JPS6027458B2 - Optical multiplex relay transmission system - Google Patents

Optical multiplex relay transmission system

Info

Publication number
JPS6027458B2
JPS6027458B2 JP52061934A JP6193477A JPS6027458B2 JP S6027458 B2 JPS6027458 B2 JP S6027458B2 JP 52061934 A JP52061934 A JP 52061934A JP 6193477 A JP6193477 A JP 6193477A JP S6027458 B2 JPS6027458 B2 JP S6027458B2
Authority
JP
Japan
Prior art keywords
optical
wavelength
light
fiber
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52061934A
Other languages
Japanese (ja)
Other versions
JPS53146508A (en
Inventor
理輔 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP52061934A priority Critical patent/JPS6027458B2/en
Publication of JPS53146508A publication Critical patent/JPS53146508A/en
Publication of JPS6027458B2 publication Critical patent/JPS6027458B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/03WDM arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Description

【発明の詳細な説明】 本発明は一つの光伝送路(フアィバ)に複数の異つた波
長の変調光を伝送する波長多重光通方式に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wavelength division multiplexing optical transmission system for transmitting modulated lights of a plurality of different wavelengths through one optical transmission line (fiber).

一つの伝送路で伝送容量が増加する光波長多重通信は伝
送路価格が高い場合或いは伝送路の帯域制限に依り伝送
容量に制限を受ける場合に有効な方式となる。
Optical wavelength division multiplexing communication, which increases the transmission capacity in one transmission line, is an effective method when the transmission line price is high or when the transmission capacity is limited due to the band limit of the transmission line.

また上りの信号、下りの信号を波長多重で伝送すると1
本の伝送路で双方向の伝送が可能となる。第1図に波長
多重光通信の構成図を示す。
Also, if the upstream and downstream signals are transmitted by wavelength multiplexing, 1
Bidirectional transmission is possible using a real transmission line. FIG. 1 shows a configuration diagram of wavelength multiplexed optical communication.

複数個の互いに異つた波長の光を各々電気信号で光強度
変調する電気−光変換器51,52,53の出力光を光
結合器4で結合して一つの伝送路1に送り出す。伝送路
を通過した光多重化信号は分波器2で各々の波長毎に分
離され光一電気変換器61,62,63に入り受光素子
により光信号から電気信号に復調する。中間中継器7で
は復調された電気信号を再生中継又は非再生中継した後
、再び互いに波長の異つた波光源を光強度変調し結合器
4を通り一つの伝送路に伝送する。第1図中31,32
,33は光入力信号を光電変換後中継し再び光源を変調
し、変調光を出力とする光中継器を表わす。光伝送路と
して使用するフアィバで伝送損失の主要な原因はフアィ
バの材料による吸収損失と散乱損失がある。
The output lights of the electro-optical converters 51, 52, and 53, each of which modulates the optical intensity of a plurality of lights of different wavelengths with electrical signals, are combined by the optical coupler 4 and sent to one transmission line 1. The optical multiplexed signal that has passed through the transmission line is separated into wavelengths by a demultiplexer 2, and then enters optical-to-electrical converters 61, 62, and 63, where the optical signal is demodulated into an electrical signal by a light receiving element. The intermediate repeater 7 performs regenerative repeating or non-regenerative repeating of the demodulated electrical signal, and then modulates the optical intensity of wave light sources with different wavelengths and transmits the modulated signals through the coupler 4 onto one transmission line. 31, 32 in Figure 1
, 33 represents an optical repeater which repeats the optical input signal after photoelectric conversion, modulates the light source again, and outputs modulated light. The main causes of transmission loss in fibers used as optical transmission lines are absorption loss and scattering loss due to the fiber material.

いずれも波長に大きく依存している。散乱損失は波長の
4乗に逆比例している。例えば波長が10%長くなると
、損失は2dB′細増加する。吸収損失はフアィバ材料
の影響が大きく波長9500A付近では高損失となる。
フアィバの帯城を決める要素のうち屈折率分散も波長依
存性がある。波長13000A付近では屈折率分散によ
る帯城劣化は袷んどなく、より短波長では波長が短くな
るに従って帯域が狭くなる。光通信の光電気変換素子と
してPINフオトダィオード又はァンパランシェ・フオ
ト・ダイオード(APDと略す)も構成する材料に依り
、量子効率の波長特性が異なる。例えばシリコンを材料
とする光検出器は波長8000Aの付近での量子効率が
最も大きく8000Aより長波長又は短波長側になると
量子効率は4・さくなっている。以上述べたように波長
によって伝送路の損失、帯城が異なり、受光素子の特性
も波長依存性がある。
Both are highly dependent on wavelength. Scattering loss is inversely proportional to the fourth power of wavelength. For example, if the wavelength becomes 10% longer, the loss increases by 2 dB'. The absorption loss is greatly influenced by the fiber material, and the loss is high near the wavelength of 9500A.
Among the factors that determine the fiber coverage, refractive index dispersion is also wavelength dependent. At wavelengths around 13,000 A, there is no significant band deterioration due to refractive index dispersion, and at shorter wavelengths, the band becomes narrower as the wavelength becomes shorter. A PIN photodiode or an amparanche photodiode (abbreviated as APD) as a photoelectric conversion element for optical communication also has different wavelength characteristics of quantum efficiency depending on the material used. For example, a photodetector made of silicon has the highest quantum efficiency near a wavelength of 8000A, and the quantum efficiency decreases by 4.0 at wavelengths longer or shorter than 8000A. As described above, the loss and bandwidth of the transmission path differ depending on the wavelength, and the characteristics of the light receiving element are also wavelength dependent.

従って複数の信号を波長の異つた複数の光を搬送波とし
て伝送する波長多重光通信では受信された各々の信号の
品質に差が生ずることになる。各波長で同じ種類の信号
を伝送する時、劣化が最も大きい波長での伝送品質が所
期品質となるよう設計され、劣化の少ない波長では過剰
品質又は余裕過剰となり伝送路利用効率が悪い。本発明
の目的は光波長多重方式により伝送され受信された複数
の信号の伝送品質を均一化することにあり、本発明によ
れば伝送路の伝送特性を無駄なく利用する波長多重光通
信方式を提供することができる。
Therefore, in wavelength division multiplexing optical communication in which a plurality of signals are transmitted using a plurality of lights of different wavelengths as carrier waves, a difference occurs in the quality of each received signal. When transmitting the same type of signal at each wavelength, the transmission quality at the wavelength with the greatest deterioration is designed to be the desired quality, and the wavelength with the least deterioration results in excessive quality or excess margin, resulting in poor transmission path utilization efficiency. The purpose of the present invention is to equalize the transmission quality of a plurality of signals transmitted and received by an optical wavelength division multiplexing method.According to the present invention, a wavelength division multiplexing optical communication method that utilizes the transmission characteristics of a transmission path without waste is realized. can be provided.

本発明は光波長多重通信において、フアイバでの損失の
大きい波長の発光源、受光器と損失の小かし、波長の発
光源、受光器を互いに異つたものを使用することを特徴
とする。
The present invention is characterized in that, in optical wavelength division multiplexing communication, a light emitting source with a wavelength that causes a large loss in a fiber, a light receiver, and a light receiver with a different wavelength are used to reduce the loss.

発光源としてはしーザー・ダイオード(以下LDと略す
)と発光ダイオード(以下LEDと略す)がある。
Light emitting sources include Caesar diodes (hereinafter abbreviated as LD) and light emitting diodes (hereinafter abbreviated as LED).

LDの出力光はコヒーレントであり発光部分が小さいの
で、レンズ系により小さい領域に集光できる。従ってフ
アイバ中心部の光を伝送する部分であるコア(径が数百
ム机以下)部分へLDからの光を効率よく結合できる。
一方LEDは発光面積が大きくコヒーレント光ではない
のでレンズ系を使っても小さく集光することは困難であ
り、コアへLEDの光を結合する効率は4・さし・。更
に発光パワもLOの方が大きいので、フアィバへの入力
光パワはLDを発光源にした時の方が大きい。通常、L
ED使用した場合のフアイバへ結合する光パワはLDに
比べて1の旧以上小さい。また、LED、LD共に電流
を光パワに変換する素子であり電気光変換特性の温度変
化がLDの方が大きい。LEDでは簡単な回路で温度補
償が実現出来るが、LDの場合には温度補償用の複雑な
制御回路を必要とする。寿命の点でもLEDの方がLD
より長い。つぎに受光器として使用するPmフオト・ダ
イオード(以下PINと略す)とアバランシェ・フオト
・ダイオード(以下APDと略す)を比較する。
Since the output light of the LD is coherent and the light emitting portion is small, it can be focused on a small area by the lens system. Therefore, the light from the LD can be efficiently coupled to the core portion (with a diameter of several hundred micrometers or less) which is the light transmitting portion at the center of the fiber.
On the other hand, LEDs have a large light emitting area and are not coherent light, so it is difficult to focus the light into a small size even using a lens system, and the efficiency of coupling LED light to the core is 4. Furthermore, since the light emitting power is greater in the LO, the optical power input to the fiber is greater when the LD is used as the light source. Usually L
The optical power coupled into the fiber when an ED is used is 1 or more lower than that of an LD. Furthermore, both LEDs and LDs are elements that convert current into optical power, and the temperature change in the electrical-optical conversion characteristics is greater in LDs. For LEDs, temperature compensation can be achieved with a simple circuit, but for LDs, a complicated control circuit for temperature compensation is required. LED is also better in terms of lifespan.
longer. Next, a comparison will be made between a Pm photo diode (hereinafter abbreviated as PIN) and an avalanche photo diode (hereinafter abbreviated as APD) used as a light receiver.

APDはなだれ増倍効果により光パワから変換された電
流が増中ごれるので、入力光パワが小さい時にも中継に
必要なS/Nが確保され得る。APDは100〜数10
0Vで逆バイアスとして使用し、なだれ増倍の増中度が
温度により大きく変動する。一方、Pmにはなだれ増倍
作用はないので、小光入力時にはS/Nが充分には得ら
れないが、逆バイアスは100V以下の電圧で光亀変換
特性の温度変化は少ない。以上述べた様に、LDは出力
光パワは大きいので、フアイバでの損失が大きい波長の
発光源として適している。
Since the APD increases the current converted from the optical power due to the avalanche multiplication effect, the S/N required for relaying can be ensured even when the input optical power is small. APD is 100 to several 10
It is used as a reverse bias at 0V, and the degree of avalanche multiplication varies greatly depending on the temperature. On the other hand, since Pm does not have an avalanche multiplication effect, a sufficient S/N ratio cannot be obtained when a small amount of light is input. However, when the reverse bias voltage is 100 V or less, there is little temperature change in the optical turtle conversion characteristic. As described above, since the LD has a large output optical power, it is suitable as a light source for wavelengths that have a large loss in the fiber.

LEDはフアィバでの損失の小さい波長の発光源として
使用すると、簡単な温度補償回路で動作させ得るので回
路が簡単となる。損失の大きい波長での受光素子として
はAPDが適しているが、高電圧逆バイアス回路及び糟
倍度の温度補償回路が必要となる。PINは回路が簡単
になるので、低損失部分で使用すると利点がある。第2
図に一実施例を示す。
When an LED is used as a light source with a wavelength that causes less loss in the fiber, the circuit can be simplified because it can be operated with a simple temperature compensation circuit. Although an APD is suitable as a light-receiving element for wavelengths with large losses, it requires a high-voltage reverse bias circuit and a high-power temperature compensation circuit. Since the PIN simplifies the circuit, it is advantageous to use it in a low-loss section. Second
An example is shown in the figure.

ここでは4つの異なった波長の光を一つのフアィバに伝
送する例を示す。33 1,33 3はLD、3 32
,3 34はLEDであり、波長は8000A付近で3
31,332,333,334の順番に長くなる。
Here, an example will be shown in which light of four different wavelengths is transmitted through one fiber. 33 1, 33 3 is LD, 3 32
, 3 34 is an LED, and the wavelength is around 8000A.
The length increases in the order of 31, 332, 333, and 334.

従ってフアイバでの損失はこの順序で小さくなる。LD
、LEDからの光出力は結合器4で一本のフアィバ1へ
結合され、フアィバ出力は分波器2で波長毎に分波され
、331‘ま311へ、332は312へ、333は3
13へ、334は314へ各々分離結合される。31
1,312はAPD、313,314はPINを表わす
Therefore, the loss in the fiber becomes smaller in this order. L.D.
, the optical output from the LED is coupled to one fiber 1 by a coupler 4, and the fiber output is split into wavelengths by a splitter 2, and is sent to 331' and 311, 332 to 312, and 333 to 3.
13 and 334 are separately coupled to 314, respectively. 31
1,312 represents an APD, and 313,314 represent a PIN.

フアィバでの損失の最も大きい波長にはLD、APDを
使用し、フアィバでの損失の最も小さい波長ではLED
、PINを使用する。他の波長ではLD、PIN、又は
LED、APDとしている。即ち伝送路特性に整合した
発光素子、受光素子を使用する。PIN、LEDを使用
する構成としたことにより、温度特性補償用の回路が簡
素になり、回路規模が小さくなる。以上の説明から明ら
かなように、波長毎に受光素子、発光素子の種類を適当
に選択して光波長多重通信を行うと、全体で見ると回路
規模が小さく、信頼度の高いシステムが構成出来る。
LD and APD are used for the wavelengths with the greatest loss in the fiber, and LEDs are used in the wavelengths with the least loss in the fiber.
, using a PIN. For other wavelengths, LD, PIN, LED, and APD are used. That is, a light-emitting element and a light-receiving element that match the characteristics of the transmission path are used. By adopting a configuration that uses a PIN and an LED, the circuit for compensating temperature characteristics is simplified and the circuit scale is reduced. As is clear from the above explanation, if optical wavelength multiplexing communication is performed by appropriately selecting the type of light receiving element and light emitting element for each wavelength, a highly reliable system with a small circuit scale can be constructed as a whole. .

..

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一つの光伝送路に4つの異なった波長の光搬送
波を使用した波長多重光通信系の構成図、第2図は本発
明の被変調光の波長に整合した受光素子、発光素子を使
用した中継方式の一実施例を示す。 331,333はLD、332,334はLED、4は
結合器、1はフアィバ、2は分波器、3 1 1,3
1 2はAPD、3 1 3,3 1 4はPIN。 第1図 第2図
Figure 1 is a configuration diagram of a wavelength multiplexing optical communication system that uses optical carrier waves of four different wavelengths in one optical transmission line, and Figure 2 shows a light receiving element and a light emitting element matched to the wavelength of the modulated light of the present invention. An example of a relay method using . 331 and 333 are LDs, 332 and 334 are LEDs, 4 is a coupler, 1 is a fiber, 2 is a duplexer, 3 1 1, 3
1 2 is APD, 3 1 3, 3 1 4 is PIN. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 波長が互いに異なる複数の被変調光を用い複数の信
号を一つの伝送路に光多重して中継伝送する方式におい
て、前記被変調光の波長に対する伝送路の伝送損失特性
に整合すべく異つた発光源もしくは異つた受光器を選択
して複数の前記被変調光に割り当てることを特徴とする
光多重中継伝送方式。
1. In a system in which multiple signals are optically multiplexed onto one transmission path using multiple modulated lights with different wavelengths and then relayed, different signals are used to match the transmission loss characteristics of the transmission path with respect to the wavelength of the modulated light. An optical multiplex relay transmission system characterized in that a light emitting source or a different light receiver is selected and assigned to a plurality of the modulated lights.
JP52061934A 1977-05-26 1977-05-26 Optical multiplex relay transmission system Expired JPS6027458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52061934A JPS6027458B2 (en) 1977-05-26 1977-05-26 Optical multiplex relay transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52061934A JPS6027458B2 (en) 1977-05-26 1977-05-26 Optical multiplex relay transmission system

Publications (2)

Publication Number Publication Date
JPS53146508A JPS53146508A (en) 1978-12-20
JPS6027458B2 true JPS6027458B2 (en) 1985-06-28

Family

ID=13185494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52061934A Expired JPS6027458B2 (en) 1977-05-26 1977-05-26 Optical multiplex relay transmission system

Country Status (1)

Country Link
JP (1) JPS6027458B2 (en)

Also Published As

Publication number Publication date
JPS53146508A (en) 1978-12-20

Similar Documents

Publication Publication Date Title
US4642804A (en) Shared laser lightwave transmission systems
Miki et al. Viabilities of the wavelength-division-multiplexing transmission system over an optical fiber cable
US8798476B2 (en) Method and system for single laser bidirectional links
CN112532325B (en) Multi-dimensional multiplexing photon terahertz communication system
CN101188460B (en) Full optical network networking system for passive light network and MAN
JPH0681119B2 (en) WDM optical transmission system
CN103370888A (en) Optical network communication system with optical line terminal transceiver and method of operation thereof
CN107294606B (en) Single-mode fiber bidirectional optical transceiver
CN107919915B (en) Multichannel NRZ optical signal turns the optical fiber telecommunications system and method for the more level optical signals of single channel
CN110176960A (en) A kind of novel single fiber bi-directional multichannel input optical module
CN207200703U (en) A kind of single-mode fiber bidirectional optical transceiver
Kanazawa et al. High output power and compact LAN-WDM EADFB laser TOSA for 4× 100-Gbit/s/λ 40-km fiber-AmplifierLess transmission
CN111211837A (en) Visible light communication system based on optical fiber energy supply
EP0153722A3 (en) Hybrid optical wavelength division multiplexer-demultiplexer
JPH09219680A (en) Optical transmission system
CN209514144U (en) Optical module
JPS6027458B2 (en) Optical multiplex relay transmission system
GB2247089A (en) Optical fibre rotating joint with coupling lenses
CN113395114B (en) Optical module, data center system and data transmission method
JP4957234B2 (en) Optical signal transmission device
CN212647059U (en) Optical module and optical communication module thereof
CN112448785B (en) Communication transmission method based on 100G DWDM CFP2 optical module
JP7239822B2 (en) Polarization multiplexing optical transceiver circuit
EP1018814A2 (en) Optical communication apparatus
de Valicourt et al. Integrated 5-channel WDM hybrid III-V/Si transmitter enabling 100Gb/s and beyond