JPS58131382A - Cryosorption pump - Google Patents

Cryosorption pump

Info

Publication number
JPS58131382A
JPS58131382A JP1279082A JP1279082A JPS58131382A JP S58131382 A JPS58131382 A JP S58131382A JP 1279082 A JP1279082 A JP 1279082A JP 1279082 A JP1279082 A JP 1279082A JP S58131382 A JPS58131382 A JP S58131382A
Authority
JP
Japan
Prior art keywords
gas
condensed
cryogenic surface
cryogenic
cooling body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1279082A
Other languages
Japanese (ja)
Other versions
JPS6137468B2 (en
Inventor
Satoru Sukenobu
祐延 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP1279082A priority Critical patent/JPS58131382A/en
Publication of JPS58131382A publication Critical patent/JPS58131382A/en
Publication of JPS6137468B2 publication Critical patent/JPS6137468B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To enable to form a condensed layer of adsorptive gas uniformly only on a cryogenic surface and make it unnecessary to complicate the whole part of the titled pump when enlarging the area of the cryogenic surface, by adding a simple element. CONSTITUTION:Adsorptive gas introduced from the exterior is momentarily condensed on the first cryogenic surface 25, then evaporated, and the absorptive gas thus evaporated is condensed on the second cryogenic surface 24 to form the condensed layer of the adsorptive gas. Thus, it is possible to set only the first cryogenic surface 25 at an extremely low temperature, the whole quantity of the adsorptive gas introduced can be condensed on the first cryogenic surface 25 without causing any condensation on parts around an introducing port for the gas, and the gas condensed on the first cryogenic surface 25 is transferred onto the second cryogenic surface 24 to form the condensed layer of the adsorptive gas, so that the condensed layer can be formed in a uniform thickness even when the surface area of the second cryogenic surface 24 is large. Accordingly, it is unnecessary to divide the introducing port for the gas even in the case of a high-capacity cryosorption pump, and simplification of the pump or the like can be contrived.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、クライオソープションポンプの改喪に関する
0 〔発明の背景技術〕 一般に、超高真空度【得ようとする場合には、真空ポン
プとしてクライオソープションポンプが使用されている
0 クライオソープションポンプは、通常、真空引きされる
べき雰囲気内に液体ヘリウム醇で冷却された極低温面(
約4.2@K)を設けるとともに上記極低温面にムr 
@ NHHr Cot s flF@等の吸着性ガス凝
縮層を形成し、上記吸着性ガス凝縮層に前記雰囲気内の
ガス分子ta着させることによって一般的なりライオソ
ープポンプでは排気できないヘリウムや水素等まで排気
できるように構成されている0そして、このようなクラ
イオソープションポンプにあっては、輻射等によって極
低温面へ熱が侵入するの【防止する丸めに、通常、上記
極低温面の回りt熱シールド体で囲み、との熱シールド
体を液体窒素等で冷却し、その表面【低温(約7)@K
)に保つようにしている0 〔背景技術の問題点〕 上記のように構成された従来のクライオソーブシlンボ
ンプにあっては、極低温面を熱シールド体で囲むように
しているので輻射によって極低温面に侵入する熱量【抑
えることができる利点があるが、反間、吸着性ガス導入
時に、この吸着性ガスが熱シールド体の表面に凝縮して
付着し易く、このため、極低温面に一様な厚さの吸着性
ガス凝縮層を形成することができず、この結果、ポンプ
としての性能が比較的低いと言う問題があった。なお、
熱り一ルド体を除去した場合には、導入された吸着性ガ
スが真空容器のガス導入口付近に凝縮付着し易く、この
問題を解決するには、上記ガス導入口付近vta着性ガ
スの沸点以上の温度に維持する必要があり、この結果、
前記極低温面への輻射による熱侵入が大きくなる。この
次め、上記極低温面を極低温(約4.2°K)に維持す
るために、多量の冷媒が必要となり、運転コストが増大
する問題がある。さらに、排気空間が大きい場合には、
前記極低温面の面積も大きくする必要があるが、この場
合に、上記極低温面に均一な吸着性ガス凝縮層【形成さ
せるために、従来のポンプでは前記ガス導入口【複数に
分割して設けるようにしている。シ九がって、装置が複
線化、大蓋化し製造費用の増大化【免れ得ない問題もあ
った0〔発明の目的〕 本発明は、このような事情に鑑みてなされ良もので、そ
の目的とするところは、簡単な要素【付加すゐことによ
って、極低温面だけに吸着性ガスの凝縮層【一様に形成
させることができ、しかも極低温面の面積【大きくした
場合であっても全体が1m化する虞れがなく、もってポ
ンプとしての性能向上化と製造ならびに運転コストの低
減化とを図れるクライオソープシランポンプ【提供する
ことにある0 〔発明0**) 本発明に係るクライオソーブシランポンプは、真空引き
される111!I気内に上記雰囲気外から温度制御可能
な第1および第20極低温面【設け、吸着性ガス凝縮層
を形成させるに際し、一旦、第1の極低温面に吸着ガス
の凝縮層を形成させ、その後、上記第1の極低温面に凝
縮付着している吸着性ガスを蒸発させ、この蒸発した吸
着性ガスを第2の極低温面に凝縮付着させることによっ
て上記第2の極低温面に吸着性ガス凝縮層【形成させる
ようにしたことを特徴としている。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to the modification of cryosorption pumps. Cryosorption pumps are used.0 Cryosorption pumps usually use a cryogenic surface (cooled with liquid helium) in the atmosphere to be evacuated.
Approximately 4.2 K) is provided, and the above cryogenic surface is
By forming an adsorbent gas condensation layer such as @NHHr Cot s flF@, and allowing gas molecules in the atmosphere to adhere to the adsorption gas condensation layer, even helium, hydrogen, etc. that cannot be exhausted with a general or lyosoap pump can be evacuated. In order to prevent heat from penetrating into the cryogenic surface due to radiation etc., such cryosorption pumps are usually configured to prevent heat from entering the cryogenic surface by radiation, etc. Surrounded by a shield body, the heat shield body is cooled with liquid nitrogen, etc., and its surface [low temperature (approx.
) [Problems in the Background Art] In the conventional cryosorb cylinder pump configured as described above, the cryo-temperature surface is surrounded by a heat shield, so that the cryo-sorbing cylinder is kept at a temperature of 0 by radiation. It has the advantage of being able to suppress the amount of heat that penetrates into the surface, but on the other hand, when adsorbent gas is introduced, this adsorbent gas tends to condense and adhere to the surface of the heat shield, and therefore It is not possible to form an adsorbent gas condensation layer of a certain thickness, and as a result, there is a problem in that the performance as a pump is relatively low. In addition,
When the heated body is removed, the introduced adsorptive gas tends to condense and adhere to the vicinity of the gas inlet of the vacuum container.To solve this problem, it is necessary to remove the adsorbent gas near the gas inlet The temperature must be maintained above the boiling point, resulting in
Heat intrusion into the cryogenic surface due to radiation increases. Secondly, in order to maintain the cryogenic surface at a cryogenic temperature (approximately 4.2°K), a large amount of refrigerant is required, resulting in an increase in operating costs. Furthermore, if the exhaust space is large,
It is also necessary to increase the area of the cryogenic surface, but in this case, in order to form a uniform adsorptive gas condensation layer on the cryogenic surface, in conventional pumps the gas inlet is divided into multiple parts. I am trying to set it up. As a result, the equipment became multi-tracked and had a large lid, increasing manufacturing costs. The aim is to form a condensed layer of adsorbent gas uniformly only on the cryogenic surface by adding a simple element, and to reduce the area of the cryogenic surface by increasing the area. A cryo-soap silane pump that does not have the risk of the entire length becoming 1 m, thereby improving the performance of the pump and reducing manufacturing and operating costs. The cryosorb silane pump is evacuated 111! First and second cryogenic surfaces whose temperature can be controlled from outside the atmosphere are provided in the atmosphere, and when forming an adsorbent gas condensation layer, a condensation layer of adsorbed gas is first formed on the first cryogenic surface. Then, the adsorptive gas condensed and adhered to the first cryogenic surface is evaporated, and the vaporized adsorptive gas is condensed and adhered to the second cryogenic surface. It is characterized by the formation of an adsorbent gas condensation layer.

〔発明の効果〕〔Effect of the invention〕

このように、外部から導入された吸着性ガス【一旦Ip
11の極低温面に凝縮付着させた後、これ【蒸発させ、
この蒸発し7′j吸着性ガス1■の極低温面に凝縮付着
させることによって上記絶2の極低温面に吸着性ガス凝
縮層を形成させるようにしているので、吸着性ガス導入
時には、Islの極低温面だけ【他に比較して極端に低
温にでき、この結果、吸着性ガスがガス導入口の付近に
凝縮付着するようなことはなく、導入した吸着性ガスの
全量【第1の極低温面に凝縮付着させることができる。
In this way, the adsorptive gas introduced from the outside [once Ip
After condensing and adhering to the cryogenic surface of No. 11, this [evaporates]
By condensing and adhering this evaporated adsorbent gas 1 to the cryogenic surface of the adsorbent gas 1, an adsorptive gas condensation layer is formed on the cryogenic surface of the absolute 2, so when the adsorbent gas is introduced, Isl Only the cryogenic surface of [1] can be kept at an extremely low temperature compared to other surfaces, and as a result, adsorbent gas does not condense and adhere near the gas inlet, and the total amount of adsorbent gas introduced [1st Can be deposited by condensation on cryogenic surfaces.

そして、第1の極低温面に凝縮付着した吸着性ガス【第
2の極低温面に移行させて上記第20極低温面に吸着性
ガス凝縮層を形成させているので、たとえ[2の極低温
面の表面積が大きい場合であっても、上記第20巻低温
面に均一な厚みの吸着性ガス凝縮層を形成させることが
できる。したがって、たとえ大容量用のものであっても
ガス導入口【分割する必要がなく、この結果、装置の簡
素化。
The adsorptive gas condensed and adhered to the first cryogenic surface [is transferred to the second cryogenic surface and an adsorptive gas condensation layer is formed on the 20th cryogenic surface, so even if Even if the surface area of the low-temperature surface is large, an adsorbent gas condensation layer of uniform thickness can be formed on the low-temperature surface of the 20th volume. Therefore, even if the gas inlet is for a large capacity, there is no need to separate it, which simplifies the device.

小飄化、軽量化【図れ、製造費用【減少させゐことがで
きる。
It can be made smaller and lighter, and manufacturing costs can be reduced.

また、吸着性ガス導入口の位置と、Ill 、#E2の
極低温面との位置【選択することによって、上記1lI
Ol低O面にJI2の極低温面の熱シールド体とし、て
の役目【させることができるので、ガス導入口側から輻
射によって上記M2C1極低温面へ熱が侵入するの【防
止でき、この結果、上記JII2の極低温面を冷却する
に必要な冷厳【節約することができる。
In addition, the position of the adsorptive gas inlet and the position of the cryogenic surface of Ill, #E2 [by selecting
Since the O1 low O surface can serve as a heat shield for the cryogenic surface of JI2, it is possible to prevent heat from entering the cryogenic surface of M2C1 due to radiation from the gas inlet side. , the cold rigor required to cool the cryogenic surface of JII2 mentioned above can be saved.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例tX面を参照しながら説明するO 図は本発明の一実施例に係るクライオツープレ1ンボン
プの断面図である。
Embodiment of the present invention This will be explained with reference to the X plane. FIG. 2 is a sectional view of a cryo-to-plane pump according to an embodiment of the present invention.

図中1は内部が真空引きされるべき部屋であり、この部
I11の壁の一部には孔2が設けられている。そして、
上記孔2を介してクライオツープレ1ンボンプLが壁絖
されている。
In the figure, reference numeral 1 is a chamber whose interior is to be evacuated, and a hole 2 is provided in a part of the wall of this portion I11. and,
A cryo-two-plate bomb L is installed through the hole 2.

クライオツープレ1ンボンプLは、大きく分けて、上記
孔2に気密に接続され危容器4と、この容器4内に選択
的に吸着性ガス【供給するガス供給系5と、前記容器4
内に設けられた排気部Cと、この排気部6の温度【容器
4外から選択的に制御する温度制御部7とから構成され
ている。
The cryo-two pre-1 pump L is roughly divided into a hazardous container 4 which is airtightly connected to the hole 2, a gas supply system 5 which selectively supplies adsorbent gas into the container 4, and a gas supply system 5 which selectively supplies adsorbent gas into the container 4.
It consists of an exhaust section C provided inside the container 4, and a temperature control section 7 that selectively controls the temperature of this exhaust section 6 from outside the container 4.

前記容器4は、一端側に前記部屋1の壁に設けられ穴孔
2と#1は同径の開口部JJI有し、他端側に小径の開
ロ部Jjj−有した筒状体13と、この筒状体13の上
記開口部12′に気密に閉塞するように設けられた板体
14とで構成されている。上記筒状体13の開口部11
の外端縁には外側に向ゆで突出するフランジ部15が一
体的に形成されており、前記孔2と開口部11とt軸合
せさせた状態下で上記7ランク部15がボルト1−によ
って部屋1の壁に締付は固定され、これによって筒状体
13と部W11とが気密に接続されている。を次、筒状
体13の開口部12の外端縁にも外側に向けて突出する
フランジ部1rが形成されており、このフランジ部11
に前記板体14がボルト18によって気密に散着されて
いる。
The container 4 has a cylindrical body 13 provided in the wall of the room 1 on one end side and has an opening JJI having the same diameter as the hole 2 and #1, and has a small diameter opening JJJ on the other end side. , and a plate 14 provided to airtightly close the opening 12' of the cylindrical body 13. Opening 11 of the cylindrical body 13
A flange portion 15 projecting outward is integrally formed on the outer edge of the 7-rank portion 15 when the hole 2 and the opening 11 are aligned with the t-axis by the bolt 1-. The clamp is fixed to the wall of the room 1, thereby airtightly connecting the cylindrical body 13 and the portion W11. Next, a flange portion 1r that projects outward is also formed on the outer edge of the opening 12 of the cylindrical body 13, and this flange portion 11
The plate body 14 is hermetically secured to the plate body 14 by bolts 18.

しかして、前記板体14の中央部には、この板体JJI
気密に貫通する形にパイプ19が設けてあり、このパイ
プ19t)容器外に位置する端部は前記ガス供給系5に
接続されている。ガス供給系5は、Ar j N)13
 # COx + S Fa 尋O吸着性カス【収容し
九ボンベ2oと、このポンベ20内のガス【選択的にパ
イプ19を介して前記容器4内へ導くパルプ21とで構
成されている。
Therefore, in the central part of the plate 14, this plate JJI
A pipe 19 is provided to pass through the container in an airtight manner, and the end of this pipe 19t located outside the container is connected to the gas supply system 5. The gas supply system 5 is Ar j N) 13
# COx + S Fa O adsorbent scum consists of a cylinder 2o containing the gas and a pulp 21 which selectively guides the gas in the cylinder 20 into the container 4 via the pipe 19.

しかして、前記排気部Iは次のように構成されている。The exhaust section I is constructed as follows.

すなわち、容器41r構成する筒状体13内に開口部1
1側から開口部12側に亘って4段構成にシェブロン状
の冷却体22,23゜24.25に配置している。各冷
却体22゜23.24.25はそれぞれ同様に構成され
ており、パイプ26.2jl、28.29内を通流する
冷媒によって冷却されるようになっている。
That is, an opening 1 is formed in the cylindrical body 13 constituting the container 41r.
The chevron-shaped cooling bodies 22 and 23 are arranged in four stages from the first side to the opening 12 side. The cooling bodies 22, 23, 24, 25 are constructed in the same way, and are cooled by the refrigerant flowing through the pipes 26.2jl, 28.29.

各冷却体22.23,24.25に冷却するパイプ2g
、2r、211.29はそれぞれ筒状体13の側壁を気
密に貫通してその一端側が前記温度制御部1にそれぞれ
接続されている。
2g of pipes to cool each cooling body 22.23, 24.25
.

温度制御部1は、たとえば、冷媒源と、この冷媒源から
の冷媒流量を制御するパルプとを主体にして構成されて
いる。すなわち、具体的には、前記冷却体225f冷却
するパイプ26fパルプ30を介して液体窒素ボンベ3
1に接続し、冷却体239f冷却するパイプ2Pkパル
プ32を介して液体ヘリウムボンベ33に接続し、冷却
体j41jH冷却するパイプ2afパルプ34【介して
液体ヘリウムボンベ35に接続し、冷却体25f冷却す
るパイプ、g9t−パルプ36を介して液体ヘリウムボ
ンベsrに接続したものとなっている。なお図中38は
反射板1示している0 次に、上記Oように構成されたタライオソープシlンポ
ンプの使用例【説明する。
The temperature control unit 1 is mainly composed of, for example, a refrigerant source and a pulp that controls the flow rate of refrigerant from the refrigerant source. Specifically, the liquid nitrogen cylinder 3 is passed through the pipe 26f that cools the cooling body 225f and the pulp 30.
Pipe 2af is connected to the liquid helium cylinder 33 through the cooling body j41jH and is connected to the liquid helium cylinder 35 through the pulp 34, and is connected to the liquid helium cylinder 35 for cooling through the cooling body 25f. It is connected to a liquid helium cylinder sr via a pipe, g9t-pulp 36. In the figure, reference numeral 38 indicates the reflecting plate 1.Next, an example of use of the Thaliosoap pump configured as above will be described.

まず全知の真空ポンプで部屋l内の真空度【ある程度ま
で上昇させておく0次にバルー1set開放し冷却体2
5【冷却するパイプ29内に液体ヘリウム【通流させ上
記冷却体zs11(冷却する。この場合、パルプS−の
一度を制御することによって液体ヘリウムの流量を調整
して冷却体2Jの表面がム’ * ”m * CO,#
 8 Fa等の吸着性ガスの凝縮温度以下の極低温面と
なるように設定する。次にパルプ21kH放してポンベ
20から吸着性ガスを容器4内へ導入する。
First, use the omniscient vacuum pump to raise the vacuum level in the room to a certain level. Next, open 1 set of balloons and cool body 2.
5 [Liquid helium [is passed through the pipe 29 to be cooled and the cooling body zs11 (cooled). ' * "m * CO, #
8 Set to be a cryogenic surface below the condensation temperature of adsorbent gas such as Fa. Next, the pulp 21kHz is released and adsorbent gas is introduced into the container 4 from the pump 20.

導入された上記吸着性ガスは前記冷却体25の極低温面
に凝縮付着する口冷却体250表面の吸着性ガス凝縮層
が十分厚くなるまで上記吸着性ガスを導入した後、パル
プ271閉じる。
The introduced adsorptive gas condenses and adheres to the cryogenic surface of the cooling body 25 until the adsorptive gas condensation layer on the surface of the cooling body 250 becomes sufficiently thick, and then the pulp 271 closes.

次にパルプ:IO,32,349f開放する0この操作
によって、冷却体22は液体窒素で冷却され、また冷却
体23.24は液体ヘリウムで冷却される。したがって
、冷却体23.24の表面は極低温に冷却される。上記
各冷却体22゜23.24が十分冷却され友後に、パル
プ36の開度【制御し、液体ヘリウムの流量【減少させ
ることによって、前記冷却体ztttv温度【徐々に上
昇させる。このようにすると冷却体25の表面に凝縮付
着している吸着性ガスが蒸発し、この蒸発し次吸着性ガ
スが隣の極低温に冷却され九冷却体240表面に再び凝
縮付着し、これによって冷却体240表面に吸着性ガス
凝縮層が一様に形成されることになる。
Next, pulp: IO, 32, 349f is opened.0 By this operation, the cooling body 22 is cooled with liquid nitrogen, and the cooling bodies 23 and 24 are cooled with liquid helium. Therefore, the surfaces of the cooling bodies 23, 24 are cooled to a cryogenic temperature. After each of the cooling bodies 22, 23, and 24 has been sufficiently cooled, the temperature of the cooling body ztttv is gradually increased by controlling the opening degree of the pulp 36 and decreasing the flow rate of liquid helium. In this way, the adsorptive gas that has condensed and adhered to the surface of the cooling body 25 evaporates, and after this evaporation, the adsorbent gas is cooled to an adjacent extremely low temperature and condenses and adheres to the surface of the cooling body 240 again. An adsorbent gas condensation layer is uniformly formed on the surface of the cooling body 240.

このような状態にあって、前記部屋1内の残留ガス分子
のうち、He 、 H2分子以外の比較的凝縮し易いガ
ス分子は、極低温に保九れ九冷却体23に凝縮付着し、
これによって排気される。
In such a state, among the remaining gas molecules in the room 1, gas molecules other than He and H2 molecules that are relatively easy to condense are kept at an extremely low temperature and condense and adhere to the cooling body 23,
This exhausts the air.

t、e上記冷却体23には凝縮付着しないHe。t, e He that does not condense and adhere to the cooling body 23.

H,等の分子は、前記冷却体240表面の吸着性ガス凝
縮層に吸着されることによって排気される。したがって
、部屋1の真空度は上昇することになる。なお、この場
合、冷却体z2は部屋1側からの輻射熱の侵入t−阻止
するように機能し、會た、冷却体25はパイプ1g側か
らの輻射熱の侵入を阻止するように機能する。
Molecules such as H, etc. are adsorbed to the adsorbent gas condensation layer on the surface of the cooling body 240 and are exhausted. Therefore, the degree of vacuum in the room 1 will increase. In this case, the cooling body z2 functions to prevent radiant heat from entering from the room 1 side, and the cooling body 25 functions to prevent radiant heat from entering from the pipe 1g side.

このように、温度制御可能な2つの極低mTrJ。In this way, two extremely low mTrJs that can be temperature controlled.

つまり冷却体25と冷却体24とt設け、吸着性ガス導
入時に一旦、冷却体25の表面に吸着性ガス凝縮層【形
成させた後、これを蒸発させて隣りの冷却体24の表面
に吸着性ガス凝縮層【形成させるようにしている。
In other words, a cooling body 25 and a cooling body 24 are provided, and when adsorbent gas is introduced, an adsorbent gas condensation layer is formed on the surface of the cooling body 25, and then this is evaporated and adsorbed onto the surface of the adjacent cooling body 24. A layer of condensed gas is formed.

したがって、吸着性ガス導入時には、導入したガスの全
量【冷却体2jの表面に一旦、凝縮させることが可能と
なり、他の面一・の付着を防止できるとともに、冷却体
240表面へ移行させるときには、冷却体25と冷却体
24との温度設定によって、冷却体250表面に凝縮付
着している吸着性ガスの全量【冷却体240表面へ良好
に凝縮付着させることができ、結局、良好な排気性能【
発揮させることができる。
Therefore, when the adsorptive gas is introduced, the entire amount of the introduced gas can be temporarily condensed on the surface of the cooling body 2j, and it is possible to prevent it from adhering to other surfaces, and when it is transferred to the surface of the cooling body 240, By setting the temperature of the cooling body 25 and the cooling body 24, the total amount of adsorbent gas condensed and adhered to the surface of the cooling body 250 can be well condensed and adhered to the surface of the cooling body 240, resulting in good exhaust performance.
It can be demonstrated.

そして、この場合には、冷却体25に、パイプ1g側か
ら冷却体24へ輻射によって侵入する熱t−逍断する熱
シールドの役割を行なわせることができるので、上記冷
却体24とガス導入口との間の輻射による熱移動を減少
させることができる。この几め、上記冷却体24’ff
極低温に維持するための液体ヘリウム等の冷媒の消費量
を少くでき、結局、運転コス)1低減させることができ
る。
In this case, the cooling body 25 can act as a heat shield to block the heat t that enters the cooling body 24 from the pipe 1g side by radiation, so that the cooling body 24 and the gas inlet Heat transfer due to radiation between the two can be reduced. This method, the cooling body 24'ff
The consumption of refrigerant such as liquid helium for maintaining the cryogenic temperature can be reduced, and as a result, the operating cost can be reduced by 1.

ま九、前記冷却体25を前記冷却体2411C近い大き
さに設定することによって、上記冷却体24に凝縮付着
する吸着性ガス凝縮層の均一性【大幅に向上させること
ができる。し九がって、たとえ大容量の装置においても
、前記ガス導入口を複数に分割する必要性がなく、この
結果、装置全体が複雑化、大屋化、大重量化し次すする
ことはなく、製造費用も減少させることができる。
(9) By setting the cooling body 25 to a size close to that of the cooling body 2411C, the uniformity of the adsorptive gas condensation layer condensed and attached to the cooling body 24 can be greatly improved. Therefore, even in a large-capacity device, there is no need to divide the gas inlet into multiple parts, and as a result, the entire device does not become complicated, bulky, or heavy. Manufacturing costs can also be reduced.

なお、本発明は、上述しt実施例に限定されるものでは
ない。を述し次実施例においては、冷軸体25と冷却体
24とを同=構造に形成しているが、形状、大きさ等は
異ってもよく、前述の機能を有しておれば任意に変更し
てもよい。
Note that the present invention is not limited to the above-mentioned embodiment. In the following embodiment, the cold shaft body 25 and the cooling body 24 are formed to have the same structure, but they may have different shapes, sizes, etc., as long as they have the above-mentioned functions. It may be changed arbitrarily.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例に係るクライオソープレ1ンポン
プの概略構成を示す断面図である。 互・・・クライオソープションポンプ、4・・・容器、
5・・・ガス供給系、6・・・排気部、r・・・温度制
御部、11j23,14.26・・・冷却体、19.2
6゜2”i、28.29・・・パイプ、21,30.3
2゜34.16・・・パルプ。
FIG. 1 is a sectional view showing a schematic configuration of a cryo-soap pump according to an embodiment of the present invention. Mutual...cryosorption pump, 4...container,
5... Gas supply system, 6... Exhaust section, r... Temperature control section, 11j23, 14.26... Cooling body, 19.2
6゜2"i, 28.29...pipe, 21, 30.3
2゜34.16...Pulp.

Claims (1)

【特許請求の範囲】[Claims] 真空引きされるべき雰囲気内に極低温面を設けるととも
に上記極低温面に上記雰囲気内のガスを吸着排気する吸
着性ガス凝縮層を設けてなるクライオソープションポン
プにおいて、前記雰囲気外から温度制御可能な第1.第
2の極低温面を設け、前記吸着性ガス凝縮層形成時に、
上記雰囲気外から導入された吸着性ガスを上記J11の
極低温面に一旦凝縮付着させ次後、上記凝縮付着してい
る吸着性ガスを蒸発させ、この蒸発した吸着性ガスを前
記第2の極低温面に凝縮付着させることによって上記@
2の極低温面に吸着性ガス凝縮層を形成させるようにし
たことt特徴とするクライオソープションポンプ。
A cryosorption pump comprising a cryogenic surface in an atmosphere to be evacuated and an adsorbent gas condensation layer for adsorbing and exhausting gas in the atmosphere on the cryogenic surface, the temperature of which can be controlled from outside the atmosphere. No. 1. A second cryogenic surface is provided, and when forming the adsorbent gas condensation layer,
The adsorbent gas introduced from outside the atmosphere is once condensed and adhered to the cryogenic surface of J11, and then the adsorbent gas condensed and adhered is evaporated, and the evaporated adsorbent gas is transferred to the second electrode. By condensing and adhering to a low temperature surface, the above @
2. A cryosorption pump characterized by forming an adsorptive gas condensation layer on the cryogenic surface.
JP1279082A 1982-01-29 1982-01-29 Cryosorption pump Granted JPS58131382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1279082A JPS58131382A (en) 1982-01-29 1982-01-29 Cryosorption pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1279082A JPS58131382A (en) 1982-01-29 1982-01-29 Cryosorption pump

Publications (2)

Publication Number Publication Date
JPS58131382A true JPS58131382A (en) 1983-08-05
JPS6137468B2 JPS6137468B2 (en) 1986-08-23

Family

ID=11815189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1279082A Granted JPS58131382A (en) 1982-01-29 1982-01-29 Cryosorption pump

Country Status (1)

Country Link
JP (1) JPS58131382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764277B2 (en) 2001-01-29 2004-07-20 Daikin Industries, Ltd. Fan guard of fan unit
US10383422B2 (en) 2015-07-24 2019-08-20 Koninklijke Philips N.V. Hair care device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764277B2 (en) 2001-01-29 2004-07-20 Daikin Industries, Ltd. Fan guard of fan unit
US10383422B2 (en) 2015-07-24 2019-08-20 Koninklijke Philips N.V. Hair care device

Also Published As

Publication number Publication date
JPS6137468B2 (en) 1986-08-23

Similar Documents

Publication Publication Date Title
US4449373A (en) Reduced vacuum cryopump
JP2001501693A (en) Cryopump / getter pump combination pump and its regeneration method
JPH04313317A (en) Device and method for removing hydrogen from vacuum packaging goods at cryogenic temperature, particularly from high energy accelerator
JPS61177366A (en) Production of ultrafine particle dispersed substrate
JPH0261629B2 (en)
JPS58131382A (en) Cryosorption pump
JPH0214554B2 (en)
US3811794A (en) Ultrahigh vacuum sublimation pump
US5450729A (en) Cryopump
Baechler Cryopumps for research and industry
EP0126909B1 (en) Cryopump with rapid cooldown and increased pressure stability
JP3062706B2 (en) Cryopump with low temperature trap
JP2009174470A (en) Cryopump and vacuum-exhaust method
WO2021099987A1 (en) Magnetic resonance imaging device and magnetic resonance imaging apparatus comprising same
JPS62162779A (en) Improvement of cryopump
JPH045480A (en) Getter pump unit
Visser et al. 1.18 A versatile cryopump for industrial vacuum systems
JPS62203981A (en) Method for condensing gaseous body to be condensed only on cryo-panel of cryopump
JP3052096B2 (en) Cryopump
Shen Ultrahigh vacuum systems using low temperature pumps
US3258193A (en) Vacuum method
JPH0699051A (en) Vacuum device
JPH0249977A (en) Vacuum device
JPS61185690A (en) Cryopump
JPS63183279A (en) Cryopump