JPS6027790A - Cryopump - Google Patents

Cryopump

Info

Publication number
JPS6027790A
JPS6027790A JP13590883A JP13590883A JPS6027790A JP S6027790 A JPS6027790 A JP S6027790A JP 13590883 A JP13590883 A JP 13590883A JP 13590883 A JP13590883 A JP 13590883A JP S6027790 A JPS6027790 A JP S6027790A
Authority
JP
Japan
Prior art keywords
molybdenum
cryopanel
deposited
cryopump
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13590883A
Other languages
Japanese (ja)
Inventor
Masahiro Shibagaki
柴垣 正弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13590883A priority Critical patent/JPS6027790A/en
Publication of JPS6027790A publication Critical patent/JPS6027790A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps

Abstract

PURPOSE:To improve corrosion resistance, by depositing molybdenum or a molybdenum silicide compound on the surface of a cryopanel or condensing plate, and blackening it. CONSTITUTION:Molybdenum or a molybdenum silicide compound is deposited on the surface of a cryopanel or condensing plate and is blackened. For example, a chromium film 2-1 is deposited on a copper plate 1-2 by vacuum deposition or the like. Then similarly Mo-Si 3-1 is deposited by sputtering or the like. The reason for the application of the chromium is to make the adhesion of the Mo-Si favorable. Thereafter, when plasma etching is carried out by using a Freon type gas, the surface of the Mo-Si 3-2 is roughened and blackened. As a result, the life of a pump can be prolonged, and as the absorption area is increased due to the roughened surface to improve the exhaustion speed.

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明はクライオポンプの改良に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to improvements in cryopumps.

[従来技術とその問題点] 真空技術の応用は近年半導体製造工程に広くとシいれら
れ、薄膜形成をするためのスパッタリング装置、蒸着装
置、減圧気相成長装置及び微細加工をするためのドライ
エツチング装置等に真空システムがさかんに使用されて
いる。これら装置は10’Tow〜110−1Toの圧
力領域で動作される。真空ポンプとして油回転やメカニ
カルブースタポンプ等は補助排蝋又は膜形成やエツチン
グ中の圧力維持のために主に使用され油拡散ポンプ、タ
ーボモレキュラーポンプ、クライオポンプ等は系内の残
留ガスを排気する高真空用及び一部高真空中で膜形成を
行なう又はエツチング中の圧力維持に使用されている。
[Prior art and its problems] In recent years, the application of vacuum technology has been widely used in semiconductor manufacturing processes, including sputtering equipment, vapor deposition equipment, low-pressure vapor deposition equipment for forming thin films, and dry etching for microfabrication. Vacuum systems are frequently used in equipment, etc. These devices are operated in the pressure range from 10'Tow to 110-1To. As vacuum pumps, oil rotary pumps, mechanical booster pumps, etc. are mainly used to maintain pressure during auxiliary exhaust wax or film formation and etching, while oil diffusion pumps, turbo molecular pumps, cryopumps, etc. exhaust residual gas in the system. It is used for high vacuum and in some cases for film formation in high vacuum or for maintaining pressure during etching.

半導体製造工程でのエツチングを例如とると、微細化、
は年々急速に進みメモリー素子の256にダイナミック
ランダムアクセスMOSメモリー(256KDRAM 
)の最小寸法は2μm以下を要求される。
Taking etching in the semiconductor manufacturing process as an example, miniaturization,
Dynamic random access MOS memory (256K DRAM)
) is required to be 2 μm or less.

被エツチング材料はシリコン酸化膜(8i02)、多結
晶シリコン(pOV−81) 、 W 、 Mo等の高
融点金属やそれらシリサイド化合物又アルミニウム(A
J )等と数多くの材料がある。特にMはエツチング雰
囲気中K H2Oが存在していると、エツチングは進行
しない場合があシ、H2O・を極力低下する必要がある
。このためH2Oに対し、排気速度の大きいクライオポ
ンプが導入されるようになってきた。クライオポンプの
原理は、絶対温度150に以下に冷却された金属パネル
にガスを吸着させて真空排気を行なうものである。
The materials to be etched include silicon oxide film (8i02), polycrystalline silicon (pOV-81), high melting point metals such as W, Mo, their silicide compounds, and aluminum (A
There are many materials such as J). In particular, for M, if K H2O is present in the etching atmosphere, etching may not proceed, so it is necessary to reduce H2O as much as possible. For this reason, cryopumps with high pumping speed have been introduced for H2O. The principle of the cryopump is to adsorb gas onto a metal panel cooled to an absolute temperature of 150 degrees or less to perform vacuum evacuation.

第1図にクライオポンプ装置の概略構成図を示す0 1はクライオポンプのステンレス製容器で2は前記1の
容器に熱放射を防止するための照射シールド板である。
FIG. 1 shows a schematic configuration diagram of a cryopump apparatus. 0 1 is a stainless steel container of the cryopump, and 2 is an irradiation shield plate for preventing heat radiation to the container 1.

冷凍器(図示していない)で圧縮されたヘリウムガス(
He )をヘリウム供給口3より導入し第一段シリンダ
−4及び第二段シリンダー5でヘリウムガスが断熱膨張
して銅(Cu )製のクライオパネル6を直接冷却し、
その温度は150に以下となる。凝縮板7は熱放射によ
シ冷却され800に程度になるよう釦なっている。断熱
膨張したヘリウムはヘリウム戻し口8よシ再度冷凍器に
還流される。9はクランクケースで内部にシリンダーを
駆動するためのドライブユニットが内臓されている。系
内の圧力を測定するために水素蒸気圧計が取シ付けであ
る。11 、12はそれぞれ第二段、第一段コールドス
テーションと呼ばれ、設定温度範囲に保つように絶えず
冷凍を発生する機能を有し、通常は11テ12K 〜2
0に、 12テア7K 〜100K(7)?l[テある
。ヘリウ゛ム、H2(水素)、アルゴン(A「)は吸着
筒13内のチャコールで凝縮する。クライオポンプは吸
着方式であるため、一定量のガスを吸着させるとガス放
出により再生する必要があるが、このとき容器2内の圧
力が異常に高くならないよう安全弁14が設けられ、そ
こからガスが外部に放出されるようになっている。クラ
イオパネル6は周囲に熱−を放出させないように表面が
黒化処理されているが、前述した如く(凝縮板7も蒸化
処理される場合もある)最近半導体のエツチング装置に
使用されるようになると、ハロゲン系のガスによシ再生
時にこれらガスが黒化表面が腐蝕しその内部のクライオ
パネル6や凝縮板7を劣化させてポンプの特性を著しく
低減さす問題が生じている。
Helium gas (
He) is introduced from the helium supply port 3, and the helium gas adiabatically expands in the first stage cylinder 4 and second stage cylinder 5 to directly cool the cryopanel 6 made of copper (Cu).
Its temperature will be below 150°C. The condensing plate 7 is cooled by heat radiation to a temperature of about 800 ℃. The adiabatically expanded helium is returned to the refrigerator again through the helium return port 8. 9 is the crankcase, which has a built-in drive unit to drive the cylinders. A hydrogen vapor pressure gauge is installed to measure the pressure within the system. 11 and 12 are called the second stage and first stage cold station, respectively, and have the function of constantly generating refrigeration to maintain the temperature within the set temperature range.
0, 12 te 7K ~100K (7)? l [There is. Helium, H2 (hydrogen), and argon (A') are condensed in the charcoal inside the adsorption cylinder 13.Since the cryopump uses an adsorption method, once a certain amount of gas is adsorbed, it must be regenerated by releasing the gas. At this time, a safety valve 14 is provided to prevent the pressure inside the container 2 from becoming abnormally high, and the gas is released from there to the outside.The cryopanel 6 has a black surface to prevent heat from being released to the surroundings. However, as mentioned above (sometimes the condensing plate 7 is also evaporated), when it has recently been used in semiconductor etching equipment, these gases become black when regenerated by halogen gas. A problem arises in that the surface of the cryopanel 6 and the condensing plate 7 deteriorate due to corrosion, which significantly reduces the characteristics of the pump.

[発明の目的コ 本発明は上述した従来装置の欠点を改良したもので、ク
ライオパネルや凝縮板の黒化処理方法を改良することに
より耐腐蝕性を向上させて信頼性の高いクライオ・ポン
プを提供することを目的とする。
[Purpose of the Invention] The present invention improves the above-mentioned drawbacks of the conventional device, and improves the method of blackening the cryopanel and condensation plate to improve corrosion resistance and provide a highly reliable cryo pump. The purpose is to provide.

[発明の概要] 従来の黒化処理はクライオパネルや凝縮板を構成してい
る銅やステンレス表面上に有機系の塗料を被覆させてい
るのをモリブデン(MO)又はそのシリサイド化合物(
Mog iとする)を蒸着やスパッタ等で堆積させ、そ
の後前記堆積物の一部をフレオン系のガスで等方的にド
ライエツチングして表面を黒化させようにするものであ
る。
[Summary of the Invention] Conventional blackening treatment involves coating the copper or stainless steel surfaces of cryopanels and condensation plates with an organic paint using molybdenum (MO) or its silicide compound (
Mogi) is deposited by vapor deposition or sputtering, and then a portion of the deposit is isotropically dry-etched with Freon gas to blacken the surface.

[発明の効果] 本発明はクライオパネルや凝縮板の寿命を著しく向上さ
せ特にハロゲン系ガスに対し極めて有効である。
[Effects of the Invention] The present invention significantly improves the life of cryopanels and condensing plates, and is particularly effective for halogen gases.

[発明の実施例] 本発明の実施例を図面を用いて詳細に説明する。[Embodiments of the invention] Embodiments of the present invention will be described in detail using the drawings.

第2図の(a)は従来のクライオ・パネルや凝縮板の一
部断面図である。即ち、構成材料である例えば銅板(1
−1)上に塗料2を被覆しである。第2図(b) 、 
(C)は本発明の実施例を示したもので、先づ銅板1−
2上にクロム(Cr)膜2−1を数百オングストローム
蒸着等で堆積する。次に、Mo8i 3−1を同様にス
ノミ・シタ等で4000X程度堆積する。クロムはMo
8 iの密着性を良くするために被着させている。りo
ム(2−1)MoSi(3−1)を銅板1−2に堆積さ
せた後、半導体製造工程にさかんに使用されているフレ
オン系のガスでプラズマエツチングすると、第2図(C
)に示すようにMo5i3−2表面に凹凸が生じ表面が
黒化する。この理由はMoやMo8iは蒸着やスパッタ
によシ堆積すると柱状結晶化しやすく、その後、フレオ
ン系のガスでプラズマエツチングすると結晶粒界が粒界
内よシ速くエツチングされために途中でエツチングを停
止すると粒界と粒界内とで高低差γ生じて光を吸収する
ため黒化されるととKある。
FIG. 2(a) is a partial sectional view of a conventional cryo panel or condensing plate. That is, the constituent material, for example, a copper plate (1
-1) Paint 2 is coated on top. Figure 2(b),
(C) shows an embodiment of the present invention, in which the copper plate 1-
A chromium (Cr) film 2-1 is deposited on 2 by vapor deposition or the like to a thickness of several hundred angstroms. Next, Mo8i 3-1 is similarly deposited by about 4000X using a sunomi-shita method. Chromium is Mo
8 It is attached to improve the adhesion of i. Rio
After depositing MoSi (3-1) on the copper plate 1-2, plasma etching is performed using Freon gas, which is often used in semiconductor manufacturing processes, as shown in Figure 2 (C
), unevenness occurs on the Mo5i3-2 surface and the surface becomes black. The reason for this is that when Mo and Mo8i are deposited by evaporation or sputtering, they tend to form columnar crystals, and when they are then plasma etched with Freon-based gas, the grain boundaries are etched faster than the inside of the grain boundaries, so if the etching is stopped midway through, There is a height difference γ between the grain boundaries and inside the grain boundaries, which absorbs light and is blackened.

本発明のクライオポンプをドライエツチング装置に使用
す石とポンプの寿命が10倍以上長くなる以外に表面の
凹凸により吸着面積が大となって排気速度も20チ程度
向上した。又C「やMo8 i膜の膜厚が1μm以下で
あるため黒化表面とクライオパネル表面の温度差は全く
無かった。
When the cryopump of the present invention is used in a dry etching device, the life of the stone and pump is increased by more than 10 times, and the suction area is increased due to the unevenness of the surface, and the pumping speed is increased by about 20 cm. Furthermore, since the film thickness of the C' and Mo8i films was 1 μm or less, there was no temperature difference between the blackened surface and the cryopanel surface.

ハロゲン系のガスを使用するときはこれらガスがクライ
オパネルまで侵入しないようMo3iのエツチング時に
粒界のエツチング深さが膜厚より少くないよう十分注意
する必要があるが、ドライエツチング技術が著しく進歩
したことによシ十分精度良く加工できることは確認でき
ている。耐腐蝕性から、MoよpMosiの使用が望し
いが蒸着やスパッタ装置に用いる時はMOでも良い。
When using halogen-based gases, it is necessary to take great care to ensure that the etching depth of grain boundaries is not less than the film thickness when etching Mo3i so that these gases do not penetrate into the cryopanel, but dry etching technology has significantly advanced. In particular, it has been confirmed that machining can be performed with sufficient precision. From the viewpoint of corrosion resistance, it is desirable to use Mo or pMosi, but MO may also be used when used in vapor deposition or sputtering equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はクライオ・ポンプの概略構成図、第2図はクラ
イオ・パネル凝縮板の一部断面図であり(a)は従来例
、(b) 、 (C)は本発明の例を示している。 7・・・凝縮板、 6・・・クライオ・パネル、11・
・・第二段コールドステージ璽ン、12・・・i一段コ
−1)’ステージ曹ン。 14・・・安全弁、13・・・吸着筒。 (7317)弁理士 則近憲佑 (ほか1名) 第1図 第 2 図
Figure 1 is a schematic configuration diagram of a cryo pump, and Figure 2 is a partial sectional view of a cryo panel condensing plate, with (a) showing a conventional example, and (b) and (C) showing examples of the present invention. There is. 7... Condensation plate, 6... Cryo panel, 11.
・・Second stage cold stage code, 12...i 1st stage code 1)' Stage code. 14...Safety valve, 13...Adsorption tube. (7317) Patent attorney Kensuke Norichika (and 1 other person) Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)クライオポンプ内のクライオパネル又は凝縮板表
面−ヒにモリブデン又はモリブデンシリサイド化合物を
堆積させ、その後前記クライオパネルもしくは凝縮板を
ハロゲン系のガスでプラズマエツチング処理をして表面
を黒化させることを特徴とするクライオポンプ装置。
(1) Depositing molybdenum or a molybdenum silicide compound on the surface of the cryopanel or condensing plate in the cryopump, and then subjecting the cryopanel or condensing plate to plasma etching treatment with a halogen-based gas to blacken the surface. A cryopump device featuring:
(2) 前記ハロゲン系のガスはフレオン−14(CF
14)と酸素の混合ガスであることを特徴とする特許請
求の範囲第1項記載のクライオポンプ装置。
(2) The halogen gas is freon-14 (CF
14) and oxygen.
(3)前記モリブデケ又はモリブデンシリサイド化合物
の粒界のエツチング深さくD)は、前記薄膜のエツチン
グ前の膜厚(DO)に対し、D ) Doの関係である
ことを特徴とする特許請求の範囲第1項記載のクライオ
ポンプ装置。
(3) The etching depth D) of the grain boundaries of the molybdenum oxide or molybdenum silicide compound has a relationship of D ) Do with respect to the film thickness (DO) of the thin film before etching. The cryopump device according to item 1.
JP13590883A 1983-07-27 1983-07-27 Cryopump Pending JPS6027790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13590883A JPS6027790A (en) 1983-07-27 1983-07-27 Cryopump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13590883A JPS6027790A (en) 1983-07-27 1983-07-27 Cryopump

Publications (1)

Publication Number Publication Date
JPS6027790A true JPS6027790A (en) 1985-02-12

Family

ID=15162638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13590883A Pending JPS6027790A (en) 1983-07-27 1983-07-27 Cryopump

Country Status (1)

Country Link
JP (1) JPS6027790A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250182U (en) * 1988-09-30 1990-04-09
WO2011055465A1 (en) * 2009-11-09 2011-05-12 住友重機械工業株式会社 Cryo pump, and vacuum pumping method
KR101241093B1 (en) 2011-04-28 2013-03-11 스미도모쥬기가이고교 가부시키가이샤 Cold trap and vacuum exhaust apparatus
US8572988B2 (en) 2010-02-19 2013-11-05 Sumitomo Heavy Industries, Ltd. Cold trap and vacuum evacuation apparatus
CN103397999A (en) * 2013-07-17 2013-11-20 安徽万瑞冷电科技有限公司 Method for increasing pumping speed of low-temperature pump

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250182U (en) * 1988-09-30 1990-04-09
WO2011055465A1 (en) * 2009-11-09 2011-05-12 住友重機械工業株式会社 Cryo pump, and vacuum pumping method
CN102686880A (en) * 2009-11-09 2012-09-19 住友重机械工业株式会社 Cryopump and vacuum pumping method
KR101385887B1 (en) * 2009-11-09 2014-04-15 스미도모쥬기가이고교 가부시키가이샤 Cryo pump, and vacuum pumping method
JP5679218B2 (en) * 2009-11-09 2015-03-04 住友重機械工業株式会社 Cryopump, cryopump manufacturing method, and evacuation method
US9032741B2 (en) 2009-11-09 2015-05-19 Sumitomo Heavy Industries, Ltd. Cryopump and vacuum pumping method
US8572988B2 (en) 2010-02-19 2013-11-05 Sumitomo Heavy Industries, Ltd. Cold trap and vacuum evacuation apparatus
KR101241093B1 (en) 2011-04-28 2013-03-11 스미도모쥬기가이고교 가부시키가이샤 Cold trap and vacuum exhaust apparatus
CN103397999A (en) * 2013-07-17 2013-11-20 安徽万瑞冷电科技有限公司 Method for increasing pumping speed of low-temperature pump

Similar Documents

Publication Publication Date Title
US5513499A (en) Method and apparatus for cryopump regeneration using turbomolecular pump
US20050269065A1 (en) Heat pipe with hydrophilic layer and/or protective layer and method for making same
JPS6027790A (en) Cryopump
US4055686A (en) Method of forming metal hydride films
JPS60222572A (en) Cryopump
Benvenuti Characteristics, advantages, and possible applications of condensation cryopumping
CN102743894B (en) Cold trap and vacuum exhaust device
US6330801B1 (en) Method and system for increasing cryopump capacity
US5231839A (en) Methods and apparatus for cryogenic vacuum pumping with reduced contamination
JP2607417B2 (en) Multi-layer vacuum insulation method and insulated double tube
JPS58117372A (en) Superhigh vacuum pump using cryogenic pump and bulk getter pump in combination
US5450729A (en) Cryopump
JP3062706B2 (en) Cryopump with low temperature trap
JPS60180117A (en) Semiconductor manufacturing apparatus
JPH045480A (en) Getter pump unit
US3258193A (en) Vacuum method
JP2822330B2 (en) Cryopump and vacuum pump
JPH0447180A (en) Cryopump
JPH0326878A (en) Complex cryopump
JPS58131382A (en) Cryosorption pump
Shen Ultrahigh vacuum systems using low temperature pumps
JPH0547695A (en) Exhaust method in fine processor
JPH0499867A (en) Manufacturing device for semiconductor device
JP2721601B2 (en) Hydrogen evacuation method and apparatus using cryopump
JPH03232530A (en) Internal diffusion thin film type getter material