JPH0353459B2 - - Google Patents

Info

Publication number
JPH0353459B2
JPH0353459B2 JP56134482A JP13448281A JPH0353459B2 JP H0353459 B2 JPH0353459 B2 JP H0353459B2 JP 56134482 A JP56134482 A JP 56134482A JP 13448281 A JP13448281 A JP 13448281A JP H0353459 B2 JPH0353459 B2 JP H0353459B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
control
engine
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56134482A
Other languages
Japanese (ja)
Other versions
JPS5835246A (en
Inventor
Takeshi Tsuchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP13448281A priority Critical patent/JPS5835246A/en
Publication of JPS5835246A publication Critical patent/JPS5835246A/en
Publication of JPH0353459B2 publication Critical patent/JPH0353459B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は、エンジンの空燃比制御装置に関し、
更には詳細には、エンジンの諸条件に応じ最も好
ましい空燃比でエンジンの運転が行なわれるよう
にする空燃比制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device for an engine.
More specifically, the present invention relates to an air-fuel ratio control device that allows an engine to be operated at the most preferable air-fuel ratio depending on engine conditions.

排ガス対策のため排気系に触媒を備えたエンジ
ンにおいては、触媒の浄化能力が吸入混合気の空
燃比により変るところから、空燃比制御装置と排
ガス中の特定成分たとえば酸素成分の検出を行な
う排ガス成分センサとを設けて、検出される排ガ
ス成分の濃度に応じて空燃比の制御を行ない、触
媒の浄化能力を最大限に発揮されるようにしたも
のが知られている。エンジンがほぼ一定速度およ
び一定負荷で運転されている定常運転状態または
エンジン速度および負荷の変動が比較的ゆるやか
な運転状態では、このような空燃比制御で特に問
題はないが、エンジンの始動および冷間運転時、
アイドル運転時、加減速時などのような特定運転
領域においては、定常運転状態とは異なる空比燃
の混合気の供給を必要とする。このため、従来の
空燃比制御装置は、排ガス成分センサにより検出
された排ガス成分の濃度に応じて空燃比の制御を
行なう帰還制御のほかに、特定運転領域におい
て、その運転状態に応じた所定値に空燃比を設定
する固定制御を行ない、運転領域に応じて、帰還
制御と固定制御とを切り換えるように構成されて
いる。
In engines equipped with a catalyst in the exhaust system for exhaust gas control, the purification ability of the catalyst changes depending on the air-fuel ratio of the intake air-fuel mixture. It is known that a catalyst is provided with a sensor to control the air-fuel ratio according to the concentration of detected exhaust gas components, thereby maximizing the purification ability of the catalyst. Under steady-state operating conditions, where the engine is running at a nearly constant speed and load, or where the engine speed and load fluctuate relatively slowly, this type of air-fuel ratio control poses no particular problem; During operation,
In specific operating ranges such as during idling, acceleration and deceleration, it is necessary to supply a mixture with an air/fuel ratio different from that in a steady operating state. For this reason, in addition to feedback control that controls the air-fuel ratio according to the concentration of exhaust gas components detected by the exhaust gas component sensor, conventional air-fuel ratio control devices also perform feedback control that controls the air-fuel ratio according to the concentration of exhaust gas components detected by the exhaust gas component sensor. The system is configured to perform fixed control to set the air-fuel ratio at 1, and to switch between feedback control and fixed control depending on the operating range.

ところが、こうした従来の空燃比制御装置は、
一運転状態が継続する場合には、満足な結果を与
えることは考えられるが、固定制御系から帰還制
御系に切り換わつたとき、固定制御時の設定空燃
比と帰還制御時の目標空燃比の間には相当の差が
あること、また帰還制御系においては通常積分制
御動作によつて制御を行なつているので、帰還制
御系によつて空燃比を特定運転時の空燃比から通
常運転時の目標空燃比に設定するには相当の時間
を要し、応答が遅いという欠点がある。
However, these conventional air-fuel ratio control devices
It is conceivable that a satisfactory result will be given if one operating state continues, but when switching from a fixed control system to a feedback control system, the set air-fuel ratio during fixed control and the target air-fuel ratio during feedback control Since there is a significant difference between It takes a considerable amount of time to set the target air-fuel ratio at the same time, and the response is slow.

この空燃比制御の応答性を向上させるため、特
開昭54−7023号公報に記載された空燃比帰還式混
合気制御装置においては、特定運転のための固定
制御系から通常運転における帰還制御系への切換
時に、燃料噴射量制御信号をエンジンの運転条件
に応じて最終的に補正する補正回路において、こ
の制御信号を、特定運転時と通常運転時との適正
空燃比の差に基づいて直接補正し、この補正した
制御信号によつて燃料噴射装置を制御している。
In order to improve the responsiveness of this air-fuel ratio control, in the air-fuel ratio feedback type mixture control device described in Japanese Patent Application Laid-open No. 54-7023, a fixed control system for specific operation is changed to a feedback control system for normal operation. In the correction circuit that ultimately corrects the fuel injection amount control signal according to the engine operating conditions, this control signal is directly adjusted based on the difference in the appropriate air-fuel ratio between specific operation and normal operation. The fuel injection device is controlled by the corrected control signal.

しかしながら、この空燃比帰還式混合気制御装
置においては、上述のように燃料噴射量制御信号
を特定運転時と通常運転時との適正空燃比の差に
基づいて直接補正しているので、上記した帰還制
御および積分制御による遅延はないが、制御系の
切換え時すなわち運転状態の切換え時に、空燃比
があまりには急激に変化するため、エンジンの運
転状態に衝撃的な変動を生ずるおそれがある。
However, in this air-fuel ratio feedback mixture control device, the fuel injection amount control signal is directly corrected based on the difference in the appropriate air-fuel ratio between specific operation and normal operation, so the above-mentioned Although there is no delay due to feedback control and integral control, when the control system is switched, that is, when the operating state is switched, the air-fuel ratio changes too rapidly, which may cause a shocking change in the operating state of the engine.

そこで本発明は、固定制御系から帰還制御系へ
の切換え時の空燃比制御における上記したような
問題のないエンジンの空燃比制御装置を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an engine air-fuel ratio control device that does not have the above-mentioned problems in air-fuel ratio control when switching from a fixed control system to a feedback control system.

本発明によるエンジンの空燃比制御装置は、空
燃比制御系が、通常運転時とは異なる特定運転時
の空燃比制御のための制御系による制御から通常
運転のための帰還制御系による制御に切り替わつ
たときに、空燃比が目標空燃比を通り過ぎて変化
するまでの期間は、帰還制御系の制御利得を通常
時よりも高める補正手段を設けたことを特徴とす
るものである。
In the air-fuel ratio control device for an engine according to the present invention, the air-fuel ratio control system switches from control by a control system for air-fuel ratio control during a specific operation different from normal operation to control by a feedback control system for normal operation. The present invention is characterized in that a correction means is provided for increasing the control gain of the feedback control system over normal times during a period until the air-fuel ratio passes the target air-fuel ratio and changes.

制御利得を高めるための手段としては、帰還制
御のための積分係数を、固定制御から帰還制御へ
の切り換え後、一時的に通常の帰還制御時よりも
高い値に設定すればよい。ここに、本発明におけ
る「積分係数」とは、本発明の実施例を示す第2
図を参照して説明すれば、目標空燃比と実際の空
燃比との偏差に基づいて演算された値が積分器1
3からデユーテイ比制御信号S3として出力され
る際における、この制御信号S3の一回当たりの
出力値の大きさを意味するものである。したがつ
て、この積分係数の増減と、積分時定数の増減と
は逆の関係になる。すなわち、積分係数の値を大
きな値とすることによつて積分時定数は小さくな
り、制御利得は大きくなる。これとは逆に、積分
係数の値を小さくすると積分時定数は大きくな
り、制御利得は小さくなる。
As a means for increasing the control gain, the integral coefficient for feedback control may be temporarily set to a higher value than during normal feedback control after switching from fixed control to feedback control. Here, the "integral coefficient" in the present invention refers to the second embodiment of the present invention.
To explain with reference to the figure, the value calculated based on the deviation between the target air-fuel ratio and the actual air-fuel ratio is
This means the magnitude of the output value of the control signal S3 at one time when the duty ratio control signal S3 is outputted from the control signal S3. Therefore, the increase/decrease in the integral coefficient and the increase/decrease in the integral time constant have an opposite relationship. That is, by increasing the value of the integral coefficient, the integral time constant becomes smaller and the control gain becomes larger. On the contrary, when the value of the integral coefficient is decreased, the integral time constant becomes large and the control gain becomes small.

本発明においては、大きな値から小さな値への
制御利得の切り換えは、空燃比が目標空燃比を通
り過ぎて変化したときに行われるのであるが、こ
の切り換えは、帰還制御手段の積分手段への入力
信号値が反転したことを検出して行えばよい。
In the present invention, the control gain is switched from a large value to a small value when the air-fuel ratio changes past the target air-fuel ratio. This can be done by detecting that the signal value has been inverted.

このような構成の本発明のエンジン空燃比制御
装置によれば、制御性の切り換え時に帰還制御系
の制御利益を一時的に高めるので、切り換え時の
トルクシヨツクを抑制しながら、この切り換え時
の空燃比制御の応答性を向上させることができ
る。特に、本発明においては、制御利得を高い値
から通常の低い値に戻す時点を、空燃比が目標空
燃比を通り過ぎて変化したとき、としているの
で、タイマー等により制御系の切り換えから一定
期間の経過後に積分係数を高い値から通常の低い
値に戻す制御に比べて、正常な帰還制御への復帰
を早くすることが可能になる。また、タイマー等
による制御では、適性な時間設定が容易なく、空
燃比が目標空燃比を通り過ぎて変化しても、なお
高い積分係数での制御が維持される可能性があ
り、ハンチングの原因になるが、本発明の制御で
は、このような問題を確実に避けることが可能に
なる。
According to the engine air-fuel ratio control device of the present invention having such a configuration, the control profit of the feedback control system is temporarily increased when switching controllability, so while suppressing torque shock during switching, The responsiveness of fuel ratio control can be improved. In particular, in the present invention, the point in time when the control gain is returned from a high value to a normal low value is when the air-fuel ratio has changed past the target air-fuel ratio. Compared to control that returns the integral coefficient from a high value to a normal low value after a lapse of time, it is possible to return to normal feedback control more quickly. In addition, with control using a timer, it is not easy to set an appropriate time, and even if the air-fuel ratio changes past the target air-fuel ratio, control may still be maintained at a high integral coefficient, which may cause hunting. However, the control according to the present invention makes it possible to reliably avoid such problems.

以下、添付図面を参照しつつ本発明の好ましい
実施例によるエンジンの空燃比制御装置について
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An engine air-fuel ratio control device according to a preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は、本発明のエンジン1の空燃比制御装
置の全体構成図である。
FIG. 1 is an overall configuration diagram of an air-fuel ratio control device for an engine 1 according to the present invention.

エンジン1は、吸気通路2および排気通路3を
有している。この吸気通路2には吸気負圧センサ
4が、排気通路3には酸素濃度センサからなる排
気センサ5が、それぞれ配設されている。吸気管
路2の吸気負圧センサ4の上流側には、例えばエ
アブリーダを開閉する電磁弁からなるアクチユエ
ータ6を介して作動制御されて、混合気の空燃比
を調整する例えば気化器のような燃料調量装置7
が設けられている。この燃料調量装置7には、吸
気負圧センサ4の検出出力と排気センサ5の検出
出力とから混合気の空燃比を制御するための制御
回路8が接続されている。この制御回路8につい
ては、後に詳細に説明する。この制御回路8に
は、排気センサ5の濃度検出信号S1と設定電圧
発生回路9からの目標空燃比を示す設定電圧
Vrefとを比較し、その偏差を示す偏差信号S2
を発生する比較回路10が接続されている。な
お、図中、符号11はエアクリーナを、符号12
は排気通路3に介設された触媒装置をそれぞれ示
す。
The engine 1 has an intake passage 2 and an exhaust passage 3. An intake negative pressure sensor 4 is disposed in the intake passage 2, and an exhaust sensor 5 consisting of an oxygen concentration sensor is disposed in the exhaust passage 3. Upstream of the intake negative pressure sensor 4 in the intake pipe line 2, there is a fuel such as a carburetor whose operation is controlled via an actuator 6 consisting of, for example, a solenoid valve that opens and closes an air bleeder to adjust the air-fuel ratio of the air-fuel mixture. Measuring device 7
is provided. A control circuit 8 for controlling the air-fuel ratio of the air-fuel mixture based on the detection output of the intake negative pressure sensor 4 and the detection output of the exhaust sensor 5 is connected to the fuel metering device 7 . This control circuit 8 will be explained in detail later. This control circuit 8 receives a concentration detection signal S1 from the exhaust sensor 5 and a set voltage indicating a target air-fuel ratio from a set voltage generating circuit 9.
Deviation signal S2 that compares with Vref and indicates the deviation
A comparator circuit 10 is connected which generates . In addition, in the figure, reference numeral 11 indicates an air cleaner, and reference numeral 12 indicates an air cleaner.
1 and 2 show catalyst devices installed in the exhaust passage 3, respectively.

次に、第2図を参照しつつ、本発明のエンジン
の空燃比制御装置の制御回路8について詳細に説
明する。
Next, the control circuit 8 of the engine air-fuel ratio control device of the present invention will be explained in detail with reference to FIG.

制御回路8は、比較器10に接続された積分演
算器13を備えており、この積分演算器13は、
その積分係数が、通常運転時用の積分係数k1、
およびこの積分係数k1より大きな値の積分係数
k2のいずれかに選択的に設定されるようになつ
ている。積分演算器13は、通常運転時において
比較器10からの偏差信号S2に基づき積分係数
k1に従つて積分演算し、デユーテイ比制御信号
S3を出力するようになつている。この積分演算
器13には、駆動回路14が接続されており、こ
の駆動回路14は、上記デユーテイ比制御信号S
3に基づきアクチユエータ6を駆動制御する。制
御回路8は、地上により通常運転時の帰還制御系
を構成する。
The control circuit 8 includes an integral calculator 13 connected to a comparator 10, and this integral calculator 13
The integral coefficient is the integral coefficient k1 for normal operation,
and an integral coefficient k2 having a larger value than the integral coefficient k1. The integral calculator 13 performs an integral calculation in accordance with an integral coefficient k1 based on the deviation signal S2 from the comparator 10 during normal operation, and outputs a duty ratio control signal S3. A drive circuit 14 is connected to this integral calculator 13, and this drive circuit 14 receives the duty ratio control signal S.
The actuator 6 is driven and controlled based on 3. The control circuit 8 on the ground forms a feedback control system during normal operation.

一方、符号15は、エンジン1の特定運転時用
の固定制御系の固定制御信号出力回路を示し、こ
の固定制御信号出力回路15は、ゲート16を介
して積分演算器13に接続されている。積分演算
器13は、固定制御信号出力回路15からの固定
制御信号S4を受けたとき、その積分作用を停止
し、入力をそのままの状態で出力するようになつ
ている。ゲート16は、運転状態検出回路17に
接続されており、この運転状態検出回路17は、
負圧センサ4の検出出力に基づいてエンジンの運
転状態を検出し、このエンジン1の運転状態が高
負荷運転状態等の特定運転状態のときゲート16
を開くものである。
On the other hand, reference numeral 15 indicates a fixed control signal output circuit of a fixed control system for a specific operation of the engine 1, and this fixed control signal output circuit 15 is connected to the integral calculator 13 via a gate 16. When the integral calculator 13 receives the fixed control signal S4 from the fixed control signal output circuit 15, it stops its integral action and outputs the input as it is. The gate 16 is connected to an operating state detection circuit 17, and this operating state detection circuit 17
The operating state of the engine is detected based on the detection output of the negative pressure sensor 4, and when the operating state of the engine 1 is in a specific operating state such as a high-load operating state, the gate 16 is activated.
It opens.

運転状態検出回路17には、積分係数設定器1
8が接続されており、この積分係数設定器18
は、運転状態検出回路17が、エンジン1が特定
運転状態から通常運転状態に切り換つたことを検
出したとき、積分器13の積分係数をk1からk
2に切り換えるように指示するものである。すな
わち、エンジンが特定運転状態に移る前の通常運
転状態では、積分係数は通常運転のための低い値
k1であり、特定運転状態では、積分係数を使用
しないが、積分係数自体は、この特定運転状態の
期間中もこの値k1に維持されている。そして、
エンジン運転状態がこの特定運転状態から通常運
転状態に切り換わつたときに、積分係数設定器1
8の指示により、積分係数がk1からk2に切り
換えられる。この積分係数設定器18には、スイ
ツチング回路19が反転器20を介して、あるい
はこの反転器20を介さずに直接接続されてい
る。反転器20は、積分係数k1,k2を反転、
すなわち−k1,−k2となすものである。スイ
ツチング回路19は、比較器10の出力である偏
差信号S2に基づき積分器13の積分係数をk
1,k2,−k1,−k2のいずれかに設定するも
のである。積分係数設定器18には比較器10の
出力が接続されており、積分係数設定器18は、
比較器10の出力が後述するように0から1また
は1から0に反転したときに積分係数をk2から
k1に切り換える。
The operating state detection circuit 17 includes an integral coefficient setter 1.
8 is connected, and this integral coefficient setter 18
When the operating state detection circuit 17 detects that the engine 1 has switched from the specific operating state to the normal operating state, the integral coefficient of the integrator 13 is changed from k1 to k.
This is an instruction to switch to 2. That is, in the normal operating state before the engine moves to the specific operating state, the integral coefficient is a low value k1 for normal operation, and in the specific operating state, the integral coefficient is not used, but the integral coefficient itself is This value k1 is maintained during the state. and,
When the engine operating state switches from this specific operating state to the normal operating state, the integral coefficient setting device 1
8, the integral coefficient is switched from k1 to k2. A switching circuit 19 is directly connected to the integral coefficient setter 18 via an inverter 20 or not via an inverter 20 . The inverter 20 inverts the integral coefficients k1 and k2,
That is, -k1 and -k2. The switching circuit 19 sets the integral coefficient of the integrator 13 to k based on the deviation signal S2 which is the output of the comparator 10.
It is set to any one of 1, k2, -k1, and -k2. The output of the comparator 10 is connected to the integral coefficient setter 18, and the integral coefficient setter 18
As will be described later, when the output of the comparator 10 is inverted from 0 to 1 or from 1 to 0, the integral coefficient is switched from k2 to k1.

次に、第2図に示す構成をもつ制御回路8の作
用を第3図および第4図を参照しながら説明す
る。
Next, the operation of the control circuit 8 having the configuration shown in FIG. 2 will be explained with reference to FIGS. 3 and 4.

例えば、エンジン1の通常運転時において、エ
ンジン1に供給される混合気の空燃比が第3図A
のように変動したとすると、これに応じて排気セ
ンサ5は、濃度検出信号S1を出力する。比較器
10は、この濃度検出信号S1と設定電圧発生回
路9からの設定電圧Vrefとを比較して第3図Bに
示されているような偏差信号S2を出力する。こ
の偏差信号S2は、濃度検出信号S1が設定電圧
Vrefより大きいことを示す高レベル部分すなわち
“1”の部分と、濃度検出信号S1が設定電圧
Vrefより小さいことを示す低レベル部分すなわち
“0”の部分とからなつている。積分演算器13
は、この偏差信号S2に基づき積分係数k1,−
k1で積分演算し第3図Cに示されているような
デユーテイ比制御信号S3を出力する。駆動回路
14は、このデユーテイ比制御信号S3を基づき
アクチユエータ6を駆動制御し、吸入混合気の空
燃比が設定空燃比に収束するように帰還空燃比制
御を行なう。
For example, during normal operation of the engine 1, the air-fuel ratio of the air-fuel mixture supplied to the engine 1 is as shown in FIG.
If the concentration changes as follows, the exhaust sensor 5 outputs a concentration detection signal S1 in response to this change. The comparator 10 compares this concentration detection signal S1 with the set voltage V ref from the set voltage generating circuit 9 and outputs a deviation signal S2 as shown in FIG. 3B. This deviation signal S2 indicates that the concentration detection signal S1 is the set voltage.
The high level part, that is, the "1" part indicating that it is larger than V ref , and the concentration detection signal S1 are at the set voltage.
It consists of a low level part, that is, a "0" part indicating that it is smaller than V ref . Integral calculator 13
is the integral coefficient k1,− based on this deviation signal S2.
An integral calculation is performed at k1, and a duty ratio control signal S3 as shown in FIG. 3C is output. The drive circuit 14 drives and controls the actuator 6 based on this duty ratio control signal S3, and performs feedback air-fuel ratio control so that the air-fuel ratio of the intake air-fuel mixture converges to the set air-fuel ratio.

以上説明したような帰還空燃比制御を行なつて
いるとき、運転状態検出回路17が負圧センサ4
の検出出力によつて通常運転状態から特定運転状
態、例えば高負荷運転状態に切り換わつたことを
検出すると、この運転状態検出回路17は、ゲー
ト16を開く。従つて、固定制御信号出力回路1
5からの固定制御信号S4は、積分演算器13に
供給され、積分演算器13の作用を停止して、帰
還制御系を停止する。この結果、固定制御信号S
4は、そのままの状態で駆動回路14に出力され
る。かくして、駆動回路14は、固定制御信号S
4に基づきアクチユエータ6を固定制御して、吸
入混合気の空燃比が例えば一定のリツチな値とな
るように固定空燃比制御を行なう。この運転状態
では、積分係数は制御に使用されないが、積分係
数設定器18はk1の積分定数を出力するように
設定されている。
When performing the feedback air-fuel ratio control as described above, the operating state detection circuit 17 detects the negative pressure sensor 4.
When it is detected by the detection output that the normal operating state has been switched to a specific operating state, for example, a high load operating state, the operating state detection circuit 17 opens the gate 16. Therefore, fixed control signal output circuit 1
The fixed control signal S4 from 5 is supplied to the integral calculator 13, and stops the operation of the integral calculator 13, thereby stopping the feedback control system. As a result, the fixed control signal S
4 is output to the drive circuit 14 as is. Thus, the drive circuit 14 receives the fixed control signal S
4, the actuator 6 is fixedly controlled to perform fixed air-fuel ratio control so that the air-fuel ratio of the intake air-fuel mixture becomes, for example, a constant rich value. In this operating state, the integral coefficient is not used for control, but the integral coefficient setter 18 is set to output the integral constant of k1.

一方、運転状態検出回路17が、特定運転状態
から通常運転状態に変化したことを検出したと
き、積分係数設定器18は、スイツチング回路1
9を介して積分演算器13の積分係数をk2ある
いは−k2に切り換える。積分器13は、積分係
数k2または−k2によつて比較器10の偏差信
号S2に基づき積分演算し、デユーテイ比制御信
号S3を出力する。比較器10から積分定数設定
器18に入力される信号S2が1から0または0
から1に反転すると、積分定数設定器18により
積分定数がk2からk1に切り換えられ、積分演
算器13は再び積分係数k1,−k1に基づいて
その作用を行なう。この制御の結果による空燃比
の変化を第4図の曲線Rに示す。この第4図から
明らかなように、特定運転時の固定制御において
空燃比がリツチな状態の一定値R1にあつたとす
ると、固定制御から帰還制御に切り換わつたと
き、空燃比は積分係数k2の作用により部分R2
のように望ましい勾配で過渡的に変化し、空燃比
が第4図に設定値として示される通常運転時の目
標空燃比にほぼ到達した後は、積分係数k1の作
用により部分R3のように通常の帰還制御が行な
われる。なお、第4図において、鎖線は補正手段
なしに固定制御から帰還制御に切り換わつた場合
の空燃比の変化の状態を示し、破線は特開昭54−
7023号の空燃比帰還式混合気制御装置による上記
と同様の場合の空燃比の変化の状態を示す。
On the other hand, when the operating state detection circuit 17 detects that the specific operating state has changed to the normal operating state, the integral coefficient setter 18 sets the switching circuit 1 to the normal operating state.
9, the integral coefficient of the integral calculator 13 is switched to k2 or -k2. The integrator 13 performs an integral calculation based on the deviation signal S2 of the comparator 10 using an integral coefficient k2 or -k2, and outputs a duty ratio control signal S3. The signal S2 input from the comparator 10 to the integral constant setter 18 changes from 1 to 0 or 0.
When the integral constant is inverted from k1 to 1, the integral constant setter 18 switches the integral constant from k2 to k1, and the integral calculator 13 again performs its operation based on the integral coefficients k1 and -k1. The change in air-fuel ratio resulting from this control is shown by curve R in FIG. As is clear from FIG. 4, if the air-fuel ratio is at a constant value R1 in the rich state under the fixed control during a specific operation, when the fixed control is switched to the feedback control, the air-fuel ratio is changed to the integral coefficient k2. Due to the action of the part R2
After the air-fuel ratio changes transiently at a desired slope as shown in FIG. feedback control is performed. In FIG. 4, the dashed line shows the state of change in the air-fuel ratio when switching from fixed control to feedback control without correction means, and the broken line shows the state of change in the air-fuel ratio when switching from fixed control to feedback control without correction means.
7 shows the state of change in air-fuel ratio in the same case as above using the air-fuel ratio feedback type mixture control device of No. 7023.

上記実施例においては、比較器10の偏差信号
S2を積分するのに積分演算器13すなわちコン
ピユータを用いたが、この積分演算器13の代り
に、コンデンサの充、放電を利用する通常の積分
器を用いることができ、この場合は反転器20を
必要としない。
In the embodiment described above, the integral calculator 13, that is, the computer, was used to integrate the deviation signal S2 of the comparator 10, but instead of the integral calculator 13, an ordinary integrator that utilizes charging and discharging of a capacitor may be used. can be used, in which case the inverter 20 is not required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のエンジンの空燃比制御装置
の全体構成図、第2図は、第1図に示されたエン
ジンの空燃比制御装置の制御回路の一例を示すブ
ロツク図、第3図A,B,Cは、それぞれ空燃
比、濃度検出信号、デユーテイ比制御信号の変化
を示す波形図、第4図は、固定制御系から帰還制
御系への切換え時に、本発明のエンジンの空燃比
制御装置によつて制御された空燃比の変化を示す
波形図である。 1……エンジン、4……負圧センサ、5……排
気センサ、6……アクチユエータ、7……燃料調
量装置、8……制御回路、9……設定電圧発生回
路、10……比較回路、13……積分演算器、1
5……固定制御信号出力回路、17……運転状態
検出器、18……積分係数設定器。
FIG. 1 is an overall configuration diagram of an air-fuel ratio control device for an engine according to the present invention, FIG. 2 is a block diagram showing an example of a control circuit of the air-fuel ratio control device for an engine shown in FIG. 1, and FIG. A, B, and C are waveform diagrams showing changes in the air-fuel ratio, concentration detection signal, and duty ratio control signal, respectively, and FIG. 4 shows the air-fuel ratio of the engine of the present invention when switching from the fixed control system to the feedback control system. FIG. 3 is a waveform chart showing changes in the air-fuel ratio controlled by the control device. DESCRIPTION OF SYMBOLS 1... Engine, 4... Negative pressure sensor, 5... Exhaust sensor, 6... Actuator, 7... Fuel metering device, 8... Control circuit, 9... Set voltage generation circuit, 10... Comparison circuit , 13... Integral calculator, 1
5... Fixed control signal output circuit, 17... Operating state detector, 18... Integral coefficient setter.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンの運転状態を検出する運転状態検出
手段と、エンジンに供給される混合気の空燃比を
検出する空燃比検出手段と、エンジンの通常運転
時に前記空燃比検出手段により検出された実際の
空燃比を目標空燃比と比較して両空燃比の差を検
出しこの両空燃比の差に基づいて空燃比が前記目
標空燃比になるように帰還制御する第1制御系
と、エンジンの通常運転時とは異なる特定運転時
に空燃比が前記目標空燃比とは異なるように制御
する第2制御系とからなる空燃比制御装置におい
て、前記第1制御系の制御利得を通常時より高め
る補正手段が設けられ、前記第2制御系による制
御から前記第1制御系による制御への移行の際
に、空燃比が前記目標空燃比を通り過ぎて変化す
るまでは、前記補正手段により前記第1制御系の
制御利得を通常時より高め、空燃比が前記目標空
燃比を通り過ぎて変化したときに、前記第1制御
系の制御利得を通常時の値とすることを特徴とす
るエンジンの空燃比制御装置。
1 An operating state detection means for detecting the operating state of the engine, an air-fuel ratio detection means for detecting the air-fuel ratio of the air-fuel mixture supplied to the engine, and an actual air-fuel ratio detection means for detecting the air-fuel ratio detection means during normal operation of the engine. a first control system that compares the fuel ratio with a target air-fuel ratio to detect a difference between the two air-fuel ratios, and performs feedback control so that the air-fuel ratio becomes the target air-fuel ratio based on the difference between the two air-fuel ratios; and a first control system that performs normal operation of the engine. and a second control system that controls the air-fuel ratio so that the air-fuel ratio is different from the target air-fuel ratio during a specific operation different from the normal operation time, the air-fuel ratio control device includes a correction means for increasing the control gain of the first control system compared to normal times. and when the control by the second control system changes to the control by the first control system, the correction means controls the first control system until the air-fuel ratio changes past the target air-fuel ratio. An air-fuel ratio control device for an engine, characterized in that the control gain is higher than normal, and when the air-fuel ratio changes past the target air-fuel ratio, the control gain of the first control system is set to the normal value.
JP13448281A 1981-08-27 1981-08-27 Air-fuel ratio controller of engine Granted JPS5835246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13448281A JPS5835246A (en) 1981-08-27 1981-08-27 Air-fuel ratio controller of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13448281A JPS5835246A (en) 1981-08-27 1981-08-27 Air-fuel ratio controller of engine

Publications (2)

Publication Number Publication Date
JPS5835246A JPS5835246A (en) 1983-03-01
JPH0353459B2 true JPH0353459B2 (en) 1991-08-15

Family

ID=15129352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13448281A Granted JPS5835246A (en) 1981-08-27 1981-08-27 Air-fuel ratio controller of engine

Country Status (1)

Country Link
JP (1) JPS5835246A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201959A (en) * 1983-04-28 1984-11-15 Suzuki Motor Co Ltd Control device of air-fuel ratio in engine
JPS60128954A (en) * 1983-12-16 1985-07-10 Mazda Motor Corp Air-fuel ratio controller for engine
GB2167883A (en) * 1984-11-30 1986-06-04 Suzuki Motor Co Apparatus for controlling an air-fuel ratio in an internal combustion engine
JP3168355B2 (en) * 1992-08-17 2001-05-21 株式会社ユニシアジェックス Air-fuel ratio control device for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52154929A (en) * 1976-06-18 1977-12-23 Nippon Denso Co Ltd Air-fuel ratio feedback system mixed gas control apparatus
JPS547023A (en) * 1977-06-17 1979-01-19 Nippon Denso Co Ltd Air-fuel-ratio feedback type mixture controller
JPS569634A (en) * 1980-05-29 1981-01-31 Nippon Denso Co Ltd Feedback control of air-fuel ratio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52154929A (en) * 1976-06-18 1977-12-23 Nippon Denso Co Ltd Air-fuel ratio feedback system mixed gas control apparatus
JPS547023A (en) * 1977-06-17 1979-01-19 Nippon Denso Co Ltd Air-fuel-ratio feedback type mixture controller
JPS569634A (en) * 1980-05-29 1981-01-31 Nippon Denso Co Ltd Feedback control of air-fuel ratio

Also Published As

Publication number Publication date
JPS5835246A (en) 1983-03-01

Similar Documents

Publication Publication Date Title
US4370960A (en) Engine speed control system
US4583174A (en) Electronically controlled fuel injection apparatus for internal combustion engine
JP3194670B2 (en) Electronic control unit for internal combustion engine
JPS6118664B2 (en)
US4376431A (en) Air-fuel ratio control system with altitude compensator
JPH0353459B2 (en)
JPH04339147A (en) Control device for air-fuel ratio of internal combustion engine
US4391256A (en) Air-fuel ratio control apparatus
US4528962A (en) Method and apparatus for lambda regulation in an internal combustion engine
US4470395A (en) Air-fuel ratio control system
US4478191A (en) Air-fuel ratio control system for internal combustion engines
US4204482A (en) Comparator circuit adapted for use in a system for controlling the air-fuel ratio of an internal combustion engine
JPS6043140A (en) Method and device for controlling air-fuel ratio of internalcombustion engine
US4375211A (en) Air-fuel ratio control system
JPS6342102B2 (en)
JPH07113343B2 (en) Air-fuel ratio controller for internal combustion engine
JPH0373742B2 (en)
JPH0128214B2 (en)
JPS6158912A (en) Exhaust cleaning apparatus of engine
US4872117A (en) Apparatus for controlling an air-fuel ratio in an internal combustion engine
US6209314B1 (en) Air/fuel mixture control in an internal combustion engine
JPS60192845A (en) Air-fuel ratio control device
JPH0447392Y2 (en)
JPH039294B2 (en)
JP2561832B2 (en) Engine idle speed controller