JPS5848754A - Air-fuel ratio control apparatus for internal- combustion engine - Google Patents

Air-fuel ratio control apparatus for internal- combustion engine

Info

Publication number
JPS5848754A
JPS5848754A JP14730881A JP14730881A JPS5848754A JP S5848754 A JPS5848754 A JP S5848754A JP 14730881 A JP14730881 A JP 14730881A JP 14730881 A JP14730881 A JP 14730881A JP S5848754 A JPS5848754 A JP S5848754A
Authority
JP
Japan
Prior art keywords
lean
air
fuel ratio
control
feedback control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14730881A
Other languages
Japanese (ja)
Other versions
JPS6254978B2 (en
Inventor
Takao Niwa
丹羽 孝夫
Takeshi Gono
郷野 武
Shiro Nagasawa
長沢 四郎
Yasuo Yamada
山田 泰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP14730881A priority Critical patent/JPS5848754A/en
Priority to US06/413,900 priority patent/US4483301A/en
Publication of JPS5848754A publication Critical patent/JPS5848754A/en
Publication of JPS6254978B2 publication Critical patent/JPS6254978B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/263Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the program execution being modifiable by physical parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve an operability upon switching by a method wherein a hysteresis zone, in which a torque is changed continuously in case the control mode of the air-fuel ratio is switched from the feedback control mode for the logical air-fuel ratio to the lean control mode, is provided. CONSTITUTION:The control circuit, operating and controlling the valve opening time of a fuel injection valve based on the detecting values of an airflow meter and a revolving number sensor, sets a lean flag to one (1) in a step 52 in case a standard injection time Tp is smaller than a predetermined value alpha0 in the step 51, thereafter, the value of the feedback control is operated in the step 53. When a load is increased and Tp>alpha0 in step 51 as well as the lean flag = 1 in step 54 are decided, the lean flag is set in one (1) while Tp<=alpha2 in the step 58, but the lean flag becomes zero (0) in the step 57 when Tp>alpha2. When the load is decreased and Tp becomes Tp<=alpha1, respective lean flags are set in one (1) and a lean operation is effected in the step 59.

Description

【発明の詳細な説明】 本発明は内燃機関の空燃比制御装置に係シ、特に、部分
リーンシステムを採用して燃−を行う内燃機関の空燃比
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more particularly to an air-fuel ratio control device for an internal combustion engine that employs a partial lean system for combustion.

排気ガス規制と燃費低減を満たす有効な手法として、三
元触媒と0.−にンナを用いて排気ガス中の3成分であ
るCo%HC,NOxを同時に酸化環元反応させ、排気
ガスを浄化する方式が用いられている。
A three-way catalyst and a zero. A method is used in which the three components in the exhaust gas, Co%HC and NOx, are simultaneously subjected to an oxidation and ring reaction using a gas cleaner to purify the exhaust gas.

かかる排気ガス中の3成分に対し同時に高、い浄化率で
働かせる丸めには、常に理論空燃比の近傍でエンジンを
運転しなければならない。このために〇七ンサの出力信
号を燃料供給系にフィートノ(ツ寓 り信号としてかけ、所定の空燃比領域内に収まるよう4
=シている。
In order to simultaneously work on the three components in the exhaust gas at a high purification rate, the engine must always be operated near the stoichiometric air-fuel ratio. For this purpose, the output signal of the
=Shiru.

ところで、エンジンの全運転領域でフィートノくツク制
御を行った場合、燃費が悪化する領域が生じる。そこで
、軽負荷領域においては、リーン1則に空燃比を移すと
共に腑領域でのフィートノ(ツク制御を停止し、オープ
ンループ制御を行う所IIs分り一ンシステムが採用さ
れている。この場合の制御としては、例えば、吸気管負
圧(または相当出力)の変化、具体的には吸気管負圧に
ほぼ比例、する基本噴射時間?、の成る値よシ小さい領
域において基本噴射時間Tpにほぼ比例して空燃比をリ
ー嫡し、成る設定値よシも大きい領域(=高負荷)をフ
ィードバック制御とし、また設定値よルも小さい領域(
=@負荷)をリーン制御により運転していた。
By the way, when the foot check control is performed in the entire operating range of the engine, there will be a range where fuel efficiency deteriorates. Therefore, in the light load region, the air-fuel ratio is shifted to the lean 1 law, the foot control in the normal region is stopped, and open loop control is performed. For example, the change in intake pipe negative pressure (or equivalent output), specifically, the basic injection time that is approximately proportional to the intake pipe negative pressure, is approximately proportional to the basic injection time Tp in a smaller region than the value of . The air-fuel ratio is directly controlled by feedback control in the range where the set value is larger (=high load), and the range where the set value is smaller (=high load).
= @Load) was being operated under lean control.

しか°しなから゛、リーンMNとフィトバック制御−の
切換え条件によってはエンジン状態が非常に不安定にな
p1車両の運転性が悪くなる。例、えば、リーン制御と
フィードバック制御との切換えに際し1.大きなトル、
り差があるままで切換えると、切換えの都度、車両にシ
ョックが生じ運転性を悪化させることになる。
However, depending on the switching conditions between Lean MN and Fitoback control, the engine condition becomes extremely unstable and the drivability of the P1 vehicle deteriorates. For example, when switching between lean control and feedback control, 1. big toru,
If the switch is made while there is a difference in the pitch, a shock will be generated in the vehicle each time the switch is made, resulting in poor drivability.

本発明の目的は(部分リーンシスアムにおけるリーン1
lIII#とフィードパ・ツク制御の切換時の4転・性
を改善し、上記した従来の゛欠点を解消する内惑磯関の
空燃゛比制御装置を提供するにある。
The purpose of the present invention is to (lean 1 in partial lean system)
It is an object of the present invention to provide an internal air-fuel ratio control device that improves the four-turn performance when switching between IIII# and feedpack control and eliminates the above-described drawbacks of the conventional art.

本発明は上記目的を達成すべく、リーン制御°とフィー
ドパラを制御との切換時の負荷条件にヒステリシスを持
たせることi:よ?、切換えを円滑に行って運転性を改
善するものである。
In order to achieve the above object, the present invention provides hysteresis to the load condition when switching between lean control and feed parameter control. , which improves drivability by performing switching smoothly.

すなわち第1図に示すように燃料基本噴射パルス幅テp
(= K −A  但し、’B定数、Qvよ吸入空気緻
5%。
That is, as shown in Fig. 1, the basic fuel injection pulse width tep
(= K - A However, 'B constant, Qv and intake air density 5%.

舅はエンジン回転数)をリーン制御とフィードバッタ制
御との切換領域においてヒステリシス動作を1着るもの
である。軽負荷から高負荷にエンジン条件が変化すると
きにはテpが設定値α−;到達し九時点で9−ン制御か
らフィードバック制御に切換え、まえ高負荷から暢負荷
にエンジン条件が変化す−と1には・?一般定値“・に
調達5た時点1フイードバツク制御からり一ン制御にヒ
・ステリシスをもって匍換える。このように切換え条件
にヒステリシスを持たせることによって、第2図に示t
el)ルク出カ4I性が得られる。例えば、!p麿α、
の点゛でリーン制御からフィードバック制御に切換えを
行5′と、!、トルク領域から−にトルクが変化すゐが
、−ではトルクが大きすぎる場合には−7−)の領域を
通ぶことができる。これに対し従来は!、〜−−5域の
、トへり領域が存在しないので、この切換え条件でのエ
ンジン状態は非常に不安定となる。6 第Bg紘本発嘴の夷維例の概略を示す構成図である。
Hysteresis operation is performed in the switching range between lean control and feed batter control (engine speed). When the engine condition changes from light load to high load, tep reaches the set value α-; at the 9-point point, switch from 9-on control to feedback control, and when the engine condition changes from high load to smooth load, 1 for·? When the general fixed value is reached, the control switches from 1 feedback control to 1 feedback control with hysteresis. By providing hysteresis to the switching conditions in this way, the t
el) A high level of power output is obtained. for example,! pmaro α,
At point ゛, switch from lean control to feedback control in line 5', and! , the torque changes from the - torque range to -, but if the torque is too large in -, it can pass through the -7-) range. In contrast, conventionally! Since there is no torsion region in the . FIG. 6 is a diagram schematically showing the structure of an example of the beak of No. Bg Hiromoto.

第3Eにおhて、lはエンジン、2社エアクリーナ、3
は吸気管、4はスーツトルパルプ、5はインジェクタ、
6は排気にホールド、7は華気管、8ぽ吸気量を検出す
るエア70−メータに内蔵されたポテンショメータ式の
吸気量センナ、9は内気温度を検出する吸気温センナ、
!oはエンジン冷却水温を検出する水温センナ、11は
エンジン1のタランク軸の回転速度に応じ九周波数のパ
ルス信号を出力する回転速度センナ、12は0゜センナ
、13は三元触媒装置、2oは制御装置である。
In the 3rd E, l is the engine, 2 air cleaners, 3
is the intake pipe, 4 is the suittle pulp, 5 is the injector,
6 is a hold on the exhaust, 7 is a flower air pipe, 8 is a potentiometer-type intake air amount sensor built in the air 70-meter that detects the intake air amount, 9 is an intake temperature sensor that detects the internal air temperature,
! o is a water temperature sensor that detects the engine cooling water temperature, 11 is a rotation speed sensor that outputs a nine-frequency pulse signal according to the rotation speed of the tarrank shaft of the engine 1, 12 is a 0° senna, 13 is a three-way catalyst device, and 2o is a It is a control device.

空気はエアクリーナ2を食して吸気管3に該吸気管3内
Q負圧によって取込まれj0吸入空気量はスロットルバ
ルブ4によってコント四−ルサレ、°所定量がインジェ
クタ5よ〕噴射される燃料と混会され、エンジンlの燃
焼富に送られる。燃焼し九排気ガスは排気管7に設けら
れ九三元触s1sによって浄化され矛。インジェクタ6
よ)噴射される燃料量は、インジェクタに設けられ九電
磁弁(図示せず)を制御回路2oによって制御すること
によ)行われる。この制御を行うための情報は、徴気量
令ンナ8、吸気温センナ9、水温セン+1へ回転適度セ
ンナ11および0.センナ1aの各センナの出力信号で
ある。制御回路2oとしてはデスタリートに構成するこ
ともできるが、空燃比制御以外の他の処理も行える利点
を考えるとマイクロコンビ為−夕を用いるのが有利であ
る。
The air passes through the air cleaner 2 and is taken into the intake pipe 3 by the negative pressure inside the intake pipe 3. The amount of intake air is controlled by the throttle valve 4, and a predetermined amount is injected from the injector 5. The mixture is mixed and sent to the combustion engine of the engine. The combusted exhaust gas is purified by the exhaust gas provided in the exhaust pipe 7. Injector 6
The amount of fuel injected is determined by controlling nine solenoid valves (not shown) provided in the injector by means of a control circuit 2o. The information for performing this control includes air intake rate sensor 8, intake temperature sensor 9, water temperature sensor +1, rotation mode sensor 11, and 0. These are the output signals of each sensor of the sensor 1a. Although the control circuit 2o can be constructed as a destarite circuit, it is advantageous to use a microcombination circuit in view of the advantage of being able to perform other processes besides air-fuel ratio control.

第4園は制御回路20にマイクロコンピュータを用いえ
場合のIPMブーツク図である。
The fourth diagram is an IPM boot diagram when a microcomputer is used in the control circuit 20.

制御回路zOは、中央処理装置(CPU)100にパス
1sOを介して回転数カウンタ101、割込み制御部1
02、デジタル入カポ−)101.7 t w /、入
効゛ポート104、タイマ、−105、RAM(ツンダ
ムアタセスメモリ)tOSおよびROM(リードオン′
リー、メモリ)toyの人カ關係とメモリ部が接続され
ると共に、カウンタ108および電力増幅部10Gの各
々が接続される。各回路値二対しては電源回路110よ
p所要の電圧が供艙畜れて−る0回転数カウンタ101
はエンジン回@数を出力する回転速度センナ11よ)の
パルス数をカウントすると共に、エンジン回転4二同期
しゼ割込み制御部102゛に割込み指令信号を出力する
0割込上制御部102は割込み指令信号を受け・るとパ
ス150を介してCPU100に割込み信号を出力する
。すなわち、エンジンの1回転に1回エンジン回転数を
測定し、その測定の終了。
The control circuit zO is connected to a central processing unit (CPU) 100 via a path 1sO to a rotation number counter 101 and an interrupt control unit 1.
02, Digital input port) 101.7 tw/, Input port 104, Timer, -105, RAM (Tsundam Access Memory) tOS and ROM (Lead-on')
(memory) The toy's human connection and memory section are connected, and each of the counter 108 and the power amplification section 10G are also connected. For each circuit value, the required voltage is supplied from the power supply circuit 110 to the zero revolution counter 101.
The upper control unit 102 counts the number of pulses of the rotation speed sensor 11 which outputs the number of engine revolutions, and outputs an interrupt command signal to the interrupt control unit 102 in synchronization with the engine rotation. Upon receiving the command signal, it outputs an interrupt signal to the CPU 100 via the path 150. That is, the engine speed is measured once per engine revolution, and the measurement is completed.

時に割込み制御部102に割込み指令信号を供給し、こ
れを受けて割込み制御部j02は割込み信号を発生し、
CPt7100に燃料噴射蓋の演算を行う割込み処理ル
ーチンを実行させる。デジ★ル入カポ−)103はスタ
ー#(図示せず)の作動をオン・オフするスタータスイ
ッチ14からのスタータ信号等のデジタル信号をCPU
100(二伝送し、また、アナ四グ入カボート104は
アナログマルチプレクすと〜0変換器とよシ構成されて
、吸気量センナ8、吸気温センサ9、冷却水温センナ1
0.0.−にンt 1.2からの各信号をム、ん変換し
順次CPσ100に読み込ませる機能を有している。R
OM107はプログラムおよび各種の定数轡を記憶して
いる読出し専用メモリである。カウンタtea紘レジス
タを備え九燃料噴射時間制御用カクンタであって、ダウ
ンカウンタとしての機能を有し、図示の各種の七ンす出
力に基づいてcrtytooで演算゛されたインジェク
タ5の開弁時間、すなわち燃料噴射量を表わすデジタル
信号を実際のインジェクタ暴の開弁時間を与えるパルス
時間のパルス信号に変換するものである。電力増幅−1
0會はカウンタ1011の出力信号に基づいてインジェ
クタを駆動する機能を有する。なお、タイマ10Sは経
過時間を測定してcptrto。
At the same time, an interrupt command signal is supplied to the interrupt control unit 102, and in response to this, the interrupt control unit j02 generates an interrupt signal,
The CPt7100 is caused to execute an interrupt processing routine for calculating the fuel injection lid. A digital input capo) 103 sends digital signals such as a starter signal from the starter switch 14 that turns on and off the operation of star # (not shown) to the CPU.
100 (two transmissions), and the analog/four input converter 104 is configured with an analog multiplexer to zero converter, and includes an intake air amount sensor 8, an intake air temperature sensor 9, and a cooling water temperature sensor 1.
0.0. - It has a function of converting each signal from 1.2 to 1.2 and sequentially reading it into CPσ100. R
OM107 is a read-only memory that stores programs and various constant values. The valve opening time of the injector 5 is calculated by crtytoo based on the various input outputs shown in the figure, and has a function as a down counter. That is, it converts a digital signal representing the fuel injection amount into a pulse signal with a pulse time giving the actual valve opening time of the injector. Power amplification-1
0 has a function of driving the injector based on the output signal of the counter 1011. Note that the timer 10S measures the elapsed time and outputs cptrto.

に伝達するものであシ、電源回路110への電源供給は
今一スイッチ15を介して、バッテリ16よ)なされる
、      ′ 第8閣は制御回路20によって奥行される処理の70−
チャートである。ここに示す例紘学習制御を行う丸めの
フィードバック制御領域をリーン領域の下端(?、の最
も小さい領域)にも設けた場合であみ。
The power is supplied to the power supply circuit 110 via the switch 15 and the battery 16).
It is a chart. In the example shown here, the rounding feedback control area for performing learning control is also provided at the lower end of the lean area (the smallest area of ?).

まず、ステップs1でフィードバック領域であるか否か
を、燃料1&尿噴射パルス幅設定値へとその時点の燃料
基本噴射パルス幅Tpを比較して判定する。へ〉ipで
あればステップ52でリーンフラグをセットし、ステッ
プ53でフィードバック制御のための空燃比制御演算を
実行する。一方、ステップ51において”p>%であれ
ば、ステップ54でリーンフラグが立っているか否かを
調べ、その結果に応じてステップ5sまたはステップ5
6の処理ζ:移る。リーン7ラグが立っていない場合)
;はステップ55に移シ、ヒステリシス特性の下限側の
設定点であるへと現時点の燃料基本噴射パルス幅τpと
を比較する。リーンフラグが立っていないとい5事夷紘
、現時点のエンジン状態が第2図に示す特性ム13、つ
ま9フイードバツク制御領械にあシ、今vk41性4F
、のり−ン制御領域に切換えられることが予測される。
First, in step s1, it is determined whether or not it is in the feedback region by comparing the basic fuel injection pulse width Tp at that time with the fuel 1 & urine injection pulse width setting value. If it is ip, a lean flag is set in step 52, and an air-fuel ratio control calculation for feedback control is executed in step 53. On the other hand, if "p>%" in step 51, it is checked in step 54 whether or not the lean flag is set, and depending on the result, step 5s or step 5
Process 6 ζ: Move. (If Lean 7 lag is not set)
The process moves to step 55, where the current basic fuel injection pulse width τp is compared with the set point on the lower limit side of the hysteresis characteristic. If the lean flag is not set, there are five reasons: the current engine condition is the characteristics shown in Figure 2.
, it is predicted that the system will be switched to the line control region.

すなわち”]>>”1であれば、いまだ特性′ム町上に
あpフィードバック領域tあるから、今回の判定結果と
してステップ51でリーンフラグをリセットすると共に
、ステップ83でフィードバック制御のため−の演算′
を行い、この結果に基づいてるテクノ60で楠正最のセ
ットを行う、一方、へ〉テpであれば、49性ム1.上
に乗為べ自制御状・簡にあることを意味するから、ステ
ップi8でり一ン7う2をセットしてリーン制御領域に
入ったことを判定すると共に、〒pl[l’:、応じた
り一ン値を演算しり一7制御を行う・ステップ55での
判定はフィードバック制御からり−y制御への切換えで
6つ九が、逆に、・リーン制御からフィードバック制御
への切換えはステップ5・で判定する。ステップ54で
リーン7フグが立っていることの意味社、特性ムシ雪上
で現時点の制御が行われていることでアク、設定値へ1
=対してへ〉−であれば、いまだ特性ムシ、上で制御す
べ會状履にあゐことを意味するので、今回の判定結果と
してステップ58で改めてリーンフラグをセットすゐと
共に、ステップ5・で!−に応じえリーン値の演算を行
う、一方、÷p>へであれば@ $7.からムシー二移
るべき状態にあることを意味し、リーン領域よシの脱出
を意味するり−ン7うlの′リセットをステップ5丁で
行うと共に、ステップ+ssに移行して特性ムシ、に乗
るためのフイードパツク制御演算を行う。ステップ53
およびlS9による演算結果に基づいてステップ6oで
補正量のセットを行い総ての処理を終了する。
In other words, if "]>>" is 1, there is still an ap feedback region t above the characteristic 'mu town, so as a result of this judgment, the lean flag is reset in step 51, and - for feedback control is set in step 83. Calculation'
, and based on this result, perform the first set of Techno 60. On the other hand, if it is tep, 49 sex 1. Since it means that the vehicle is in the self-control state, in step i8, it is determined that it has entered the lean control region by setting 1, 7, and 2.・The judgment in step 55 is 6 times 9 when switching from feedback control to Y-y control, and conversely, ・Switching from lean control to feedback control is performed in step 55. Determine by 5. The meaning of lean 7 puffer standing in step 54 is that the current control is being carried out on the snow, which means that the set value is 1.
If it is -, it means that the characteristics are still in the condition that should be controlled. Therefore, as a result of this judgment, the lean flag is set again in step 58, and the lean flag is set again in step 5. in! -, the lean value is calculated according to ÷p>, on the other hand, @ $7. This means that you are in a state where you should move from Musi 2, and that means escaping from the lean area.Reset the line 7 U1 in Step 5, and move to Step + SS to get on the characteristic Musi. Performs feed pack control calculations for Step 53
Based on the calculation results obtained by step S9, a correction amount is set in step 6o, and all processing is completed.

第S図に示し九処理では、学習゛制御用フィードバック
制御領域を設けて学習制御を行うことによp、リーン領
域の制御確度を向上させる例について説明し九が、もち
ろん#フィードバック制御領域の無い場合についても適
用可能である。この場合には、ステップ51、+12の
処理社不要である。
In the process 9 shown in Fig. It is also applicable to cases. In this case, the processing company in steps 51 and +12 is not necessary.

以上より明らかな如く本発明によれば、ヒステリシス領
域を持九せることζ二よ)り一ン制御とフィードバック
制御の切換えを円滑に行うことができるので、骸切換時
における運転性を改善することができる。
As is clear from the above, according to the present invention, by reducing the hysteresis region, it is possible to smoothly switch between one-in control and feedback control, thereby improving drivability during switching. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を示す空燃比特性図、第!ill
祉本発明の原理を示すトルク特性図、第3図は本発明の
夷麹例の概略を示す構成図、第4図は本発明に係る制御
回路20の詳細プaツク図、第5図は本発明の処理を示
すフローチャートである。 1・・・エンジン     墨・・・インジェタタ、1
1・・一回転速度センナ、12・・・Olセンt。 13・−ミ元触謀装置、 20・・・制御回路、Zoo
−中央処理装置(CI’U)、 101−回転数カウンタ、 10意−φ割込み制御部、1o6・・・玖ムv1107
 ・−110M      16 B 、、、オフ/り
、109−・・電力増幅部、  15 G 用パス。 代理人   鵜  沼  辰  之 (ほか2名) 手続補正書 昭和56年1り月/?日 1、事件の表示 昭和56年 特許願 第147308 号2、発明の名
称 内燃機関の空燃比制御装置 3、補正をする者 事件との関係 特許出願人 名 称  (!120))!夕自動車工業株式会社(ほ
か1名) 4、代理人 図   面 8、 補正の8谷 (1)  図面第2図を別紙の如く訂正する。 以上
Figure 1 is an air-fuel ratio characteristic diagram showing the principle of the present invention. ill
Fig. 3 is a schematic configuration diagram showing an example of the present invention, Fig. 4 is a detailed block diagram of the control circuit 20 according to the invention, and Fig. 5 is a torque characteristic diagram showing the principle of the present invention. 3 is a flowchart showing processing of the present invention. 1...Engine Black...Injector, 1
1...One rotation speed sensor, 12...Ol cent. 13.-Mi former infiltrator device, 20...control circuit, Zoo
- Central processing unit (CI'U), 101 - Number of revolutions counter, 10 - φ interrupt control unit, 1o6...Kum v1107
・-110M 16 B,,, off/re, 109-... Power amplifier, 15 G path. Agent Tatsuyuki Unuma (and 2 others) Procedural amendment January 1980/? Day 1, Display of the case 1982 Patent Application No. 147308 2, Name of the invention Air-fuel ratio control device for internal combustion engine 3, Relationship with the case by the person making the amendment Name of the patent applicant (!120))! Yu Jidosha Kogyo Co., Ltd. (and 1 other person) 4. Agent Drawing 8, Amendment 8 (1) Figure 2 of the drawing is corrected as shown in the attached sheet. that's all

Claims (1)

【特許請求の範囲】[Claims] (1)  排気ガス中の酸素濃度を検出し三元触媒のウ
ィンドウ内に空燃比をフィードバック制御すると共に、
予め考慮し九負荷領域では紡紀フィードバック制御を中
止し空燃比をリーン状態C制御する部分り一ンシステム
を採用した内m+A関の空燃比制御装置において、前記
制御切換えに伴なうトルク変化を連続的にせしめるヒス
テリシス領域を、前記フィードバック制御を行う領域と
前配り一7制御を行う領域との間に設けたことを特徴と
する内燃機関の空燃比制御装置。
(1) Detects the oxygen concentration in the exhaust gas and feedback controls the air-fuel ratio within the window of the three-way catalyst.
In the air-fuel ratio control device for the inner m+A system, which adopts a partial system in which spin feedback control is stopped in the nine load range and the air-fuel ratio is controlled in a lean state C, torque changes due to the control switching are considered in advance. An air-fuel ratio control device for an internal combustion engine, characterized in that a continuous hysteresis region is provided between the region in which the feedback control is performed and the region in which the forward distribution control is performed.
JP14730881A 1981-09-03 1981-09-18 Air-fuel ratio control apparatus for internal- combustion engine Granted JPS5848754A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14730881A JPS5848754A (en) 1981-09-18 1981-09-18 Air-fuel ratio control apparatus for internal- combustion engine
US06/413,900 US4483301A (en) 1981-09-03 1982-09-01 Method and apparatus for controlling fuel injection in accordance with calculated basic amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14730881A JPS5848754A (en) 1981-09-18 1981-09-18 Air-fuel ratio control apparatus for internal- combustion engine

Publications (2)

Publication Number Publication Date
JPS5848754A true JPS5848754A (en) 1983-03-22
JPS6254978B2 JPS6254978B2 (en) 1987-11-17

Family

ID=15427251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14730881A Granted JPS5848754A (en) 1981-09-03 1981-09-18 Air-fuel ratio control apparatus for internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS5848754A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027747A (en) * 1983-07-25 1985-02-12 Kogata Gas Reibou Gijutsu Kenkyu Kumiai Air-fuel ratio controlling method for gas engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131032A (en) * 1976-04-28 1977-11-02 Toyota Motor Corp Fuel supply for internal combustion engine
JPS538426A (en) * 1976-07-12 1978-01-25 Nippon Denso Co Ltd Air-fuel mixture controller of air-to-fuel feed-back type

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131032A (en) * 1976-04-28 1977-11-02 Toyota Motor Corp Fuel supply for internal combustion engine
JPS538426A (en) * 1976-07-12 1978-01-25 Nippon Denso Co Ltd Air-fuel mixture controller of air-to-fuel feed-back type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027747A (en) * 1983-07-25 1985-02-12 Kogata Gas Reibou Gijutsu Kenkyu Kumiai Air-fuel ratio controlling method for gas engine

Also Published As

Publication number Publication date
JPS6254978B2 (en) 1987-11-17

Similar Documents

Publication Publication Date Title
JPH0598948A (en) Device for discriminating catalyst deterioration of internal combustion engine
JPH0230915A (en) Catalyst degradation judging device for internal combustion engine
JPH08189396A (en) Air fuel ratio feedback control device for internal combustion engine
JPS6256340B2 (en)
JPS62250351A (en) Detection of abnormality in exhaust gas density sensor for internal combustion engine
JP2002030923A (en) Exhaust emission control device of internal combustion engine
JPS5848754A (en) Air-fuel ratio control apparatus for internal- combustion engine
JPH0565699B2 (en)
JPS6354888B2 (en)
JPS62162748A (en) Air-fuel ratio control for internal-combustion engine
JPS5859333A (en) Air-fuel ratio control device in internal-combustion engine
JPS5848746A (en) Apparatus for controlling air-fuel ratio of internal-combustion engine
JP2726257B2 (en) Air-fuel ratio control method for internal combustion engine
JPS58104342A (en) Air-fuel ratio controlling method for internal- combustion engine
JPH0648133Y2 (en) Air-fuel ratio sensor activity discrimination device
JPH0455235Y2 (en)
JPH0374540A (en) Air-fuel ratio controller for internal combustion engine
JPS5841231A (en) Method of electronic controlling for fuel injection
JPH02230934A (en) Air-fuel ratio control device for internal combustion engine
JP2655639B2 (en) Air-fuel ratio control method for internal combustion engine
JPS6165044A (en) Air-fuel ratio control system for internal-combustion engine
JPH0740673Y2 (en) Air-fuel ratio learning controller for internal combustion engine
JPS6254977B2 (en)
JP2009074427A (en) Air-fuel ratio control device of internal combustion engine
JPS58200059A (en) Air-fuel ratio controller of internal-combustion engine