・仕様によって、適宜変更し得る。
Note that the primary windings 16a and 16b are not limited to being connected in parallel, but may be connected in series depending on the required current capacity and voltage. Each connection may be made in series and parallel. Further, the dimensions of each component may be changed as appropriate depending on the use and specifications of the transformer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す正面断面図である。 第2図は第1図実施例の等価回路を示す回路図である。 第3図は電圧変動率を従来との比較において示すグラフ
である。 第4図は従来技術を示す正面断面図である。 図において、10は変圧器、12はコア、16a、16
bは1次巻線、18は2次巻線を示す。 特許出願人 株式会社 村田製作所 代理人 弁理士  山 1)義 人 別表 第1図 第2図
FIG. 1 is a front sectional view showing an embodiment of the present invention. FIG. 2 is a circuit diagram showing an equivalent circuit of the embodiment shown in FIG. FIG. 3 is a graph showing the voltage fluctuation rate in comparison with the conventional method. FIG. 4 is a front sectional view showing the prior art. In the figure, 10 is a transformer, 12 is a core, 16a, 16
b indicates the primary winding, and 18 indicates the secondary winding. Patent Applicant Murata Manufacturing Co., Ltd. Representative Patent Attorney Yama 1) Legal Person Table 1 Figure 2

Claims (1)

【特許請求の範囲】 1 アモルファス金属によって形成されるその磁路断面
積の比較的大きいコア、および それぞれが比較的太く比較的短い銅線によって形成され
かつ前記コアに巻回される1次巻線および2次巻線を備
える、変圧器。 2 前記1次巻線および2次巻線はそれぞれ複数層より
形成され、前記1次巻線の各層の巻線で前記2次巻線の
各層の巻線を挟み込むように交互に積層配置した、請求
項1記載の変圧器。
[Scope of Claims] 1. A core formed of amorphous metal and having a relatively large magnetic path cross-sectional area, and a primary winding each formed of a relatively thick and relatively short copper wire and wound around the core. and a secondary winding. 2. The primary winding and the secondary winding are each formed of a plurality of layers, and the windings in each layer of the primary winding sandwich the windings in each layer of the secondary winding. The transformer according to claim 1.
JP2282768A 1990-10-19 1990-10-19 Transformer Pending JPH04155907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2282768A JPH04155907A (en) 1990-10-19 1990-10-19 Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2282768A JPH04155907A (en) 1990-10-19 1990-10-19 Transformer

Publications (1)

Publication Number Publication Date
JPH04155907A true JPH04155907A (en) 1992-05-28

Family

ID=17656822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2282768A Pending JPH04155907A (en) 1990-10-19 1990-10-19 Transformer

Country Status (1)

Country Link
JP (1) JPH04155907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034648B2 (en) * 1998-07-31 2006-04-25 Hitachi, Ltd. Amorphous metal core transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034648B2 (en) * 1998-07-31 2006-04-25 Hitachi, Ltd. Amorphous metal core transformer

Similar Documents

Publication Publication Date Title
US6750749B2 (en) Amorphous metal core transformer
JP3936755B2 (en) Superconducting coil
US20070290784A1 (en) Planar High Voltage Transformer Device
US4897626A (en) Cooling electromagnetic devices
US6100783A (en) Energy efficient hybrid core
JP3130200B2 (en) Trance
JP2002353045A (en) Power transformer and power converter comprising it
JP2000082625A (en) Amorphous iron core transformer
US4906960A (en) Distribution transformer with coiled magnetic circuit
JPH04155907A (en) Transformer
US4460885A (en) Power transformer
JP5004260B2 (en) Outer iron type power transformer and power converter using the same
JP3574955B2 (en) Transformer winding core
US4907339A (en) Method of construction of a distribution transformer having a coiled magnetic circuit
KR100388604B1 (en) Reactor having rectangular coil winded in elliptical edge-wise helicies and method of manufacturing thereof
JPH03280409A (en) Flat transformer
RU2316841C1 (en) Low-power transformer
JP2002075738A (en) Coil and coil parts using the same
JPH0430408A (en) Transformer
US6606020B1 (en) Low cost method of making a high impedance electrical transformer and products of said method
RU2144229C1 (en) Three-phase balanced transformer
JPS63211711A (en) High frequency transformer
JP2001230134A (en) Outer core reactor and assembly method of outer core reactor
JP2002237417A (en) Power transformer and power converter using it
KR0123392Y1 (en) Discharge lamp ballast using cut core