JPS58117372A - Superhigh vacuum pump using cryogenic pump and bulk getter pump in combination - Google Patents

Superhigh vacuum pump using cryogenic pump and bulk getter pump in combination

Info

Publication number
JPS58117372A
JPS58117372A JP21204181A JP21204181A JPS58117372A JP S58117372 A JPS58117372 A JP S58117372A JP 21204181 A JP21204181 A JP 21204181A JP 21204181 A JP21204181 A JP 21204181A JP S58117372 A JPS58117372 A JP S58117372A
Authority
JP
Japan
Prior art keywords
pump
cryo
vacuum tank
shield
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21204181A
Other languages
Japanese (ja)
Other versions
JPS6157473B2 (en
Inventor
Chikara Hayashi
林 主税
Muneharu Komiya
小宮 宗治
Kiyonori Oowa
大輪 清昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Nihon Shinku Gijutsu KK filed Critical Ulvac Inc
Priority to JP21204181A priority Critical patent/JPS58117372A/en
Publication of JPS58117372A publication Critical patent/JPS58117372A/en
Publication of JPS6157473B2 publication Critical patent/JPS6157473B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum

Abstract

PURPOSE:To improve the evacuating performance of a vacuum pump and to prolong the service life of the same, by disposing a cryo-pump panel at the central portion in a vacuum tank having a gate valve attached thereto, and disposing a bulk getter pump element around the cryo-pump panel by the intermediary of a shield. CONSTITUTION:A vacuum tank 1 is connected via a gate valve 4 to a vacuum tank 9 to be evacuated, and a cryo-pump panel 2 connected to a cryogenic engine 10 is disposed at the central portion in the tank 1. A shield 5 cooled by cooling pipes 8 is disposed around the cryo-pump panel 2, and a bulk getter pump element 3 is disposed at one side of the shield 5 to locate on the outside thereof. Further, a power supply portion 7 is connected to the element 3 and extended to the outside of the vacuum tank 1. The outer wall of the vacuum tank 1 is also cooled by water cooling pipes 8.

Description

【発明の詳細な説明】 この発明は、バルクゲッタポンプ素子とクライオポンジ
ノぐネルを同一の真空槽内に特殊な配列に組合わせた超
高真空ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultra-high vacuum pump in which a bulk getter pump element and a cryopond channel are combined in a special arrangement within the same vacuum chamber.

非常に活性なZr−A1合金が金属のストリップの両面
にそれぞれ例えばSOμの厚さ、電縫にして約/7■/
 Caにコートされ、このコートされたZr−Al−合
金層が活性非蒸発ゲッタとして働くバルクゲッタポンプ
が真空ポンプとして利用されていることは従来よシ知ら
れている。しかしこのポンプは蒸発型ゲツタポンプと同
様に活性ガスに対しては大きな排気速度をもっているが
、不活性ガスを排気することは困難である欠点をもって
いる。又このポンプは通常動作温度が≠00℃〜室温で
、活性化時に730℃まで昇温することが必要である。
A highly active Zr-A1 alloy is applied to each side of the metal strip to a thickness of e.g.
It is well known that bulk getter pumps coated with Ca and in which the coated Zr--Al alloy layer acts as an active non-evaporable getter are used as vacuum pumps. However, although this pump, like the evaporative getter pump, has a high pumping speed for active gas, it has the disadvantage that it is difficult to pump inert gas. Further, the normal operating temperature of this pump is ≠00° C. to room temperature, and it is necessary to raise the temperature to 730° C. upon activation.

一方例えば10−にの極低泥面に大気成分のガスを凝結
させることにより排気作用を行う形式のクライオポンプ
も従来より公知である。
On the other hand, a cryopump of the type that performs an evacuation action by condensing atmospheric component gases on an extremely low mud surface of, for example, 10 mm is also conventionally known.

本願の発明は、非蒸発ゲッタ材によるガスの吸収により
排気作用を行う形式のノぐルクゲツタポンゾと、上記の
極低泥面に大気成分のガスを凝結させて排気作用を行う
クライオポンプとを組合わせて7つの真空槽内に配画し
た複合ポンプとしで排気性能を渭犬芒せポンプの寿命を
著しく延長しようとするものである。
The invention of the present application combines a noguruku gettuta ponzo that performs exhaust action by absorbing gas with a non-evaporable getter material, and a cryopump that performs exhaust action by condensing atmospheric component gas on the ultra-low mud surface. This is a composite pump arranged in seven vacuum chambers, which significantly extends the pump's lifespan and improves its exhaust performance.

クライオポンプとノ々ルクグットポンプとは、いずれも
排気ガス溜め込み式(吸着式)であるため、一定量のガ
スを吸着す、ると排気能力が減少する。
Both the cryopump and the Norukugut pump are exhaust gas storage type (adsorption type), so when a certain amount of gas is adsorbed, the exhaust capacity decreases.

このため再生化処理を行ないポンプ能力の回復全するこ
とが必要で、すなわち再生作用が必要である。
For this reason, it is necessary to carry out a regeneration process to fully recover the pumping capacity, that is, a regeneration action is necessary.

又クライオポンプは水素を多量に排気すると、吸着平衡
圧が上昇1−1超高負空での排気速度が著しく減少する
Furthermore, when a cryopump pumps out a large amount of hydrogen, the adsorption equilibrium pressure increases.1-1The pumping speed in an ultra-high negative atmosphere decreases significantly.

一ツババルクゲッタポンプは室温の操作でも11゜に対
する排気速度は僅かに減少するだけなI7.)で、多量
のII、を排気しても超高真空で排気I電力を保持でき
る。そのためこの二つのポンプを組合わせて使用するこ
とにより再活性化まで時間を延長できる訳である。しか
しながら上述のように両者の/I5ンプは温度差のある
状態で作動するので、これを一つの真空槽内に装置する
には両者の間にシールドを設けて熱遮断を17なければ
能率が下がることは明白で、そのため水又はガスの冷却
蛇管で冷却したシールドを設ける必要がある 又ノ々ルクゲツタポンプは、大気圧にさらすと室温でも
活性ガスを吸収してしまうため、その都度再活性化が必
′冴となる。ところが再活性化できる回数は限定されて
いるので、度々ポンプ室を大気圧状態にすることは好1
しくないので、真空槽にはゲート弁を一体に溶着して排
気されるべき真空槽をポンプ室と遮断し、必要時に一応
真空にした後ゲート弁を開き、両2j?ンプを作動させ
れば両ポンプの再活性化の度数が減少し両ポンゾの寿命
を著しく延長できる。
Even when operated at room temperature, the pumping speed of the one-flange bulk getter pump is only slightly reduced compared to 11°. ), even if a large amount of II is evacuated, the exhaust I power can be maintained in an ultra-high vacuum. Therefore, by using these two pumps in combination, the time until reactivation can be extended. However, as mentioned above, both /I5 pumps operate under a temperature difference, so if you want to install them in one vacuum chamber, you must provide a shield between them and provide heat isolation, which will reduce efficiency. This is obvious, and therefore it is necessary to install a shield cooled by a water or gas cooling coil.Also, the Norokugetsuda pump absorbs active gas even at room temperature when exposed to atmospheric pressure, so it must be reactivated each time. 'Become sharp. However, the number of times it can be reactivated is limited, so it is preferable to frequently bring the pump chamber to atmospheric pressure.
Since this is not possible, a gate valve is welded to the vacuum chamber to isolate the vacuum chamber to be evacuated from the pump chamber, and when necessary, after creating a vacuum, the gate valve is opened, and both 2j? By operating the pump, the frequency of reactivation of both pumps is reduced, significantly extending the life of both pumps.

以下に図面についてこの発明の詳細な説明する。The invention will now be described in detail with reference to the drawings.

図面において/はポンプを配置する真空槽であり、その
中心部にクライオポンプ・々ネルλを設け、外周に7個
又は数個あるいは連続してノ々ルクゲツタポンプ素子3
を配設し両ポンプの中央にシールドjを設ける。シール
ドjの外周と真空槽自体の外壁は水冷蛇管rなどで冷却
するのが望ましい。
In the drawing, / is a vacuum chamber in which a pump is placed, and a cryopump channel λ is provided in the center of the vacuum chamber, and seven or several or continuous nodal pump elements 3 are installed on the outer periphery.
and a shield j in the center of both pumps. It is desirable that the outer periphery of the shield j and the outer wall of the vacuum chamber itself be cooled with a water-cooled coil r or the like.

又真空槽/にはゲート弁Vを溶接しであるが、弁の反対
側には排気されるべき真空槽りが接続される。なお乙は
ノ々ツフルを設ける場合もある空間、7はノ々ルクゲツ
タボンプ素子の電力導入部を示し、10はクライオエン
ジンを示している。
Further, a gate valve V is welded to the vacuum chamber/, and a vacuum chamber to be evacuated is connected to the opposite side of the valve. Note that O is a space in which a Nonotsufuru may be installed, 7 is the power introduction part of the Nonotsufuru element, and 10 is a cryo engine.

【図面の簡単な説明】[Brief explanation of the drawing]

図面けこの開明の実施例の説明図である。 /・・・真空槽、コ・・・クライオポンプパネル、3・
・・バルクゲッタポンプ素子、グ・・・ゲート弁、j・
・・シールドゝ、乙・・・ノ々ツファ、7・・・電力導
入部、♂・・・冷却・1?、り・・・排気されるべき真
空槽、IO・・・クライオエンジン 慌面の浄書(′内容に変更なし) 手続補正書(方式) 昭和57年 2月 3日 特許庁長官殿 ■、小事件表示 昭和56年 特許願 @212041号組合わせた超高
真空ポンプ 3、補正をする者 事件との関係   特許出願人 住 所 神奈川県茅ケ崎市萩園2500番地名称  日
本真空枝術株式会社 4、代 理 人 〒105  住所 東京都港区西新橋1丁目1番15号
物産ピル別館 電話(591) 02616、補正の内
容 特許出願時にゼロックスの図面を抜出したため図面をU
)訃したもの r2!百の浄書内容に壱市戸「し 41−
FIG. 2 is an explanatory diagram of an embodiment of the invention; /...Vacuum chamber, Co...Cryopump panel, 3.
...Bulk getter pump element, G...gate valve, j.
・・Shield ゝ、Otsu・・・Nonotsufa、7...Power introduction section、♂...Cooling・1? , Ri...Vacuum chamber to be evacuated, IO...Cryo engine engraving (no change in content) Procedural amendment (method) February 3, 1981 Mr. Commissioner of the Japan Patent Office■, Small case Display 1980 Patent application @212041 Combined ultra-high vacuum pump 3, relationship with the case of the person making the amendment Patent applicant address 2500 Hagizono, Chigasaki City, Kanagawa Prefecture Name Japan Vacuum Branch Jutsu Co., Ltd. 4, Agent 105 Address: Bussan Pill Annex, 1-15 Nishi-Shinbashi, Minato-ku, Tokyo Telephone: (591) 02616 Contents of amendment: Xerox drawings were extracted at the time of patent application, so the drawings were
) The deceased r2! Ichito in the contents of 100 engravings ``Shi 41-

Claims (1)

【特許請求の範囲】[Claims] 被排気真空槽に一方を取付けるようにしたゲート弁全一
体に溶接した真空槽内に中央にクライオポンプパネルを
設け、その周囲にシールド全弁して7個又は数個のノ々
ルクゲツタポンプ素子全配置したこと全特徴とするクラ
イオポンプとバルクゲッタポンプを組合わせた超高真空
ポンプ。
A cryopump panel is installed in the center of the vacuum chamber which is welded to the gate valve, one of which is attached to the vacuum chamber to be evacuated, and seven or several Norukugetsuta pump elements are placed around it with all shield valves. An ultra-high vacuum pump that combines a cryopump and a bulk getter pump with all the features.
JP21204181A 1981-12-30 1981-12-30 Superhigh vacuum pump using cryogenic pump and bulk getter pump in combination Granted JPS58117372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21204181A JPS58117372A (en) 1981-12-30 1981-12-30 Superhigh vacuum pump using cryogenic pump and bulk getter pump in combination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21204181A JPS58117372A (en) 1981-12-30 1981-12-30 Superhigh vacuum pump using cryogenic pump and bulk getter pump in combination

Publications (2)

Publication Number Publication Date
JPS58117372A true JPS58117372A (en) 1983-07-12
JPS6157473B2 JPS6157473B2 (en) 1986-12-06

Family

ID=16615883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21204181A Granted JPS58117372A (en) 1981-12-30 1981-12-30 Superhigh vacuum pump using cryogenic pump and bulk getter pump in combination

Country Status (1)

Country Link
JP (1) JPS58117372A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627986A (en) * 1985-07-03 1987-01-14 Tokuda Seisakusho Ltd Vacuum exhaust apparatus
EP0693626A1 (en) * 1994-07-20 1996-01-24 Applied Materials, Inc. Vacuum chamber for ultra high vacuum processing at high temperatures
WO1996017171A3 (en) * 1994-12-02 1996-10-24 Saes Pure Gas Inc Getter pump module and system
US5685963A (en) * 1994-10-31 1997-11-11 Saes Pure Gas, Inc. In situ getter pump system and method
US5855118A (en) * 1996-03-26 1999-01-05 Saes Pure Gas, Inc. Combination cryopump/getter pump and method for regenerating same
US5911560A (en) * 1994-10-31 1999-06-15 Saes Pure Gas, Inc. Getter pump module and system
US5935395A (en) * 1995-11-08 1999-08-10 Mitel Corporation Substrate processing apparatus with non-evaporable getter pump
US6077404A (en) * 1998-02-17 2000-06-20 Applied Material, Inc. Reflow chamber and process
US6109880A (en) * 1994-10-31 2000-08-29 Saes Pure Gas, Inc. Getter pump module and system including focus shields
US6142742A (en) * 1994-10-31 2000-11-07 Saes Pure Gas, Inc. Getter pump module and system
US6361618B1 (en) 1994-07-20 2002-03-26 Applied Materials, Inc. Methods and apparatus for forming and maintaining high vacuum environments

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627986A (en) * 1985-07-03 1987-01-14 Tokuda Seisakusho Ltd Vacuum exhaust apparatus
EP0693626A1 (en) * 1994-07-20 1996-01-24 Applied Materials, Inc. Vacuum chamber for ultra high vacuum processing at high temperatures
US6361618B1 (en) 1994-07-20 2002-03-26 Applied Materials, Inc. Methods and apparatus for forming and maintaining high vacuum environments
US6043137A (en) * 1994-10-31 2000-03-28 Saes Getters S.P.A. Getter pump module and system
US6142742A (en) * 1994-10-31 2000-11-07 Saes Pure Gas, Inc. Getter pump module and system
US5879134A (en) * 1994-10-31 1999-03-09 Saes Pure Gas, Inc. In situ getter pump system and method
US5911560A (en) * 1994-10-31 1999-06-15 Saes Pure Gas, Inc. Getter pump module and system
US5972183A (en) * 1994-10-31 1999-10-26 Saes Getter S.P.A Getter pump module and system
US5980213A (en) * 1994-10-31 1999-11-09 Saes Getters S.P.A. Getter pump module and system
US5993165A (en) * 1994-10-31 1999-11-30 Saes Pure Gas, Inc. In Situ getter pump system and method
US5997255A (en) * 1994-10-31 1999-12-07 Saes Getters S.P.A. Method for pumping a chamber using an in situ getter pump
US5685963A (en) * 1994-10-31 1997-11-11 Saes Pure Gas, Inc. In situ getter pump system and method
US6165328A (en) * 1994-10-31 2000-12-26 Saes Getters S.P.A. Method for processing wafers with in situ gettering
US6109880A (en) * 1994-10-31 2000-08-29 Saes Pure Gas, Inc. Getter pump module and system including focus shields
WO1996017171A3 (en) * 1994-12-02 1996-10-24 Saes Pure Gas Inc Getter pump module and system
US5935395A (en) * 1995-11-08 1999-08-10 Mitel Corporation Substrate processing apparatus with non-evaporable getter pump
US5855118A (en) * 1996-03-26 1999-01-05 Saes Pure Gas, Inc. Combination cryopump/getter pump and method for regenerating same
US6077404A (en) * 1998-02-17 2000-06-20 Applied Material, Inc. Reflow chamber and process
US6299689B1 (en) 1998-02-17 2001-10-09 Applied Materials, Inc. Reflow chamber and process

Also Published As

Publication number Publication date
JPS6157473B2 (en) 1986-12-06

Similar Documents

Publication Publication Date Title
US5855118A (en) Combination cryopump/getter pump and method for regenerating same
JPS58117372A (en) Superhigh vacuum pump using cryogenic pump and bulk getter pump in combination
US3485054A (en) Rapid pump-down vacuum chambers incorporating cryopumps
US5357760A (en) Hybrid cryogenic vacuum pump apparatus and method of operation
JP5552693B2 (en) Cryopump louver extension
US4212170A (en) Cryopump
US2757840A (en) Method of and apparatus for evacuating vessels
JPS60222572A (en) Cryopump
JPH0214554B2 (en)
US5450729A (en) Cryopump
JPH1081952A (en) Reactive physical vapor depositing device and reactive physical vapor depositing method
JPS62162779A (en) Improvement of cryopump
US4896511A (en) Optimally staged cryopump
JPH0544642A (en) Cryopump equipped with low temperature trap
TW406162B (en) Combination cryopump/getter pump and method for regenerating same, and method for manufacturing integrated circuits using same
JPS6027790A (en) Cryopump
JP2822330B2 (en) Cryopump and vacuum pump
JPH06306601A (en) Evacuation structure of sputtering device
JPH0447180A (en) Cryopump
JPH0326878A (en) Complex cryopump
JPS595798B2 (en) Cryopump regeneration device
JPS61185690A (en) Cryopump
JPH04187873A (en) Evacuation device
US3258193A (en) Vacuum method
JPH0355678B2 (en)