JPS6027681A - Production of bapb1-xbixo3 single crystal by solution pulling method - Google Patents
Production of bapb1-xbixo3 single crystal by solution pulling methodInfo
- Publication number
- JPS6027681A JPS6027681A JP13617283A JP13617283A JPS6027681A JP S6027681 A JPS6027681 A JP S6027681A JP 13617283 A JP13617283 A JP 13617283A JP 13617283 A JP13617283 A JP 13617283A JP S6027681 A JPS6027681 A JP S6027681A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- crystal
- molten liquid
- seed
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、溶液ひきあげ法によるBaPb、−xBi
x0B単結晶の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION This invention is a method for producing BaPb, -xBi by a solution drawing method.
The present invention relates to a method for producing an x0B single crystal.
従来、高温で分解溶融して通常のひきあげ法で単結晶を
育成できない包晶反応する物質の単結晶Yt得る手段と
しては1通常、目的物質を溶剤中に混合し、その混合融
液を降温することによってその混合融液Z過飽和濃度以
上の状態にし、前記目的物質を融液から単結晶として析
出させて得るフラックス法が用いられる。Conventionally, as a means to obtain a single crystal Yt of a substance that undergoes a peritectic reaction by decomposition melting at high temperatures and cannot be grown as a single crystal by the normal pulling method, 1. Usually, the target substance is mixed in a solvent and the temperature of the mixed melt is lowered. A flux method is used in which the mixed melt Z is brought to a state of a supersaturation concentration or higher, and the target substance is precipitated from the melt as a single crystal.
この発明は、上記した溶剤混合液から目的の物質の単結
晶をその種子結晶上に微結晶を析出させ、それをひきあ
げながら育成するという溶液ひきあげ法によるBaPb
、−xBi!01単結晶の製造方法である。This invention is based on a BaPb solution pulling method in which a single crystal of a target substance is precipitated as a microcrystal on a seed crystal from the above-mentioned solvent mixture, and is grown while being pulled up.
, -xBi! 01 single crystal manufacturing method.
Ba Pb、□Bix0.はペロプスカイト型結晶構造
伝導転移温度Tcは約13にとなり、遷移金属i大食ま
ない超伝導物質では最高の転移温度を示す−・化物超伝
導体として知られている。極低温素子1と−してこれか
ら応用が考えられ、そのためには大型の良質な単結晶が
望まれ、その製造方法の開発が望まれている。Ba Pb, □Bix0. The perovskite crystal structure has a conduction transition temperature Tc of about 13, which is the highest transition temperature among superconducting materials that do not devour transition metals.It is known as a compound superconductor. It is expected to be applied in the future as a cryogenic device 1, and for this purpose, a large, high-quality single crystal is desired, and the development of a manufacturing method for the same is desired.
Ha Pb1−xBix03でx = 0の場合、高温
にしてゆくと1080℃付近でBJL、 pbo4と液
相に分解溶融するため、単結晶と同一組成の原料から単
結晶を製造することができない。そのためチョクラルス
キー法が適用できず、従来ではpb o、 、 pb、
o、。When x = 0 in HaPb1-xBix03, as the temperature is increased, it decomposes and melts into a liquid phase with BJL and pbo4 at around 1080°C, so a single crystal cannot be produced from a raw material with the same composition as a single crystal. Therefore, the Czochralski method cannot be applied, and in the past, pbo, , pb,
o.
KCI、KCIとBaC1を融剤としたフラックス法で
結晶成長がされている。しかし、このフラックス法では
最大で3X3mmの面積で厚さ0.5 ff111以下
のものが報告されているにすぎない。Crystal growth is carried out by the flux method using KCI, KCI and BaCl as a flux. However, this flux method has only been reported to have a maximum area of 3 x 3 mm and a thickness of 0.5 ff111 or less.
この発明は、このような点に鑑みなされたもので、目的
物であるHa pbl−zitxo、 v析出させ得る
組成範囲内に一酸化鉛(PbO)と炭酸バリウム(Ba
COs )と二酸化ビス−vス(Bit03)Y混合
し、その融液を降温させることにより融液中に析出して
くるBa Pb□−xBlxO8微結晶を融液に接触さ
せた種子結晶上に結晶化させ、これを溶液ひきあげ法に
よってBa pb、、xntxo、を製造する方法であ
り、フラックス法と異なり種子結晶によって望みの方向
に任意の大きさの良質な単結晶が製造できる。以下この
発明について詳細に説明する。This invention was made in view of the above points, and contains lead monoxide (PbO) and barium carbonate (Ba
By mixing COs ) and bis-vs (Bit03)Y dioxide and lowering the temperature of the melt, the Ba Pb In this method, Ba pb, , xntxo is produced by a solution pulling method. Unlike the flux method, high-quality single crystals of any size can be produced in a desired direction using seed crystals. This invention will be explained in detail below.
まず、この発明の原理について述べる。第1図は示差熱
分析と実際の結晶成長実験から作図したBaC0,−P
bO系の相平衡図である。BtCOB が50モル%、
pboが50モル%の組成からなるBaPb01に加熱
上昇させると約1080℃付近でBa、PbO4と液相
に分解溶融してしまう。そのために融液と同一組成の結
晶をひきあげるチョクラルスキー法は適用できない。次
に液相11JA−3間の組成比、すなわちBaC01の
34〜4モル%、pboの66〜96モル%の範囲の組
成に混合した原料を約1080〜850℃において加熱
融解したのち、融液な徐々に降温させると、融液の組成
は液相線A −B K浴って図の右方へずれてゆき、B
a Pb O,が固相となって析出してぐ擾。この相平
衡図においてBa原子およびpb原子の位置に他の何ら
かの異種元素を少量混合したときに、相平衡図が定性的
に変わらない場合には同じくBaPbO5固溶体が同相
となって析出して(る。First, the principle of this invention will be described. Figure 1 shows BaC0,-P drawn from differential thermal analysis and actual crystal growth experiments.
It is a phase equilibrium diagram of the bO system. BtCOB is 50 mol%,
When BaPb01 having a composition of 50 mol % of pbo is heated, it decomposes and melts into a liquid phase of Ba and PbO4 at around 1080°C. Therefore, the Czochralski method, which pulls up crystals with the same composition as the melt, cannot be applied. Next, the raw materials mixed in a composition ratio between liquid phase 11JA-3, that is, 34 to 4 mol% of BaC01 and 66 to 96 mol% of pbo, are heated and melted at about 1080 to 850°C, and then the melt is When the temperature is gradually lowered, the composition of the melt shifts to the right in the diagram along the liquidus line A - B K, and B
a Pb O, becomes a solid phase and precipitates. In this phase equilibrium diagram, when a small amount of some other different element is mixed at the positions of Ba atoms and Pb atoms, if the phase equilibrium diagram does not qualitatively change, BaPbO5 solid solution will precipitate in the same phase ( .
それ故にpb原子の位置YBiBa原子き換えても第1
図のBaC0,−PbO系の相平衡図と本質的に変わら
ないためBa pb、−xnsxo、の結晶成長が可能
となる。Therefore, even if the position of pb atom is changed to YBiBa atom, the first
Since this is essentially the same as the phase equilibrium diagram of the BaC0, -PbO system shown in the figure, crystal growth of Ba pb, -xnsxo is possible.
従来の7ラツクス法ではPbO,、Pb、 04. K
CI。In the conventional 7-lux method, PbO,, Pb, 04. K
C.I.
BaC1等の溶剤にBa Pb1−xB1!O,を混入
し、結晶育成後に溶剤だけを薬品で取り去るか徐冷中に
るつぼを炉から取り出して固化していない溶剤だけを捨
て去ってBa pbl−xBtxo、単結晶を取り出し
てきた。このように薬品で長い時間v5したり、危険な
操作をしないと融液の固化物とBaPb、−xBlBi
x01単結晶離はできなかった。BaPb1-xB1 in a solvent such as BaC1! After crystal growth, only the solvent was removed using chemicals, or the crucible was removed from the furnace during slow cooling and only the unsolidified solvent was discarded, and the Bapbl-xBtxo single crystal was taken out. In this way, if you do not use v5 for a long time with chemicals or perform dangerous operations, the solidified product of the melt and BaPb, -xBlBi
x01 single crystal separation was not possible.
この発明においては、同一のBaPb1−!Bl、01
単結晶の種子結晶上に析出してきたBaPb、−!Bl
!03単結晶を育成させてひきあげる方法をとったもの
である。In this invention, the same BaPb1-! Bl, 01
BaPb precipitated on the single crystal seed crystal, -! Bl
! 03 This method uses a method of growing and pulling a single crystal.
第2図はこの発明の一実施例を説明するためのBa p
b、−!Bthxo、の製造装置である。なお、この製
造装置は有毒のPbOの蒸気を製造者から隔離するため
の結晶育成観察窓付の接話に入っている。FIG. 2 is a diagram for explaining one embodiment of this invention.
b,-! Bthxo manufacturing equipment. This manufacturing equipment is equipped with a crystal growth observation window to isolate toxic PbO vapor from the manufacturer.
この図で、1は水冷シャフト、2は白金シャフト、3は
保温材、4は高周波加熱コイル、5は熱電対、6はるつ
ぼ支持物、TはBa Pb+−xBixom単結晶、8
は出発原料、9は白金るつぼである。In this figure, 1 is a water cooling shaft, 2 is a platinum shaft, 3 is a heat insulator, 4 is a high frequency heating coil, 5 is a thermocouple, 6 is a crucible support, T is a BaPb+-xBixom single crystal, 8
is the starting material, and 9 is the platinum crucible.
次に製造方法について説明する。Next, the manufacturing method will be explained.
出発原料ati−例として、BaC01’&20モル%
、pboを65モル%、旧tOSケ15モル%の組成に
混合し、M2図に示す口径50m、高さ35mnの発熱
体を兼ねた白金るつぼ9に入れ、高周波加熱コイル4に
よる誘導加熱方式にょワ〜1080℃まで加熱して溶融
させた後、種子結晶であるBa pb、−xBtxo、
単結晶Tを融液表面に接触させる。融液を徐々に降温さ
せると、融液中で最も温度の低い種子結晶と接触してい
る融液の界面にB a P b 1− z B l z
OB微結晶が少しずつ析出してきて種子結晶上に結晶
化する。このようにして成長した単結晶を融液から徐々
にひきあげる。すなわち、融液を降温しながら、育成さ
れた単結晶のひきあげを同時におこなってゆくのである
。Starting material ati - as an example, BaC01'& 20 mol%
, pbo to a composition of 65 mol % and old tOS 15 mol %, placed in a platinum crucible 9 with a diameter of 50 m and a height of 35 mm, which also serves as a heating element, as shown in Fig. M2, and heated by induction heating using a high-frequency heating coil 4. After heating to ~1080°C to melt, the seed crystals Ba pb, -xBtxo,
Single crystal T is brought into contact with the surface of the melt. When the temperature of the melt is gradually lowered, B a P b 1-z B l z appears at the interface of the melt that is in contact with the seed crystal with the lowest temperature in the melt.
OB microcrystals precipitate little by little and crystallize on the seed crystals. The single crystal grown in this way is gradually pulled out of the melt. That is, while cooling the melt, the grown single crystal is pulled up at the same time.
このときの製造条件としてはBa Pb1−xBl、O
。The manufacturing conditions at this time are BaPb1-xBl, O
.
単結晶Tのひきあげ速度は0.3〜l wa / h
r 、融液降温速度2〜10℃/ h r 、結晶回転
数10〜30 r pm、雰囲気は空気中である。また
、BaPbI、Bix01単結晶の育成を完了するまで
に要する時間は約10Iの単結晶を得るのに5〜6時間
要しただけであった。The pulling speed of single crystal T is 0.3~l wa/h
r, melt temperature cooling rate 2 to 10°C/hr, crystal rotation number 10 to 30 rpm, and atmosphere in air. Moreover, the time required to complete the growth of BaPbI and Bix01 single crystals was only 5 to 6 hours to obtain a single crystal of about 10I.
この発明の製造方法では、結晶中のpb原子の位置をB
a原子で置き換えても、第1図のBaC03−pbo系
の相平衡図が本質的に変わらないためにBaPb5−x
Bixos単結晶が製造できた。Ba Pb5−、 B
ix0@が超伝導を示す0くx<:0.35の範囲の組
成の単結晶育成が可能である。同様に結晶中のPb原子
およびBa原子の位置に何らかの異種元素を少量混合し
たときに相平衡図が定性的に第1図のBaC0B−pb
o系和平和平衡図本質的に変わらない場合は、上記と全
(同一の方法2条件によってこの異種元素を混入したB
a pb、−、n1xo、固溶体単結晶を製造すること
も可能である。In the production method of this invention, the position of the pb atom in the crystal is changed to B
Even if the a atom is replaced, the phase equilibrium diagram of the BaC03-pbo system in Figure 1 remains essentially the same, so BaPb5-x
Bixos single crystal has been manufactured. Ba Pb5-, B
It is possible to grow a single crystal with a composition in the range of 0x<:0.35, where ix0@ indicates superconductivity. Similarly, when a small amount of some kind of different element is mixed at the positions of Pb atoms and Ba atoms in the crystal, the phase equilibrium diagram qualitatively changes to BaC0B-pb as shown in Figure 1.
o-system peace-peace equilibrium diagram If there is no difference essentially, the B
It is also possible to produce a pb,-, n1xo, solid solution single crystals.
以上のようにして製造された単結晶は、従来のフラツク
ス法で育成された単結晶が、約5日を要し”C3X 3
X 0.5 turn以下の大きさであるのと比較す
ると、5〜6時間で30X30X1mの大きさのものが
得られ、短時間で大きな単結晶を製造できるという利点
を有する。The single crystal produced as described above takes about 5 days compared to the single crystal grown using the conventional flux method.
Compared to the size of X 0.5 turn or less, a crystal with a size of 30 x 30 x 1 m can be obtained in 5 to 6 hours, which has the advantage that a large single crystal can be produced in a short time.
wJ1図はこの発明の詳細な説明1°るためのBaC0
3−pbo系の相平衡図、第2図はこの発明の一実施例
を説明するためのBa pb、−xBt、o、単結晶の
製造装置の構成図である。wJ1 diagram is BaC0 for detailed explanation of this invention.
3-pbo system phase equilibrium diagram. FIG. 2 is a block diagram of a manufacturing apparatus for Bapb, -xBt, o, and single crystals for explaining one embodiment of the present invention.
Claims (1)
熱融解したのち、融液を降温させることにより一般式B
a pb、−xni!o、で表わされ、前記式中x −
0,00〜0.4の微結晶を析出させ、そわを種子結晶
上に結晶させて結晶成長させることt特徴とするB a
P b s −x B 1 x OB単結晶の溶液ひ
きあげ法による製造方法。By mixing lead monoxide, barium carbonate, and bismuth dioxide and heating and melting them, the general formula B is obtained by cooling the melt.
a pb, -xni! o, in the formula x −
B a characterized by precipitating microcrystals of 0.00 to 0.4 and growing the crystals by crystallizing them on the seed crystals.
A method for producing P b s -x B 1 x OB single crystal using a solution pulling method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13617283A JPS6027681A (en) | 1983-07-26 | 1983-07-26 | Production of bapb1-xbixo3 single crystal by solution pulling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13617283A JPS6027681A (en) | 1983-07-26 | 1983-07-26 | Production of bapb1-xbixo3 single crystal by solution pulling method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6027681A true JPS6027681A (en) | 1985-02-12 |
JPS6156200B2 JPS6156200B2 (en) | 1986-12-01 |
Family
ID=15169004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13617283A Granted JPS6027681A (en) | 1983-07-26 | 1983-07-26 | Production of bapb1-xbixo3 single crystal by solution pulling method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6027681A (en) |
-
1983
- 1983-07-26 JP JP13617283A patent/JPS6027681A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6156200B2 (en) | 1986-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0152359B2 (en) | ||
JPH09124396A (en) | Preparation of oxide crystal | |
US4956334A (en) | Method for preparing a single crystal of lanthanum cuprate | |
JP2740427B2 (en) | Preparation method of oxide crystal | |
JPS6027681A (en) | Production of bapb1-xbixo3 single crystal by solution pulling method | |
Bhalla et al. | Crystal growth of antimony sulphur iodide | |
US3939252A (en) | Dilithium heptamolybdotetragadolinate | |
JPH0243717B2 (en) | BAPBO3KEISANKABUTSUCHODENDOTAITANKETSUSHONOYOEKIHIKIAGEHONYORUSEIZOHOHO | |
JPH0471876B2 (en) | ||
JPH01249691A (en) | Production of superconducting thin film | |
JP3548910B2 (en) | Method for producing ZnO single crystal | |
JP2852405B2 (en) | Bi (2) (Sr, Ca) (3) Cu (2) O (8) Single crystal production method by solution pulling method | |
JPS63274695A (en) | Production of cupric acid-lanthanum single crystal | |
JPH0471877B2 (en) | ||
JP3613424B2 (en) | Manufacturing method of oxide superconductor | |
JPH01148796A (en) | Production of oxide superconductor crystal | |
RU1526290C (en) | Method of production of high-temperature superconducting material | |
JPH0948697A (en) | Production of lithium triborate single crystal | |
JPH08133884A (en) | Production of single crystal | |
JPH01148795A (en) | Production of oxide superconductor crystal | |
JP2535773B2 (en) | Method and apparatus for producing oxide single crystal | |
JPH02167893A (en) | Production of single crystal of lead titanate | |
JP2004091222A (en) | Method for manufacturing oxide semiconductor single crystal | |
JPH0478596B2 (en) | ||
JPH0412082A (en) | Method for growing single crystal |