JPS6027685A - Method for controlling multistage heater - Google Patents

Method for controlling multistage heater

Info

Publication number
JPS6027685A
JPS6027685A JP13252883A JP13252883A JPS6027685A JP S6027685 A JPS6027685 A JP S6027685A JP 13252883 A JP13252883 A JP 13252883A JP 13252883 A JP13252883 A JP 13252883A JP S6027685 A JPS6027685 A JP S6027685A
Authority
JP
Japan
Prior art keywords
power
heater
temperature
single crystal
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13252883A
Other languages
Japanese (ja)
Inventor
Riyuusuke Nakai
中井 「たつ」資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13252883A priority Critical patent/JPS6027685A/en
Publication of JPS6027685A publication Critical patent/JPS6027685A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a single crystal having a constant diameter in pulling up the single crystal using two-stage heaters, by controlling the power of the bottom heater to set the temperature of the crucible bottom at a given temperature, and setting the power of the top heater on the basis of the resultant power. CONSTITUTION:A raw material melt 3 is contained in a crucible 1 heated by a heater 2 consisting of the top heater 6 and the bottom heater 7, and a single crystal 5 is pulled up by the Czochralski method. In the process, power (P2) of the bottom heater 7 is controlled by adjusting the temperature of the crucible bottom 10 with an automatic temperature controller (AT). The power (P2) of the bottom heater 7 is input to a computer (C), and a product of the power (P2) multiplied by a set power ratio (Rp') as a set value of the power of the top heater 6 is input to the automatic power controller (AP) to adjust the power (P1) of the top heater 6 at the set value. Thus, the temperature gradient in the crucible 1 can be precisely controlled.

Description

【発明の詳細な説明】 (技術分野) 本発明は、チョクラルスキー法(以下、CZ法と称す)
又は液体力プセルチョクラル、スキー法(以下、LEC
法と称す)によシ単結晶を引上げる方法において、特に
複数段のヒーターを使用する場合の制御方法に関するも
のである。
[Detailed Description of the Invention] (Technical Field) The present invention relates to the Czochralski method (hereinafter referred to as CZ method).
or liquid force pselchokral, skiing method (hereinafter referred to as LEC)
The present invention relates to a method for pulling a single crystal by a method (referred to as a "method"), and in particular to a control method when using a plurality of stages of heaters.

(背景技術) CZ法は、第1図に例を示すように、炉内加熱ヒーター
22によシ加熱されるつはlに原料融液3を収容し、必
要によりその表面をB2O3融液(図示せず)でおおい
(LEC法)、・融液3表面に種結晶4を浸漬し、なじ
ませた後、種結晶4を引上げて単結晶5を引上げる方法
である。この場合、炉内の温度勾配を所定のパターンに
保ち、単結晶5の直径を制御して一定に保つため炉内加
熱ヒーター22を制御することが必要である。
(Background Art) In the CZ method, as shown in an example in FIG. (LEC method) - This is a method in which a seed crystal 4 is immersed in the surface of the melt 3 and, after being blended, the seed crystal 4 is pulled up to pull up the single crystal 5. In this case, it is necessary to control the furnace heater 22 in order to maintain the temperature gradient in the furnace in a predetermined pattern and to control the diameter of the single crystal 5 to keep it constant.

従来、第1図に示すような2段の上部、下部ヒーター2
8.24 を制御するには、ヒーター(側面)温度によ
る温度制御か、又はヒーターのパワーの制御によって行
なっていた。これらの方法では次のような問題点がある
Conventionally, two-stage upper and lower heaters 2 as shown in Fig.
8.24 was controlled by controlling the temperature of the heater (side) or by controlling the power of the heater. These methods have the following problems.

■ 温度勾配はヒータ一温度の複雑な関数であるため、
結晶中の温度勾配の変化を把握しにくい。
■ Since the temperature gradient is a complex function of the heater temperature,
It is difficult to understand changes in the temperature gradient in the crystal.

■ 上下に分けたヒーター23.24では対流によって
熱がはげしく行き交うため、温度で制御する場合、各ヒ
ータ一温度間の相関が強過ぎる。
(2) In the heaters 23 and 24, which are divided into upper and lower parts, heat is exchanged rapidly due to convection, so when controlling by temperature, the correlation between the temperatures of each heater is too strong.

■ 温度の相関が強いので、例えば上部ヒーター23の
温度を一定にしておいて下部ヒーター24のパワーを下
げると、上部ヒーター23の温度を一定にするために上
部ヒーター23のパワーは上昇する。
(2) Since there is a strong correlation between temperatures, for example, if the temperature of the upper heater 23 is kept constant and the power of the lower heater 24 is lowered, the power of the upper heater 23 will increase in order to keep the temperature of the upper heater 23 constant.

このため結晶があたためられ、返って細る可能性がある
。即ちどちらかのヒータ一温度を下げても、返って結晶
が細ることがある。逆にどちらかのヒータ一温度だけを
上げても、太る可能性もある。
This may cause the crystal to warm up and become thinner. That is, even if the temperature of either heater is lowered, the crystal may become thinner. On the other hand, even if you raise the temperature of just one heater, you may gain weight.

■ パワーで制御する場合、圧力や炉壁温度の変動に弱
い。因みにヒータ一温度で制御していれば、これらの変
動はパワーにフィードバックされるが、パワー制御では
それが出来ない。
■ When controlled by power, it is vulnerable to fluctuations in pressure and furnace wall temperature. Incidentally, if the heater temperature is controlled, these fluctuations will be fed back to the power, but this is not possible with power control.

(発明の開示) 本発明は、上述の問題点を解決するため成されたもので
、CZ法によシ単結晶を引上げる方法において、2段の
ヒーターの各ヒーターの精密制御が可能で、単結晶の径
の制御が容易で、かつ成長環境の把握が容易な複数段ヒ
ーターの制御方法を提供せんとするものである。
(Disclosure of the Invention) The present invention has been made to solve the above-mentioned problems, and is capable of precisely controlling each heater of two-stage heaters in a method for pulling single crystals by the CZ method. It is an object of the present invention to provide a method for controlling a multi-stage heater in which the diameter of a single crystal can be easily controlled and the growth environment can be easily understood.

本発明は、上部ヒーターおよび下部ヒーターより成る炉
内加熱ヒーターを有する単結晶引上装置を用いてチョク
ラルスキー法により単結晶を引上げる方法において、前
記下部ヒーターのパワーP2を、自動温度調節器を用い
てるつは底の温度を調節することによ多制御し、前記下
部ヒーターのパワーP2をAIDコンバーターヲ通シて
コンピューターに入力し、P2に設定パワー比RP′を
乗じたものを前記上部ヒーターのパワーの設定値PI’
とし、D/A コンバーターを通して自動電力調整器に
出力し、該調整器により前記上部ヒーターのパワーP、
を設定値p、/に調整することを特徴とする複数段ヒー
ターの制御方法である。
The present invention provides a method for pulling a single crystal by the Czochralski method using a single crystal pulling apparatus having an in-furnace heater consisting of an upper heater and a lower heater. The power P2 of the lower heater is input into the computer through the AID converter, and the power P2 multiplied by the set power ratio RP' is multiplied by the temperature of the bottom heater. Heater power set value PI'
and outputs it to an automatic power regulator through a D/A converter, and the regulator outputs the power P of the upper heater,
This is a method for controlling a multi-stage heater, characterized in that the p is adjusted to a set value p, /.

本発明方法を適用される単結晶は、周期律表のl−v族
化合物、■−■族化合物もしくはそれらの混晶、Si、
Ge等の半導体、酸化物、窒化物、炭化物などよシ成る
単結晶で、CZ法又はLEC法によシ引上げられるもの
である。
The single crystal to which the method of the present invention is applied is a compound of the l-v group of the periodic table, a compound of the group ■-■, or a mixed crystal thereof, Si,
It is a single crystal made of semiconductors such as Ge, oxides, nitrides, carbides, etc., and is pulled by the CZ method or the LEC method.

以下、本発明を図面を用いて実施例によシ説明する。Hereinafter, the present invention will be explained by way of examples using the drawings.

第2図は本発明方法の実施例を説明するための図である
。図において第1図と同一の符号はそれぞれ同一の部分
を示す。図において2は炉内加熱ヒーターで、2段の上
部ヒーター6、下部ヒーター7より成っている。上部ヒ
ーター6のパワーP、はザイリスタS1より、下部ヒー
ター7のパワーP2はリイリスタS2より供給される。
FIG. 2 is a diagram for explaining an embodiment of the method of the present invention. In the figure, the same reference numerals as in FIG. 1 indicate the same parts. In the figure, reference numeral 2 denotes an in-furnace heater, which consists of an upper heater 6 and a lower heater 7 in two stages. The power P of the upper heater 6 is supplied from the Zyristor S1, and the power P2 of the lower heater 7 is supplied from the Zyristor S2.

Trl 、 Tr2.はそれぞれザイリスタs、、s2
に細膜されたトランスである。
Trl, Tr2. are Zyristors s, s2, respectively.
It is a transformer coated with a thin film.

APは自動電力調整器、ATは自動温度調節器で、Cは
コンピューター十D/A、A/D コンバーターである
AP is an automatic power regulator, AT is an automatic temperature regulator, and C is a computer, D/A, and A/D converter.

本発明においては、下段ヒーター7のパワーP2ヶ、る
りは底10の温度Tを連動温度調節器ATで自動温度調
節することによって制御する。この場合、温度設定値T
′は単結晶5の直径を一定に保つlこめに上下させる。
In the present invention, the power P2 of the lower heater 7 and the temperature T of the bottom 10 are controlled by automatically adjusting the temperature using the interlocking temperature controller AT. In this case, the temperature set value T
' is raised and lowered in increments to keep the diameter of the single crystal 5 constant.

(例えば径が太る時はT′の降温速度をゆるくシ、細る
時は急にする。)同時に、下段ヒーター7のパワーP2
を、電力P2フィードバック回路14により、AID 
コンバーターを通してコンピューターCに入力し、コン
ピューター〇によりパワーP2に設定パワー比RP′を
乗じたものを上部ヒーター6のパワーの設定値P、/と
する。
(For example, when the diameter becomes thick, set the temperature decreasing rate of T' slowly, and when it becomes thin, set it rapidly.) At the same time, the power P2 of the lower heater 7
, by the power P2 feedback circuit 14, AID
The power P2 is input to the computer C through the converter, and the power P2 multiplied by the set power ratio RP' is set as the set value P, / of the power of the upper heater 6.

PI’ ”” PQ X RP/ この設定値PI′をD/A コンバーターを通して出力
し、自動電力調整器APで上部ヒーター6のパワーP、
を設定値p 、 /に調整する。上部ヒーター6は、そ
のパワーP、を電力P1フィードバック回路I3により
フィードバックすることにより自動電力調整器APで制
御されており、設定値P1′中パワーP1となる。
PI'"" PQ
is adjusted to the set value p, /. The upper heater 6 is controlled by an automatic power regulator AP by feeding back its power P through a power P1 feedback circuit I3, and the power P1 is set at a set value P1'.

このように制御することにより、パワー比RPが、Rp
 (圓I’l/P2)キRp’ に保たれ、これによりるつは内の温度勾配が精密に容易
に制御される。
By controlling in this way, the power ratio RP becomes Rp
(I'l/P2)KRp', whereby the temperature gradient inside the melt can be precisely and easily controlled.

単結晶の径変化はるつは底】Oの温度に良く対応してお
り、るつは底10の温度を上述のように操作することに
よシ、結晶径は容易に操作できる。
The change in diameter of the single crystal corresponds well to the temperature of the melt base 10, and the crystal diameter can be easily controlled by controlling the temperature of the melt base 10 as described above.

又るつぼ内又は単結晶内の温度勾配はパワー比R。The temperature gradient inside the crucible or single crystal is the power ratio R.

に対応しておシ、これを上述のように一定に制御するこ
とにより、これらの温度勾配が制御される。
These temperature gradients are controlled by controlling the temperature to be constant as described above.

(実施例1) 第2図に示す方法によp、GaAs半導体の単結晶(直
径80 mm ) ′f:LEC法により引上げた。
(Example 1) A single crystal (80 mm in diameter) of GaAs semiconductor was pulled by the method shown in FIG. 2 by the LEC method.

コンピューター〇による自動直径制御によってるつは底
10の温度の設定値T′が与えられた。パワー比PI/
P2 の設定値RPlを0.7にし、引上速度を10m
m/時とした。
Automatic diameter control by computer 0 provided a set point T' for the temperature of the bottom 10 of the crucible. Power ratio PI/
Set the set value RPl of P2 to 0.7, and set the pulling speed to 10 m.
m/hour.

比較のだめ、上部、下部ヒーターを共に自動温度調節器
によシ制御する従来の方法により同様にして引上げた。
For comparison, both the upper and lower heaters were raised in the same manner using a conventional method in which they were controlled by automatic temperature controllers.

本発明法および従来例によシ得られた単結晶のt、f変
化の状態は第3図(イ)、(ロ)に示す通りである。
The changes in t and f of the single crystals obtained by the method of the present invention and the conventional example are as shown in FIGS. 3(a) and 3(b).

(イ)図は本発明、(ロ)図は従来例によるものを示す
(A) shows the present invention, and (B) shows the conventional example.

第3図より、本発明法による径変化は、従来例に比べ変
動が少なく、径制御が容易になっていることが分る。
From FIG. 3, it can be seen that the diameter change according to the method of the present invention has less variation than the conventional example, making diameter control easier.

(発明の効果) 上述のように構成された本発明の複数段ヒーターの制御
方法は次のような効果がある。
(Effects of the Invention) The multi-stage heater control method of the present invention configured as described above has the following effects.

(イ) 前記下部ヒーターのパワーP2を、自動温度調
節器を用いてるつは底の温度を調節することにより制御
するから、単結晶の径変化けるつは底の温度に良く対応
しているだめ、結晶径は容易に操作でき、同時に、前記
下部ヒーターのパワーP2をA/D コンバーターヲ通
シてコンピューターニ入力し、P2に設定パワー比RP
lを乗じたものを前記上部ヒーターの設定値P1′とし
、D/Aコンバーター全通して自動電力調整器に出力し
、該調整器によシ前記上部ヒーターのパワーP、を設定
値p、1に調整するから、前記パワ”PiP2の比Rp
が一定に制御され、しかもるつぼ内、単結晶内の温度勾
配はパワー比RPに対応しているだめ、るつぼ内、単結
晶内の温度勾配を精密に容易に制御し得るので、単結晶
の径の制御が容易にでき、又転位密度を低減できる。
(b) Since the power P2 of the lower heater is controlled by adjusting the temperature at the bottom using an automatic temperature controller, the diameter change of the single crystal must correspond well to the temperature at the bottom. , the crystal diameter can be easily manipulated, and at the same time, the power P2 of the lower heater is input to the computer through the A/D converter, and the set power ratio RP is set to P2.
The value multiplied by 1 is set as the set value P1' of the upper heater, and is outputted to the automatic power regulator through the D/A converter, and the power P of the upper heater is set as the set value p, 1 by the regulator. Since the ratio Rp of the power "PiP2" is adjusted to
is controlled to be constant, and the temperature gradient inside the crucible and the single crystal corresponds to the power ratio RP. Therefore, the temperature gradient inside the crucible and the single crystal can be precisely and easily controlled, so that the diameter of the single crystal can be reduced. can be easily controlled and the dislocation density can be reduced.

(ロ) 温度勾配はパワー比の単純増加又は減少関数で
あシ、パワー比を指定すれば成る温度勾配を指定するこ
とになるので、単結晶の成長環境の把握かり能で、温度
勾配の制御を精密に行ない得、低転位密度の単結晶が得
られる。
(b) The temperature gradient is a simple increasing or decreasing function of the power ratio, and specifying the power ratio specifies the temperature gradient, so it is possible to control the temperature gradient by understanding the single crystal growth environment. This process can be carried out precisely and a single crystal with a low dislocation density can be obtained.

【図面の簡単な説明】 第1図は従来のCZ法の例を説明するだめの図である。 第2図は本発明方法の実施例を説明するための図である
。 第3図(イ)および仲)はそれぞれ本発明方法の実施例
および従来例による単結晶の径変化の状態を示す図であ
る。 1・・・るつl”l、2.22・・・炉内加熱ヒーター
、3・・・原料融液、4・・・種結晶、5・・単結晶、
6.23・・・上部ヒーター、7.24・・・下部ヒー
ター、IO・・るつぼ底、13・・・電力p、フィード
バック回路、14・・・電力P2フィードバック回路、
AP・・・自動電力調整器、八T・・・自動温度調節器
、C・・・コンピューター+ D/A。 A/D コンバーター、p、・」二部ヒーター6のパワ
ー、p、/・・・上部ヒーター6の設定値、P2・・・
下部ヒーター7のパワー、sl’、s2・ サイリスタ
ー、Trl、Tr2・トランス T/・・・るつは底温
度の設定値。 71図 第2図 73図 (イ) (ロ) 直咥(cm) 直径(cm)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining an example of the conventional CZ method. FIG. 2 is a diagram for explaining an embodiment of the method of the present invention. FIGS. 3(a) and 3(a) are diagrams showing changes in diameter of single crystals according to an embodiment of the method of the present invention and a conventional example, respectively. 1... Melt l"l, 2.22... In-furnace heater, 3... Raw material melt, 4... Seed crystal, 5... Single crystal,
6.23... Upper heater, 7.24... Lower heater, IO... Crucible bottom, 13... Power p, feedback circuit, 14... Power P2 feedback circuit,
AP...Automatic power regulator, 8T...Automatic temperature regulator, C...Computer + D/A. A/D converter, p,... Power of two-part heater 6, p, /...Setting value of upper heater 6, P2...
Power of the lower heater 7, sl', s2, thyristor, Trl, Tr2, transformer T/...Ru is the set value of the bottom temperature. Figure 71 Figure 2 Figure 73 (A) (B) Direct mouth (cm) Diameter (cm)

Claims (1)

【特許請求の範囲】[Claims] (+) 上部ヒーターおよび下部ヒーターよシ成る炉内
加熱ヒーターを有する単結晶引上装置を用いてチョクラ
ルスキー法により単結晶を引上げる方法において、前記
下部ヒーターのパワーP2を、自動温度調節器を用いて
るつは底の温度を調節することにより制御し、前記下部
ヒーター乗じたものを前記上部ヒーターのパワーの設定
値Pf、tとし、D/A コンバーターを通して自動電
力調整器に出力し、該調整器によシ前記上部ヒーターの
パワーP、を設定値P、lに調整することを特徴とする
複数段ヒーターの制御方法。
(+) In a method for pulling a single crystal by the Czochralski method using a single crystal pulling apparatus having an in-furnace heater consisting of an upper heater and a lower heater, the power P2 of the lower heater is controlled by an automatic temperature controller. is controlled by adjusting the temperature at the bottom, multiplied by the lower heater, set value Pf, t for the power of the upper heater, and outputs it to the automatic power regulator through the D/A converter. A method for controlling a multi-stage heater, characterized in that the power P of the upper heater is adjusted to a set value P, l using a regulator.
JP13252883A 1983-07-19 1983-07-19 Method for controlling multistage heater Pending JPS6027685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13252883A JPS6027685A (en) 1983-07-19 1983-07-19 Method for controlling multistage heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13252883A JPS6027685A (en) 1983-07-19 1983-07-19 Method for controlling multistage heater

Publications (1)

Publication Number Publication Date
JPS6027685A true JPS6027685A (en) 1985-02-12

Family

ID=15083394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13252883A Pending JPS6027685A (en) 1983-07-19 1983-07-19 Method for controlling multistage heater

Country Status (1)

Country Link
JP (1) JPS6027685A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283877U (en) * 1985-10-30 1987-05-28
JPS63270391A (en) * 1987-04-27 1988-11-08 Sumitomo Electric Ind Ltd Method for pulling up single crystal by lec process
JPH04239003A (en) * 1991-01-11 1992-08-26 Kanegafuchi Chem Ind Co Ltd Production of vinyl chloride resin of excellent processability
CN104451892A (en) * 2014-12-10 2015-03-25 上海汇淬光学科技有限公司 Multistage graphite heating system of sapphire crystal growth equipment and using method of multistage graphite heating system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283877U (en) * 1985-10-30 1987-05-28
JPS63270391A (en) * 1987-04-27 1988-11-08 Sumitomo Electric Ind Ltd Method for pulling up single crystal by lec process
JPH04239003A (en) * 1991-01-11 1992-08-26 Kanegafuchi Chem Ind Co Ltd Production of vinyl chloride resin of excellent processability
CN104451892A (en) * 2014-12-10 2015-03-25 上海汇淬光学科技有限公司 Multistage graphite heating system of sapphire crystal growth equipment and using method of multistage graphite heating system

Similar Documents

Publication Publication Date Title
JPS5969492A (en) Controlling method of plural steps heater
US4857278A (en) Control system for the czochralski process
JPS6046993A (en) Device for pulling up single crystal
EP0104559B1 (en) Pulling method of single crystals
JPS5580798A (en) Ribbon crystal growing method by lateral pulling
WO2003029533A1 (en) Single crystal semiconductor manufacturing apparatus and method, and single crystal ingot
GB1478192A (en) Automatically controlled crystal growth
JPS6027685A (en) Method for controlling multistage heater
JPS60103097A (en) Device for pulling up single crystal
JPS63270391A (en) Method for pulling up single crystal by lec process
JPH07133185A (en) Production of single crystal
JPS5964591A (en) Apparatus for pulling up single crystal
JPH0426593A (en) Apparatus for producing compound single crystal and production thereof
JPS59227797A (en) Method for pulling up single crystal
JPS55128801A (en) Manufacture of large single crystal of ferrite with uniform composition
Robertson et al. Observations on the unrestrained growth of germanium crystals
JPH0337190A (en) Production of compound semiconductor single crystal
JPH01126294A (en) Production of single crystal
JPS61174189A (en) Method and device for production of single crystal
CN117737823A (en) Crystal growth device and method for realizing growth speed self-adaption by crucible descent method
JP2757865B2 (en) Method for producing group III-V compound semiconductor single crystal
JPH024126Y2 (en)
JP2002321995A (en) Method for growing single crystal
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JPS55121994A (en) Preparing semiconductor single crystal