JPS6027747A - Air-fuel ratio controlling method for gas engine - Google Patents

Air-fuel ratio controlling method for gas engine

Info

Publication number
JPS6027747A
JPS6027747A JP13438283A JP13438283A JPS6027747A JP S6027747 A JPS6027747 A JP S6027747A JP 13438283 A JP13438283 A JP 13438283A JP 13438283 A JP13438283 A JP 13438283A JP S6027747 A JPS6027747 A JP S6027747A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
throttle valve
valve opening
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13438283A
Other languages
Japanese (ja)
Inventor
Seiji Imoto
誠次 井元
Tsugio Fukushima
福島 次雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOGATA GAS REIBOU GIJUTSU KENKYU KUMIAI
Original Assignee
KOGATA GAS REIBOU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOGATA GAS REIBOU GIJUTSU KENKYU KUMIAI filed Critical KOGATA GAS REIBOU GIJUTSU KENKYU KUMIAI
Priority to JP13438283A priority Critical patent/JPS6027747A/en
Publication of JPS6027747A publication Critical patent/JPS6027747A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1481Using a delaying circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To attain stable operation of an engine, by preventing occurrence of cycling by stopping for a predetermined while after changing the air-fuel ratio to a lower value, and obtaining an optimum incremental threshold value by correcting the incremental threshold value reduced from the opening of a throttle valve at the time of changing the air-fuel ratio according to the difference of the engine speed before and after changing the engine speed for increasing or decreasing the same. CONSTITUTION:Opening thetan1 of an air-fuel ratio switching throttle valve meeting the engine speed is selected from a table by detecting the engine speed by a sensor 11. Then, the actual opening thetam of the throttle valve is detected by a valve opening detector 30 and it is compared with the opening thetan1. In case of thetam>=thetan1, theoretical air-fuel ratio control is executed by closing an EGR valve 17 and setting an air-fuel ratio control mechanism into operation. Thereafter, a certain interval time is taken, and after passing of waiting time, the engine speed N1 and the actual throttle valve opening thetam at the time are detected to prepare the valve opening thetan2, obtained by subtracting several steps from the valve opening thetam as a threshold value for switching the air-fuel ratio from lambda= 1.0 to lambda=1.4. Thus, since an optimum throttle valve opening meeting the engine load can be obtained regardless of the change of the load/throttle valve opening characteristics, it is enabled to prevent occurrence of cycling.

Description

【発明の詳細な説明】 この発明は空燃比増加方向への空燃比切換時におけるス
ロットル弁開度の1しきい値を最適にして、空燃比切換
時のサイクリングを防止することができるガス機関の空
燃比制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a gas engine which can prevent cycling when switching the air-fuel ratio by optimizing one threshold value of the throttle valve opening when switching the air-fuel ratio in the direction of increasing the air-fuel ratio. This invention relates to an air-fuel ratio control method.

一般に、ガス機関の空燃比制御を行なう場合、例えば空
気過剰率λ(λ=供給空燃比/理論空燃比)をλ=1.
0(理論混合比)とλ= 1.4 (希薄混合比)との
間で切換えて空燃比制御を行なう場合は、λ=1゜4→
λ=1゜0の切換時のスロットル弁開度を比較するため
のしきい値θ旧およびλ=1.。
Generally, when controlling the air-fuel ratio of a gas engine, for example, the excess air ratio λ (λ=supply air-fuel ratio/stoichiometric air-fuel ratio) is set to λ=1.
When performing air-fuel ratio control by switching between 0 (stoichiometric mixture ratio) and λ = 1.4 (lean mixture ratio), λ = 1゜4→
Threshold value θ for comparing the throttle valve opening degree when switching between λ=1°0 and λ=1.0. .

→λ=1.4の切換時のスロットル弁開度を比較するた
めのしきい値θn2は固定の値にて行なわれていた(θ
nl )θn2 )。
→Threshold value θn2 for comparing the throttle valve opening when switching λ=1.4 was set to a fixed value (θ
nl)θn2).

ところが、このような空燃比切換時にスロットル弁開度
のしきい値を固定する方式では、吸気管のミキサ一部の
空燃比調整や機関の経時変化等によシ、空燃比切換時の
スロットル弁開度のしきい値、特に前記しきい値として
のスロットル弁開度(Jn2が最適値ではなくなってし
まう。
However, with this method of fixing the threshold value of the throttle valve opening when switching the air-fuel ratio, the throttle valve opening when switching the air-fuel ratio may The threshold value of the opening degree, especially the throttle valve opening degree (Jn2) serving as the threshold value, is no longer the optimal value.

即ち、スロットル弁開度θn2が最適値より大きくなっ
た場合は、λ=1.0からλ=1.4に切シ換わる時の
しきい値が大きくなる。すると、λ=1.4からλ=1
゜0に切シ換わった時点で直ちに実際のスロットル弁開
度θmがこのしきい値(θn2)を下まわってしまい、
再びλ=1.4に戻ってしまう。ところが、負荷が急変
しない限り、λ=1.4での実際のスロットル弁開度θ
mは前記λ=1゜4→λ=1.0への切換時のしきい値
であるスロットル弁開度on1以上なので再びλ=1゜
0に切シ換わる。このようにしてガス機関はλ=1.0
とλ=1゜4との間を頻繁に切シ換えられる、いわゆる
サイクリングを起こして安定な運転ができなくなる。
That is, when the throttle valve opening degree θn2 becomes larger than the optimum value, the threshold value when switching from λ=1.0 to λ=1.4 becomes larger. Then, from λ=1.4 to λ=1
As soon as it switches to 0, the actual throttle valve opening θm falls below this threshold value (θn2).
It returns to λ=1.4 again. However, unless the load suddenly changes, the actual throttle valve opening θ at λ=1.4
Since m is greater than the throttle valve opening on1 which is the threshold value at the time of switching from λ=1°4 to λ=1.0, the switch is again made to λ=1°0. In this way, the gas engine has λ=1.0
and λ=1°4, resulting in so-called cycling, which makes stable operation impossible.

また、スロットル弁開度θn2が最適値よシ小さくなっ
た場合は、λ=1゜4からλ=1.0にいったん切シ換
わると、λ=1.0からλ=1.4に切シ換わる時のし
きい値が小さくなっているために、負荷が小さくなシ、
実際のスロットル弁開度θmがλ=1.4へ戻るべきス
ロットル弁開度になっても切り換わらなくなってしまい
、ガス機関75工効率良く運転できなくなるという欠点
がある。
Furthermore, if the throttle valve opening θn2 becomes smaller than the optimum value, once it is switched from λ = 1°4 to λ = 1.0, it will be switched from λ = 1.0 to λ = 1.4. Because the threshold for switching is small, the load is small.
There is a drawback that even if the actual throttle valve opening θm reaches the throttle valve opening that should return to λ=1.4, it will not switch, and the gas engine 75 will not be able to operate efficiently.

この発明の目的は前記従来のλ=1・0→λ=1゜4の
切換時のスロットル弁開度θn2を固定する方式のガス
機関の空燃比制御方法の有する欠点を解消し、ガス機関
のミキサ一部の空燃比再調整や機関の経時変化にかかわ
らず、λ=1・4→λ=1.0の切換時のスロットル弁
開度を最適にすることができ、空燃比切換時のサイクリ
ングを防止することができる優れたガス機関の空燃比制
御方法を提供することである。
An object of the present invention is to eliminate the drawbacks of the conventional air-fuel ratio control method for a gas engine, which fixes the throttle valve opening θn2 when switching from λ=1.0 to λ=1°4, and to The throttle valve opening when switching from λ=1.4 to λ=1.0 can be optimized regardless of readjustment of the air-fuel ratio in part of the mixer or changes in the engine over time, and cycling when changing the air-fuel ratio. An object of the present invention is to provide an excellent air-fuel ratio control method for a gas engine that can prevent this.

前記目的を達成するこの発明のガス機関の空燃比制御方
法は、インジェクタによシ所定量の燃料を追加する方式
の空燃比制御機構を有し、機関回転数に応じて決定され
るスロットル弁開度をしきい値として実際のスロットル
弁開度を判定し、その結果によシ前記空燃比制御機構の
作動をオン、オフすることにより空燃比切換を行なうガ
ス機関において、空燃比減少方向への切換を行なう場合
に、空燃比切換後に所定時間前記空燃比制御機構の切換
動作を停止させると共に、空燃比切換時点のスロットル
弁開度よシ所定開度小さいスロットル弁開度を空燃比増
加方向への空燃比切換用のしきい値に設定し、さらに、
との空燃比増加方向への切換時の機関回転数と前記空燃
比減少方向への切換時の機関回転数との差回転数に応じ
て前記しきい値に補正を加えるようにしたことを特徴と
している。
The air-fuel ratio control method for a gas engine according to the present invention that achieves the above object has an air-fuel ratio control mechanism that adds a predetermined amount of fuel to an injector, and controls the throttle valve opening determined according to the engine speed. In a gas engine that switches the air-fuel ratio by turning on and off the operation of the air-fuel ratio control mechanism, the actual throttle valve opening degree is judged using the opening degree as a threshold value, and the air-fuel ratio is switched on and off based on the result. When switching, the switching operation of the air-fuel ratio control mechanism is stopped for a predetermined period of time after the air-fuel ratio is switched, and the throttle valve opening is set to a direction that increases the air-fuel ratio by a predetermined opening smaller than the throttle valve opening at the time of the air-fuel ratio switching. Set the threshold value for air-fuel ratio switching, and
The threshold value is corrected in accordance with the difference in engine speed between the engine speed at the time of switching to the air-fuel ratio increasing direction and the engine speed at the time of switching to the air-fuel ratio decreasing direction. It is said that

以下、図面を用いてこの発明の方法の一実施例を説明す
る。
An embodiment of the method of the present invention will be described below with reference to the drawings.

第1図はこの発明の方法を適用するガス機関の空燃比制
御機構の構成を示す説明図である。
FIG. 1 is an explanatory diagram showing the configuration of an air-fuel ratio control mechanism of a gas engine to which the method of the present invention is applied.

ガス機関20の吸気管21のベンチュリ24にはガス導
入管26が設けられておシ、吸気管21のその下流側に
はガスインジェクタ14、EGR管18が接続して、ミ
キサ一部26を形成している。
A gas introduction pipe 26 is provided in the venturi 24 of the intake pipe 21 of the gas engine 20, and the gas injector 14 and the EGR pipe 18 are connected to the downstream side of the intake pipe 21 to form a mixer part 26. are doing.

そして、このミキサ一部26の下流側にはさらに、スロ
ットル弁22が設けられておシ、その回転軸22aは前
記吸気管21の外部で連結部材16を介してガバナ12
のコントロールレバー12aに接続している。田は前記
スロットル弁22に取シ付けられたスロットル弁開度検
出器である。
A throttle valve 22 is further provided on the downstream side of the mixer portion 26, and its rotating shaft 22a connects to the governor 1 through the connecting member 16 outside the intake pipe 21.
The control lever 12a is connected to the control lever 12a. 1 is a throttle valve opening degree detector attached to the throttle valve 22.

また、ガス機関20のフライホイール25等の回転部分
には回転数センサ11が取シ付けられていて、ガス機関
20の実際の回転数を検出できるようになっている。2
7は吸気弁、28は排気弁、29はピストンである。
Further, a rotation speed sensor 11 is attached to rotating parts such as the flywheel 25 of the gas engine 20, so that the actual rotation speed of the gas engine 20 can be detected. 2
7 is an intake valve, 28 is an exhaust valve, and 29 is a piston.

さらに、前記ガス機関20の排気管19には前記EGR
管18の他端が接続しておシ、その下流側には02セン
サ15が配置されておシ、そのさらに下流側には三元触
媒16が設けられている。
Further, the exhaust pipe 19 of the gas engine 20 has the EGR
The other end of the pipe 18 is connected, an 02 sensor 15 is disposed on the downstream side thereof, and a three-way catalyst 16 is disposed further downstream.

17は前記EGR管18の途中に設けられたEGR弁で
あシ、コントロールユニット10からの信号によシこの
EGR管18を開閉する。このEGR弁17および前記
ガスインジェクタ14は後述するコントロールユニット
10の増幅器8に接続している。
Reference numeral 17 denotes an EGR valve provided in the middle of the EGR pipe 18, which opens and closes the EGR pipe 18 in response to a signal from the control unit 10. This EGR valve 17 and the gas injector 14 are connected to an amplifier 8 of a control unit 10, which will be described later.

そして、前記のように構成され・たガス機関20の回転
数を制御するコントロールユニット10には、CPU 
2. ROM 3. RAM 4. I10ポート5か
らなるマイクロコンピュータ1、前記回転数センサ11
に接続し、ガス機関20の回転数を汀1″数してデジタ
ル信号として出力するカウンタ6、機関負荷や前記スロ
ットル弁開度検出器60からの開度信号、02センサ1
5からの残留酸素量信号をマイクロコンピュータ1に入
力するためにデジタル信号に直すに0変換器7等が内蔵
されておシ、それぞれはパスライン9で互いに連絡され
ている。8は増幅器であシ、工んポー)575−ら出力
される制御信号を増幅し、ガスインジェクタ14、E’
GR弁17全17するようになっている。
The control unit 10 that controls the rotation speed of the gas engine 20 configured as described above includes a CPU.
2. ROM 3. RAM 4. A microcomputer 1 consisting of an I10 port 5, and the rotation speed sensor 11
A counter 6 connects to the gas engine 20 and outputs the rotation speed of the gas engine 20 as a digital signal, an opening signal from the engine load and the throttle valve opening detector 60, and a 02 sensor 1.
In order to input the residual oxygen amount signal from 5 to the microcomputer 1, a 0 converter 7 and the like are built in to convert it into a digital signal, and these are connected to each other by a pass line 9. 8 is an amplifier, which amplifies the control signal output from the gas injector 14, E'
There are 17 GR valves in total.

なお、この実施例では前記ガスくす12は電子制御ガバ
ナであシ、前記マイクロコンビ“ユータ1の指令により
例えばステップモータ12Cによシ制御すれ、マイクロ
コンピュータ1から出力されるパルス信号のステップ数
によシスロットル弁22を回動するようになっているも
のとする。
In this embodiment, the gas filter 12 is an electronically controlled governor, which is controlled by, for example, a step motor 12C according to instructions from the microcomputer 1, and is controlled by the step number of the pulse signal output from the microcomputer 1. It is assumed that the throttle valve 22 is rotatable.

以上のように構成されたガス機関の空燃比制御機構にお
いて、調速制御と空燃比制御の基本的な制御は従来通シ
行なう。即ち、調速制御については、ヒートポンプ負荷
に応じた設定回転数と実際の機関回転数との偏差からコ
ントロー/L/ユニツ) 10のマイクロコンピュータ
1がax処理を行ない、ステップモータ12Cにパルス
信号を出力してスロットル弁22を操作する。また、空
燃比制御については、あらかじめマイクロコンピュータ
1のROM 3に記憶された機関回転数に応じたスロッ
トル弁開度をしきい値として実際のスロットル弁開度を
判定し、その偏差に応じてミキサ一部26における希薄
燃焼とEGR弁17の開弁によるEGRとの組合せと、
02センサ15からのフィードバック信号によってガス
インジェクタ14を操作することによる理論空燃比燃焼
と三元触媒16の組合せとを切シ換える。
In the air-fuel ratio control mechanism for a gas engine configured as described above, the basic controls of speed governor control and air-fuel ratio control are conventionally performed. That is, regarding speed control control, the microcomputer 1 of controller 10 performs ax processing based on the deviation between the set rotation speed according to the heat pump load and the actual engine rotation speed, and sends a pulse signal to the step motor 12C. output and operate the throttle valve 22. Regarding air-fuel ratio control, the actual throttle valve opening is determined using the throttle valve opening corresponding to the engine speed stored in the ROM 3 of the microcomputer 1 as a threshold, and the mixer is adjusted according to the deviation. A combination of lean combustion in part 26 and EGR by opening the EGR valve 17;
The feedback signal from the 02 sensor 15 switches between stoichiometric air-fuel ratio combustion by operating the gas injector 14 and the combination of the three-way catalyst 16.

そして、実際のスロットル弁開度の検出は、スロットル
弁22に取シ付けられたスロットル弁開度検出器60を
用いて行なっている。
The actual throttle valve opening degree is detected using a throttle valve opening degree detector 60 attached to the throttle valve 22.

しかしながら、とのitの制御では前述のようにサイク
リングが生じてしまうので、この発明では空燃比截切り
換えた際に、肖を言己調速e制御とは別にスロットル弁
開度の調節、filち、空燃比切換時のしきい値の調整
を第2図のフローチャートに示す手順で行なっている。
However, since cycling occurs as described above in the IT control, in this invention, when changing the air-fuel ratio, the throttle valve opening degree is adjusted separately from the self-regulating speed e control. The threshold value at the time of air-fuel ratio switching is adjusted according to the procedure shown in the flowchart of FIG.

まず、空気過剰率を希薄燃焼方式から理論混合比にして
触媒方式とする(λ=164→λ=1゜O)場合は、ス
テップ■で機関回転数を前記回転数センサ11からの信
号によシ検出し、ステップ■でその回転数に応じた空燃
比切換スロットル開度θn1を下表よシ選択する。、 表 空燃比切換えスロットル開度数表および補正数表法
に、実際のスロットル弁開度θmをスロットル弁開度検
出器60によシステップ■でめ、ステップ■でこれを前
述のスロットル弁開度(lnlと比較判定する。θm≦
θn1の場合(No)は、空燃比の切換を行なわずにス
テップ■に戻るが、θm≧θn1の場合(YES)は、
ステップ■に移ってEGR弁17を閉じ、続いてステッ
プ■に移って空燃比制御機構の作動をオンして理論空燃
比制御を行なう。
First, when changing the excess air ratio from the lean burn system to the stoichiometric mixture ratio to the catalytic system (λ = 164 → λ = 1°O), in step The air-fuel ratio switching throttle opening degree θn1 corresponding to the rotation speed is selected from the table below in step (3). , In the air-fuel ratio switching throttle opening number table and correction number table method, the actual throttle valve opening θm is determined by the throttle valve opening detector 60 in step 2, and in step 2 this is converted to the aforementioned throttle valve opening. (Compare and judge with lnl. θm≦
If θn1 (No), return to step ■ without switching the air-fuel ratio, but if θm≧θn1 (YES),
The program moves to step (2) to close the EGR valve 17, and then to step (2), the operation of the air-fuel ratio control mechanism is turned on to perform stoichiometric air-fuel ratio control.

この後ステップ■でインタバルタイムをとり、ステップ
■に移る。ステップ■は空燃比切換後に待ち時間を設け
るためのものであり、この待ち時間内には空燃比切換が
行なわれないようにするだめのものである。所定の待ち
時間はあらカシめマイクロコンピュータ1のROM 3
に記憶しておき待ち時間が経過しない限I)(NO)、
ステップ■では前記ステップ■の前に戻ってインタバル
タイムをとるようにする。
After this, take an interval time in step ■ and move on to step ■. Step (3) is for providing a waiting time after the air-fuel ratio switching, and is intended to prevent the air-fuel ratio switching from being performed during this waiting time. The predetermined waiting time is determined by the ROM 3 of the microcomputer 1.
As long as the waiting time has not elapsed, I) (NO),
In step (2), the process returns to before step (2) to take an interval time.

待ち時間の経過後(YES)はステップ[相]に移シ、
その時の機関回転数N1と実際のスロットル弁開度θm
とをめる。そして、この時のスロットル弁開度θmから
数ステップ差し引いて小すくシたスロットル弁開度をマ
イクロコンピュータ1によシ演算して請求められたスロ
ットル弁開度θn2’と前記機関回転数N1とをRAM
 4に記憶し、このスロットル弁開度θn2’をλ=1
・0→λ=1・4への空燃比切換用のしきい値として準
備スル。このようにすれば、ミキv−4V+26の空燃
比再調整や機関の経時変化による負荷−スロットル弁開
度特性の変化にかかわらず、λ=1.4に復帰すべき負
荷に対応した最適なスロットル弁開度で復帰することに
なる。
After the waiting time has elapsed (YES), move to step [phase].
Engine speed N1 and actual throttle valve opening θm at that time
I apologize. Then, the throttle valve opening θn2' obtained by subtracting a few steps from the throttle valve opening θm at this time and the reduced throttle valve opening is calculated by the microcomputer 1, and the engine speed N1. RAM
4 and store this throttle valve opening θn2' as λ=1
・Prepare as a threshold for switching the air-fuel ratio from 0 to λ=1.4. In this way, regardless of changes in the load-throttle valve opening characteristic due to readjustment of the air-fuel ratio of MIKI V-4V+26 or changes in the engine over time, the optimal throttle corresponding to the load that should return to λ = 1.4 can be set. It will return depending on the valve opening.

ここでλ=1゜4→λ=1.0に切換後、ある一定の待
ち時間を設けるのは、ガバナ12の応答特性を考慮した
ものであシ、実際のスロットル弁開度θmよ)数ステッ
プ小さいスロットル弁開度θn2″をλ=1.o→λ=
1゜4への切換時のしきい値とするのはサイクリング防
止のだめのヒステリシスを持たせるためである。
The reason for providing a certain waiting time after switching from λ=1°4 to λ=1.0 is to take into account the response characteristics of the governor 12, and the actual throttle valve opening θm) Step small throttle valve opening θn2″ λ=1.o→λ=
The reason for setting the threshold value at the time of switching to 1.degree. 4 is to provide hysteresis to prevent cycling.

ところが、λ=1.o→λ=1.4切換えの最適なスロ
ットル弁開度のしきい値は機関回転数によっても異なる
ものであるから、もし、λ=1゜O碕λ=1.4に切換
わる機関回転数がλ=1゜4→λ=1.0に切換わった
時の機関回転数と異なった場合は、前記スロットル弁開
度θn2′は最適なλ=1゜0→λ=1.4切換時のし
きい値ではなくなってしまう。そこで、この発明の方法
では、ステップ0からステップ[有]までのステップに
おいて、スロットル弁開度θn2’に機関回転数による
補正を加えている。
However, when λ=1. Since the optimal throttle valve opening threshold for switching from o to λ=1.4 varies depending on the engine speed, if the engine speed for switching from λ=1° to λ=1.4 is different from the engine speed when switching from λ=1°4 to λ=1.0, the throttle valve opening θn2' will be the optimum when switching from λ=1°0 to λ=1.4. is no longer the threshold value. Therefore, in the method of the present invention, in the steps from step 0 to step [Yes], the throttle valve opening degree θn2' is corrected based on the engine rotation speed.

すなわち、ステップ0でインタバルタイムをとった後、
ステップ0を通る毎にその時の機関回転数Nmを検出し
てRAM4に記憶し、ステップ@にて前記λ=1゜4→
λ=1.0切換時の機関回転数N1とこの時の機関回転
数NmをRAM 4より読み出して、その回転数に応じ
た補正ステップ数f(N1) 、 f(Nm)をROM
 3に記憶した削去に基づいて算出する。′そして、ス
テップ0に移’) 、CP U2が下式に基づいてその
時点で最適なスロットル弁開度θn2“をしきい値とし
て算出する。
In other words, after taking the interval time at step 0,
Every time step 0 is passed, the engine speed Nm at that time is detected and stored in RAM4, and at step @, the above λ=1°4→
Read the engine rotation speed N1 at the time of λ=1.0 switching and the engine rotation speed Nm at this time from RAM 4, and store the correction step numbers f(N1) and f(Nm) according to the rotation speed in the ROM.
Calculate based on the deletion stored in 3. Then, the process moves to step 0'), and the CPU 2 calculates the optimal throttle valve opening degree θn2'' at that time as a threshold value based on the following formula.

on2″=θn2’ −t (N1 ) 十f (Nm
)この式かられかるように、λ=1゜4→λ=1゜0切
換時の機関回転数N1がλ=1゜0→λ=1゜4切換時
の機関回転数Nmに等しければ、スロットル弁開度θn
2’は補正を受けず、Onz“=θn2’である。
on2″=θn2′ −t (N1) 10f (Nm
) As can be seen from this equation, if the engine speed N1 when switching from λ=1°4 to λ=1°0 is equal to the engine speed Nm when switching from λ=1°0 to λ=1°4, Throttle valve opening θn
2' is not subjected to correction, and Onz"=θn2'.

そして、ステップ[相]でその時の実際のスロットル弁
開度θmをめ、ステップ[相]で前記ステップ@でめた
スロットル弁開度θnfをしきい値としてこのスロット
ル弁開度θmを判定する。
Then, in step [phase], the actual throttle valve opening θm at that time is determined, and in step [phase], this throttle valve opening θm is determined using the throttle valve opening θnf determined in step @ as a threshold value.

このステップ[相]でOnz“≦θm (No)と判定
されれば、λ=1.0→λ=1゜4の空燃比切換は行な
われずにステレプ0の前に戻シ、0m (Onz“(Y
ES)と判定されればλ=1゜0→λ=1゜4の空燃比
切換を行なうべくステップ0に移る。そして、ステップ
◎、ステップ[相]では前記ステップ■、ステップ■と
は全く逆にEGR弁17を開き、空燃比制御機構の作動
をオフして理論空燃比制御を停止し、希薄燃焼方式に移
る。このステップ[相]の後は再び前記ステップ■に戻
って前記同様の制御を行なう。
If it is determined that Onz"≦θm (No) in this step [phase], the air-fuel ratio switching from λ = 1.0 to λ = 1°4 is not performed and the process returns to before step 0, and 0m (Onz" (Y
If it is determined that ES), the process moves to step 0 in order to perform the air-fuel ratio switching from λ=1°0 to λ=1°4. Then, in step ◎ and step [phase], the EGR valve 17 is opened in the complete opposite of steps ■ and step ■, the operation of the air-fuel ratio control mechanism is turned off, the stoichiometric air-fuel ratio control is stopped, and the lean burn mode is started. . After this step [phase], the process returns to step (2) and the same control as described above is performed.

このようにこの発明のガス機関の空燃比制御方法では、
ガス機関の空燃比切換時にサイクリングを生じさせるこ
となく、常に安定した空燃比切換制御を行なうことがで
きる。
In this way, in the air-fuel ratio control method for a gas engine of the present invention,
It is possible to always perform stable air-fuel ratio switching control without causing cycling when switching the air-fuel ratio of a gas engine.

以上説明したように、この発明のガス機関の空燃比制御
方法は、インジェクタによシ所定量の燃料を追加する方
式の空燃比制御機構を有し、機関回転数に応じて決定さ
れるスロットル弁開度をしきい値として実際のスロット
ル弁開度を判定し、その結果によシ前記空燃比制御機構
の作動をオン、オフすることにより空燃比切換を行なう
ガス機関において、空燃比減少方向への切換を行なう場
合に、空燃比切換後に所定時間前記空燃比制御機構の切
換動作を停止させると共に、空燃比切換時点のスロット
ル弁開度よシ所定開度小さいスロットル弁開度を空燃比
増加方向への空燃比切換用のしきい値に設定し、さらに
、との空燃比増加方向への切換時の機関回転数と前記空
燃比減少方向への切換時の機関回転数との差回転数に応
じて前記しきい値に補正を行なうようにしたことによシ
、ガス機関の空燃比切換時にサイクリングの発生が抑え
られ、ガス機関にハンチングが生じないという優れた効
果がある。
As explained above, the air-fuel ratio control method for a gas engine of the present invention has an air-fuel ratio control mechanism that adds a predetermined amount of fuel to an injector, and a throttle valve that is determined according to the engine speed. In a gas engine in which the actual throttle valve opening is determined using the opening as a threshold value, and the air-fuel ratio is switched by turning on and off the operation of the air-fuel ratio control mechanism based on the result, the air-fuel ratio is decreased. When switching the air-fuel ratio, the switching operation of the air-fuel ratio control mechanism is stopped for a predetermined period of time after the air-fuel ratio is switched, and the throttle valve opening is set in the direction of increasing the air-fuel ratio by a predetermined opening smaller than the throttle valve opening at the time of the air-fuel ratio switching. Set the threshold value for switching the air-fuel ratio to , and further set the engine speed difference between the engine speed at the time of switching to the air-fuel ratio increasing direction and the engine speed at the time of switching to the air-fuel ratio decreasing direction. By correcting the threshold value accordingly, it is possible to suppress the occurrence of cycling when switching the air-fuel ratio of the gas engine, and there is an excellent effect that hunting does not occur in the gas engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法を適用するガス機関の空燃比制
御機構の一実施例の構成説明図、第2図は第1図の空燃
比制御機構の動作手順を示す流れ図である。 1・・・マイクロコンピュータ、2・・・CPIJ、3
・・・ROM、4・・・RAM、5・・・■、吻ポート
、6・・・カウンタ、7・・・め変換器、8・・・増幅
器、10・・・コントロールユニット、11・・・回転
数センサ、12・・・ガバナ、12C・・・ステップモ
ータ、14・・・ガスインジエクク、15・・・02セ
ンサ、16・・・三元触媒、17・・・EGR弁、20
・・・ガス機関、22・・・スロットル弁、26・・・
ガス導入管、25・・・フライホイール、26・・・ミ
キサ一部、60・・・スロットル弁開度検出器。
FIG. 1 is a configuration explanatory diagram of an embodiment of an air-fuel ratio control mechanism for a gas engine to which the method of the present invention is applied, and FIG. 2 is a flowchart showing the operating procedure of the air-fuel ratio control mechanism of FIG. 1. 1... Microcomputer, 2... CPIJ, 3
... ROM, 4... RAM, 5...■, snout port, 6... counter, 7... converter, 8... amplifier, 10... control unit, 11...・Rotational speed sensor, 12... Governor, 12C... Step motor, 14... Gas engine exhaust, 15... 02 sensor, 16... Three-way catalyst, 17... EGR valve, 20
...Gas engine, 22...Throttle valve, 26...
Gas introduction pipe, 25... Flywheel, 26... Part of mixer, 60... Throttle valve opening detector.

Claims (1)

【特許請求の範囲】[Claims] インジェクタによシ所定量の燃料を追加する方式の空燃
比制御機構を有し、機関回転数に応じて決定されるスロ
ットル弁開度をしきい値として実際のスロットル弁開度
を判定し、その結果によシ前記空燃比制御機構の作動を
オン、オフすることによシ空燃比切換を行なうガス機関
において、空燃比減少方向への切換を行なう場合に、空
燃比切換後に所定時間前記空燃比制御機構の切換動作を
停止させると共に、空燃比切換時点のスロットル弁開度
よシ所定開度小さいスロットル弁開度を空燃比増加方向
への空燃比切換用のしきい値に設定し、さらに、この空
燃比増加方向への切換時の機関回転数と前記空燃比減少
方向への切換時の機関回転数との差回転数に応じて前記
しきい値に補正を加えるようにしたことを特徴とするガ
ス機関の空燃比制御方法。
It has an air-fuel ratio control mechanism that adds a predetermined amount of fuel to the injector, and uses the throttle valve opening determined according to the engine speed as a threshold to determine the actual throttle valve opening. Depending on the result, in a gas engine in which the air-fuel ratio is switched by turning on and off the operation of the air-fuel ratio control mechanism, when switching in the direction of decreasing the air-fuel ratio, the air-fuel ratio is changed for a predetermined period of time after the air-fuel ratio is switched. stopping the switching operation of the control mechanism, and setting a throttle valve opening that is a predetermined opening smaller than the throttle valve opening at the time of air-fuel ratio switching as a threshold value for switching the air-fuel ratio in the direction of increasing the air-fuel ratio; The threshold value is corrected in accordance with the difference in engine speed between the engine speed at the time of switching to the direction of increasing the air-fuel ratio and the engine speed at the time of switching to the direction of decreasing the air-fuel ratio. Air-fuel ratio control method for gas engines.
JP13438283A 1983-07-25 1983-07-25 Air-fuel ratio controlling method for gas engine Pending JPS6027747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13438283A JPS6027747A (en) 1983-07-25 1983-07-25 Air-fuel ratio controlling method for gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13438283A JPS6027747A (en) 1983-07-25 1983-07-25 Air-fuel ratio controlling method for gas engine

Publications (1)

Publication Number Publication Date
JPS6027747A true JPS6027747A (en) 1985-02-12

Family

ID=15127083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13438283A Pending JPS6027747A (en) 1983-07-25 1983-07-25 Air-fuel ratio controlling method for gas engine

Country Status (1)

Country Link
JP (1) JPS6027747A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199030A (en) * 2013-03-29 2014-10-23 大阪瓦斯株式会社 Engine system
JP2014199031A (en) * 2013-03-29 2014-10-23 大阪瓦斯株式会社 Mixer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469617A (en) * 1977-11-14 1979-06-04 Toyota Motor Corp Basis air fuel ratio adjusting method and apparatus for internal combustion engine
JPS55160139A (en) * 1979-05-31 1980-12-12 Nissan Motor Co Ltd Feedback controller of air fuel ratio
JPS5848754A (en) * 1981-09-18 1983-03-22 Toyota Motor Corp Air-fuel ratio control apparatus for internal- combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469617A (en) * 1977-11-14 1979-06-04 Toyota Motor Corp Basis air fuel ratio adjusting method and apparatus for internal combustion engine
JPS55160139A (en) * 1979-05-31 1980-12-12 Nissan Motor Co Ltd Feedback controller of air fuel ratio
JPS5848754A (en) * 1981-09-18 1983-03-22 Toyota Motor Corp Air-fuel ratio control apparatus for internal- combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199030A (en) * 2013-03-29 2014-10-23 大阪瓦斯株式会社 Engine system
JP2014199031A (en) * 2013-03-29 2014-10-23 大阪瓦斯株式会社 Mixer

Similar Documents

Publication Publication Date Title
KR0148267B1 (en) Control method and apparatus for internal combustion engine
JPH08189396A (en) Air fuel ratio feedback control device for internal combustion engine
WO2006059558A1 (en) Egr control device for internal combustion engine
US6564778B2 (en) Fuel supply control system for internal combustion engine
JPS6213752A (en) Idle rotational speed control device in engine
JP2730681B2 (en) Engine idle speed control device
JPS6027747A (en) Air-fuel ratio controlling method for gas engine
JPH0763124A (en) Method and equipment for controlling internal combustion engine
JPH02291448A (en) Intake air amount control device for internal combustion engine
JPH11190246A (en) Fuel injection control device and fuel injection method
JPS59200049A (en) Air-fuel ratio control mechanism for heat pump driving gas engine
JPS60147551A (en) Control apparatus for throttling of intake-air flow in diesel engine
JPS58217745A (en) Air-fuel ratio control method for internal-combustion engine
JPS60233329A (en) Air-fuel ratio controlling apparatus for internal-combustion engine
JPH0586908A (en) Exhaust pressure controller of internal combustion engine
JPH0353459B2 (en)
JP2005524126A (en) Signal correction device
JP3453819B2 (en) Engine air-fuel ratio control device
JPH04166633A (en) Air-fuel ratio control method for internal combustion engine
JPH0222229B2 (en)
JPH11241629A (en) Engine controller
JPS6179839A (en) Idle rotational speed control device in engine
JPS61190138A (en) Learning control device of internal-combustion engine
JPH10184419A (en) Lean air-fuel ratio compensating method
JPS61104146A (en) Control device for engine