JP4957234B2 - Optical signal transmission device - Google Patents

Optical signal transmission device Download PDF

Info

Publication number
JP4957234B2
JP4957234B2 JP2006349978A JP2006349978A JP4957234B2 JP 4957234 B2 JP4957234 B2 JP 4957234B2 JP 2006349978 A JP2006349978 A JP 2006349978A JP 2006349978 A JP2006349978 A JP 2006349978A JP 4957234 B2 JP4957234 B2 JP 4957234B2
Authority
JP
Japan
Prior art keywords
light
optical
modulated
wavelength
wavelength band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006349978A
Other languages
Japanese (ja)
Other versions
JP2008160719A (en
Inventor
研一 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2006349978A priority Critical patent/JP4957234B2/en
Publication of JP2008160719A publication Critical patent/JP2008160719A/en
Application granted granted Critical
Publication of JP4957234B2 publication Critical patent/JP4957234B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光信号伝送装置に関し、特に波長多重技術にもとづく光信号伝送装置に関する。   The present invention relates to an optical signal transmission device, and more particularly to an optical signal transmission device based on wavelength multiplexing technology.

現在、光信号の伝送容量を増加させるために、波長多重技術が用いられている。特に長距離の光信号を伝送する際には、伝送損失の小さい光ファイバーが用いられる。単一の光ファイバーに大容量の信号を伝送させる技術として、以下の技術が用いられる。即ち、異なる波長を有する複数の光源を用意し、各波長に信号を乗せるために光変調器により信号を付加し、または、直接光源を変調した後、複数の変調光を合波して単一の光ファイバーに結合する技術が用いられる。一方、受光側では、分波器で波長ごとに分波して、分波器の先に設けられた受光素子において、光信号は電気信号へと変換される。   Currently, wavelength multiplexing technology is used to increase the transmission capacity of optical signals. In particular, when transmitting a long-distance optical signal, an optical fiber having a small transmission loss is used. The following technique is used as a technique for transmitting a large-capacity signal to a single optical fiber. That is, a plurality of light sources having different wavelengths are prepared, and a signal is added by an optical modulator to place a signal on each wavelength, or a direct light source is modulated and then a plurality of modulated lights are combined to form a single light source. The technology to couple to the optical fiber is used. On the other hand, on the light receiving side, the light is demultiplexed for each wavelength by the demultiplexer, and the optical signal is converted into an electric signal in the light receiving element provided at the tip of the demultiplexer.

長距離の光ファイバーを経由する光信号の伝送において、波長ごとの伝送速度の差に基づく信号の劣化を防ぐため、光源からの光は波長(周波数)の広がりが小さい分布帰還型半導体レーザを複数用いる方式が採用される。複数の光源と合分波器を用いた波長多重伝送方式は、例えば特許文献1に、基本的な構成が示されている。また、同様の方式は、文献(「フォトニックネットワーク革命」、超高速フォトニックネットワーク開発推進協議会、平成14年1月発行)の114ページの図3.5−1(a)において、幹線系システムとして示されている。   In optical signal transmission via a long-distance optical fiber, a plurality of distributed feedback semiconductor lasers with a small wavelength (frequency) spread are used for the light from the light source to prevent signal degradation based on the difference in transmission speed for each wavelength. The method is adopted. A wavelength multiplex transmission system using a plurality of light sources and multiplexers / demultiplexers has a basic configuration shown in Patent Document 1, for example. A similar method is shown in Figure 3.5-1 (a) on page 114 in the literature ("Photonic Network Revolution", Ultra-high-speed Photonic Network Development Promotion Council, issued in January 2002). Shown as a system.

なお、光源を単一にする技術としては、例えば、特許文献2において、単一光源の光を分波器によって波長分離し、各々の波長分離された光を変調した後、合波器で合波し、単一の伝送路を経由した後、再び分波器で波長分離して、受光素子において電気信号に変換する装置が開示されている。   As a technique for making a single light source, for example, in Patent Document 2, the light of a single light source is wavelength-separated by a demultiplexer, and each wavelength-separated light is modulated and then combined by a multiplexer. An apparatus is disclosed in which, after passing through a single transmission line, the wavelength is again separated by a duplexer and converted into an electrical signal in a light receiving element.

特願平11−103286号公報Japanese Patent Application No. 11-103286 特開平7−79212号公報JP-A-7-79212

従来の波長多重通信においては、光源が複数必要とされる。また、光源が一つの場合であっても、光信号を合波する合波器や光信号を波長分離する分波器が必要とされる。したがって、装置全体のコストが高くなるのを避けるために、これらの機器を必要としない、簡便な機器構成からなる光信号伝送装置を提供することが課題となっている。   In the conventional wavelength multiplexing communication, a plurality of light sources are required. Even if there is a single light source, a multiplexer that multiplexes optical signals and a demultiplexer that separates wavelengths of optical signals are required. Therefore, in order to avoid an increase in the cost of the entire device, it is an object to provide an optical signal transmission device having a simple device configuration that does not require these devices.

また、長距離の光伝送の際には、光ファイバ中で信号が劣化するため、変調時におけるスペクトル広がりの小さい分布帰還型レーザが必要とされ、変調の際にもスペクトル広がりの小さい光変調器が必要とされるが、近年、大容量の情報通信を行う必要性が高まりつつある情報処理機器などにおける装置の筐体内程度の距離においては、伝送路中でのスペクトル広がり等が問題にならない。したがって、光源も安価な機器によって代替し、光変調器および受光素子についても、従来とは異なる原理にもとづく簡便な機器を提供することが課題となる。   In addition, since the signal deteriorates in the optical fiber during long-distance optical transmission, a distributed feedback laser with a small spectral spread during modulation is required, and an optical modulator with a small spectral spread during modulation is also required. However, the spread of the spectrum in the transmission path does not become a problem at a distance within the housing of an apparatus in an information processing apparatus or the like that has been increasingly required to perform large-capacity information communication in recent years. Therefore, it is an issue to provide a simple device based on a principle different from the conventional ones for the light modulator and the light receiving element by replacing the light source with an inexpensive device.

本発明の第1の視点に係る光信号伝送装置は、光を発する光源と、複数の経路に前記光を分岐する分岐器と、分岐ごとに設けられ、前記分岐された光を変調することで、伝送すべき信号を該光に付与する光変調器と、前記変調された光を合波する合波器と、前記合波された光を伝送する単一の光伝送路と、
前記伝送された光を受光して電気信号へ変換する、前記光変調器と同数以上の受光素子と、を備えた光信号伝送装置であって、前記光源の波長帯域中に前記光変調器の変調可能な波長帯域が含まれるように構成され、前記光変調器の変調可能な波長帯域がそれぞれ異なるように構成され、前記光変調器それぞれの変調可能な波長帯域の中に、前記受光素子の受光可能な波長帯域が少なくとも1つ含まれるように構成されたことを特徴とする。


Optical signal transmission apparatus according to a first aspect of the present invention includes a light source for emitting light, a splitter for splitting the light into a plurality of paths are provided for each branch, by modulating the branched light An optical modulator for applying a signal to be transmitted to the light; a multiplexer for multiplexing the modulated light; and a single optical transmission line for transmitting the combined light;
An optical signal transmission device comprising: the same number or more of light receiving elements as the optical modulator, which receives the transmitted light and converts it into an electrical signal, wherein the optical modulator has a wavelength band of the light source. The wavelength bands that can be modulated are included, the wavelength bands that can be modulated by the optical modulators are different from each other, and the wavelength bands that can be modulated by the optical modulators It is configured to include at least one wavelength band capable of receiving light.


本発明の第2の視点に係る光信号伝送装置は、光を発する光源と、前記光の伝搬経路に直列に設けられ、前記光を変調する複数の光変調器と、前記変調された光を伝送する単一の光伝送路と、前記光の伝搬経路に直列に設けられ、前記伝送された光を受光して電気信号へ変換する、前記光変調器と同数以上の受光素子と、を備えた光信号伝送装置であって、前記光源の波長帯域中に前記光変調器の変調可能な波長帯域が含まれるように構成され、前記複数の光変調器は、それぞれ変調可能な波長帯域が異なるとともに、前記光源からの入射のうちの該変調可能な波長帯域の光の強度を、電気信号に応じて変調するように構成され、前記受光素子の受光可能な波長帯域が異なるように構成され、前記光変調器それぞれの変調可能な波長帯域の中に、前記受光素子の受光可能な波長帯域が少なくとも1つ含まれるように構成されたことを特徴とする。 An optical signal transmission device according to a second aspect of the present invention includes a light source that emits light, a plurality of optical modulators that are provided in series in a propagation path of the light and modulate the light, and the modulated light. A single optical transmission line for transmission, and a number of light receiving elements equal to or more than the number of the optical modulators, which are provided in series with the light propagation path and receive the transmitted light and convert it into an electrical signal. The optical signal transmission device is configured such that a wavelength band that can be modulated by the optical modulator is included in a wavelength band of the light source , and each of the plurality of optical modulators has different wavelength bands that can be modulated. In addition, the light intensity in the wavelength band that can be modulated among the incident light from the light source is configured to be modulated according to an electric signal, and the wavelength band that can be received by the light receiving element is configured to be different. , For each of the optical modulators that can be modulated In, wherein the receivable wavelength band of the light receiving element is configured to include at least one.

第1の展開形態の光信号伝送装置は、前記光変調器の変調可能な波長帯域および前記受光素子の受光可能な波長帯域を決定する原理が同一であるように構成されたことを特徴とする。   The optical signal transmission device according to the first development mode is characterized in that the principle for determining the wavelength band that can be modulated by the optical modulator and the wavelength band that can be received by the light receiving element are the same. .

第2の展開形態の光信号伝送装置は、前記光変調器および前記受光素子は、それぞれ、光導波路と該光導波路近傍に、光学的な干渉構造とを備えたことを特徴とする。   The optical signal transmission device of the second development form is characterized in that each of the optical modulator and the light receiving element includes an optical waveguide and an optical interference structure in the vicinity of the optical waveguide.

第3の展開形態の光信号伝送装置は、前記光変調器および前記受光素子は、それぞれ、光導波路、該光導波路が光学的な相互作用を有する近傍またはその両方に、周期的に屈折率を変化させた構造を備えたことを特徴とする。
第4の展開形態の光信号伝送装置は、前記複数の光変調器が、それぞれ、前記光源からの入射光を導波する第1の光導波路と、前記入射光に対する干渉光を導波する第2の光導波路と、を備え、前記第1の光導波路および前記第2の光導波路は、前記入射光と前記干渉光とが互いに干渉するように配置されている。
In an optical signal transmission device according to a third development mode, the optical modulator and the light receiving element each have a refractive index periodically in the optical waveguide, in the vicinity of the optical waveguide having an optical interaction, or both. It is characterized by having a changed structure.
In an optical signal transmission device according to a fourth development mode, the plurality of optical modulators each includes a first optical waveguide that guides incident light from the light source, and first interference light that guides interference light with respect to the incident light. Two optical waveguides, and the first optical waveguide and the second optical waveguide are arranged so that the incident light and the interference light interfere with each other.

本発明に係る光信号伝送装置は、波長多重による光信号伝送を単一の光源のみによって実現することができる。   The optical signal transmission apparatus according to the present invention can realize optical signal transmission by wavelength multiplexing using only a single light source.

また、本発明に係る光信号伝送装置は波長分離を行うための分波器を必要としない。さらに、光変調器や受光素子を単一の伝送路に直列に配置した場合には分岐器や合波器も必要としない。   Further, the optical signal transmission device according to the present invention does not require a duplexer for performing wavelength separation. Further, when the optical modulator and the light receiving element are arranged in series on a single transmission line, neither a branching unit nor a multiplexer is required.

本発明に係る光信号伝送装置において、光学的な共鳴構造により、波長を選択することによって、スペクトル拡がりの狭い光源および変調時のスペクトル広がりの狭い光変調器は不要となる。また、同一の共鳴構造を備えた変調器と受光素子の組で送受信を行うことにより、環境温度の変化による光学特性の変化による影響を低減し、伝送性能の低下を防ぐことが可能となる。   In the optical signal transmission device according to the present invention, a light source having a narrow spectrum spread and an optical modulator having a narrow spectrum spread at the time of modulation become unnecessary by selecting the wavelength by the optical resonance structure. Further, by performing transmission / reception with a pair of a modulator and a light receiving element having the same resonance structure, it is possible to reduce the influence due to the change in the optical characteristics due to the change in the environmental temperature, and to prevent the transmission performance from being lowered.

本発明による光信号伝送装置は、光源と、光源から発せられる光に伝送する信号を付与する光変調器と、信号が付与された変調光を受光し、光信号を電気信号へと変換する受光素子を含み、光源の波長帯域の中に光変調器の変調可能な波長帯域が含まれ、かつ光変調器の変調可能な波長帯域の中に受光素子の受光可能な波長帯域が含まれることを特徴とする。   An optical signal transmission device according to the present invention includes a light source, an optical modulator that provides a signal to be transmitted to the light emitted from the light source, and a light receiving device that receives the modulated light to which the signal is applied and converts the optical signal into an electrical signal. The wavelength band of the light modulator is included in the wavelength band that can be modulated by the light modulator, and the wavelength band that can be received by the light receiving element is included in the wavelength band that can be modulated by the light modulator. Features.

また、本発明による光信号伝送装置は、光源と、光源から発せられる光に伝送する信号を付与する複数の光変調器と、信号が付与された変調光を受光し、光信号を電気信号へと変換する光変調器と同数以上の受光素子からなり、光源の波長帯域の中にすべての光変調器の変調可能な波長帯域が含まれ、かつ各光変調器の変調可能な波長帯域が異なり、それぞれの光変調器の変調可能な波長帯域の中に、少なくとも一つの受光素子の受光可能な波長帯域が含まれるものであってもよい。   An optical signal transmission device according to the present invention also receives a light source, a plurality of optical modulators that provide a signal to be transmitted to light emitted from the light source, and the modulated light to which the signal is applied, and converts the optical signal into an electrical signal. The number of light receiving elements equal to or more than the number of optical modulators to be converted is included. The wavelength band that can be received by at least one light receiving element may be included in the wavelength band that can be modulated by each optical modulator.

さらに、上記の光信号伝送装置において、光源から発せられる光を複数の経路に分岐する手段を備え、分岐ごとに光変調器が設けられ、これら複数の光変調器を経由した変調光を合波する手段を備え、合波された変調光を伝送する単一の光伝送路を含み、該伝送路の受信側に受光素子が設けられていてもよい。   Further, the optical signal transmission device includes means for branching the light emitted from the light source into a plurality of paths, and an optical modulator is provided for each branch, and the modulated light passing through the plurality of optical modulators is multiplexed. And a single optical transmission line that transmits the combined modulated light, and a light receiving element may be provided on the receiving side of the transmission line.

また、上記の光信号伝送装置において、光変調器は、光を伝搬する経路に順次設けられ、かつ各光変調器において信号を付与する波長帯域においてのみ光源からの光に対する相互作用が大きく、光を伝搬する経路に、複数の異なる受光可能な波長帯域を有する受光素子が順次設けられていてもよい。   In the above optical signal transmission device, the optical modulator is sequentially provided in the light propagation path, and has a large interaction with the light from the light source only in the wavelength band to which the signal is applied in each optical modulator. A plurality of light receiving elements having different wavelength bands in which light can be received may be sequentially provided in the path of propagation.

さらに、上記の光信号伝送装置において、光変調器および受光素子における波長帯域を決定する原理が同一であることが好ましい。   Further, in the above optical signal transmission device, it is preferable that the principle for determining the wavelength band in the optical modulator and the light receiving element is the same.

また、上記の光信号伝送装置において、光変調器および受光素子は、光導波路とその近傍に設けられた光学的な共鳴構造を有することが好ましい。   In the above optical signal transmission device, the optical modulator and the light receiving element preferably have an optical resonance structure provided in the vicinity of the optical waveguide.

さらに、上記の光信号伝送装置において、光変調器および受光素子は、光導波路またはその光学的な相互作用を有する近傍領域、またはその両方に設けられた周期的に屈折率の異なる構造を含んでいてもよい。   Further, in the above optical signal transmission device, the optical modulator and the light receiving element include a structure having periodically different refractive indexes provided in the optical waveguide and / or a nearby region having an optical interaction thereof, or both. May be.

本発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明第1の実施例による光信号伝送装置の構成図である。本実施形態では、光源1は発光波長域の広いスーパールミネッセンスダイオードであって、発光波長は800nmから850nmまでの範囲とする。光源1からの光は分岐器2aで4つに分岐される。以下では、多重度、すなわち分岐数が4の場合を例として説明するが、多重度の数は4に限られない。分岐後には、同一のスペクトルを有し、強度がそれぞれ4分の1となった光が、並列に接続された光変調器3a〜3dへと導かれる。光変調器3a〜3dは、それぞれ異なる波長帯域において、電気信号を光信号へと変換する。ここでは、例えば、中心波長λないしλがそれぞれ805nm、815nm、825nm、835nm、かつ変調帯域が4nm程度の光変調器を用いる。 FIG. 1 is a block diagram of an optical signal transmission apparatus according to a first embodiment of the present invention. In the present embodiment, the light source 1 is a super luminescence diode having a wide emission wavelength range, and the emission wavelength is in the range from 800 nm to 850 nm. The light from the light source 1 is branched into four by the branching device 2a. In the following, the case of multiplicity, that is, the case where the number of branches is four will be described as an example, but the number of multiplicity is not limited to four. After branching, light having the same spectrum and having an intensity of a quarter is guided to the optical modulators 3a to 3d connected in parallel. The optical modulators 3a to 3d convert electrical signals into optical signals in different wavelength bands. Here, for example, an optical modulator having center wavelengths λ 1 to λ 4 of 805 nm, 815 nm, 825 nm, and 835 nm and a modulation band of about 4 nm is used.

図2(a)に、波長λおよびλの光変調器(図1の3aおよび3b)により変調された光スペクトルを模式的に示す。 In FIG. 2 (a), it shows the wavelength lambda 1 and lambda 2 of the optical modulator an optical spectrum modulated by (3a and 3b in Fig. 1) schematically.

波長選択性を実現するために、例えば、図3に示すような干渉型の導波構造を設ける。なお、図3には、入射光、出射光、干渉光のスペクトルの模式図も示す。信号を付与する光は光導波路7の左側から入射して右側から出射する。一方、光導波路8には、電極9および10への電気信号に応じて、干渉光12が誘導される。ここで、光導波路7および8は互いに近接し、光学的に結合している。光変調器3aによる波長λ1における信号変調は、例えば、電気信号がONの時に波長λ1での光強度が0、電気信号がOFFの時に光強度が1となるように設定する。例えば、干渉光の波長をλ1に設定し、電気信号がONの時には、光導波路8に誘導された波長λ1の干渉光12が光導波路7への入射光11と干渉し、出射光13のように波長λ1におけるスペクトル強度が0になるように設定すればよい。   In order to realize wavelength selectivity, for example, an interference type waveguide structure as shown in FIG. 3 is provided. In addition, in FIG. 3, the schematic diagram of the spectrum of incident light, an emitted light, and interference light is also shown. Light that gives a signal enters from the left side of the optical waveguide 7 and exits from the right side. On the other hand, interference light 12 is guided to the optical waveguide 8 in accordance with electric signals to the electrodes 9 and 10. Here, the optical waveguides 7 and 8 are close to each other and optically coupled. The signal modulation at the wavelength λ1 by the optical modulator 3a is set so that, for example, the light intensity at the wavelength λ1 is 0 when the electrical signal is ON, and the light intensity is 1 when the electrical signal is OFF. For example, when the wavelength of the interference light is set to λ1 and the electrical signal is ON, the interference light 12 having the wavelength λ1 guided to the optical waveguide 8 interferes with the incident light 11 to the optical waveguide 7 and is like the outgoing light 13 The spectral intensity at the wavelength λ1 may be set to 0.

単一光源1から出た光は、分岐器2aによって分岐され、共鳴波長の異なる光変調器3a〜3dにおいて、異なる波長帯域に信号を乗せる。その後、光信号は、合波器4によって合波され、単一の光伝送路5によって伝送される。そして、伝送された光信号は再び分岐器2bによって分岐され、波長選択性を有する受光素子6a〜6dを用いて光信号を検出する。   The light emitted from the single light source 1 is branched by the branching unit 2a, and signals are placed in different wavelength bands in the optical modulators 3a to 3d having different resonance wavelengths. Thereafter, the optical signal is multiplexed by the multiplexer 4 and transmitted by the single optical transmission line 5. Then, the transmitted optical signal is branched again by the branching unit 2b, and the optical signal is detected using the light receiving elements 6a to 6d having wavelength selectivity.

受光素子6a〜6dの受光可能な波長帯域の中心はそれぞれλないしλとし、光変調器3a〜3dにおける変調可能な波長帯域の中心と一致させる。ここで、受光可能な波長帯域幅を、対応する光変調器の変調可能な波長帯域幅である4nmより狭くするため、例えば2nm(図2(b)参照)とする。この受光の波長依存性は、図3に示す光変調器における波長選択性と同様の原理を用いれば良い。また選択範囲の大小は、光導波路8と光導波路7の距離の調節や、干渉構造の個数によって調節できる。 The center of the light receiving possible wavelength band of the light receiving elements 6a~6d are to 1 lambda respectively and lambda 4, coincide with the center of modulatable wavelength band in the optical modulator 3 a to 3 d. Here, in order to make the wavelength bandwidth capable of receiving light narrower than 4 nm, which is the wavelength bandwidth that can be modulated by the corresponding optical modulator, for example, the wavelength bandwidth is set to 2 nm (see FIG. 2B). The wavelength dependency of the light reception may be based on the same principle as the wavelength selectivity in the optical modulator shown in FIG. The size of the selection range can be adjusted by adjusting the distance between the optical waveguide 8 and the optical waveguide 7 and the number of interference structures.

なお、異なる波長帯域毎にそれぞれ光伝送路を備える場合は、伝送前後の合波や分波を行うことなく、光変調器3a〜3dそれぞれの出力を直接受光素子6a〜6dへ1対1に伝送する。   In the case where an optical transmission path is provided for each different wavelength band, the outputs of the optical modulators 3a to 3d are directly sent to the light receiving elements 6a to 6d on a one-to-one basis without performing multiplexing and demultiplexing before and after transmission. To transmit.

この実施例において、信号が伝送される様子は次の通りである。図1は、複数の光変調器3a〜3dの出力が合波器4で合波され、単一の光伝送路5を経由した後、分岐器2bで分岐され、波長選択制の有る複数の受光素子6a〜6dに伝送される例を示している。ここで、複数の光変調器3a〜3dでは、それぞれ対応する波長において光強度の強弱によって信号が乗せられているが、これらが合波されると、これらの波長における光強度の強弱の程度は弱まることになる。そのため、受光素子6a〜6dにおいては、強度分岐のために全体の光強度が分岐の数分の1に減少するとともに、光強度の変化の割合も光変調器3a〜3dにおける光強度の変化の割合の数分の1に低下する。しかし、ここで受光素子6a〜6dの波長選択制によって、ある特定の波長だけを検出するようにしておけば、その波長の強弱に対応した光信号を検出することが可能となる。   In this embodiment, how signals are transmitted is as follows. In FIG. 1, the outputs of a plurality of optical modulators 3 a to 3 d are multiplexed by a multiplexer 4, passed through a single optical transmission line 5, then branched by a splitter 2 b, and a plurality of wavelength selective systems are provided. An example of transmission to the light receiving elements 6a to 6d is shown. Here, in the plurality of optical modulators 3a to 3d, signals are carried by the intensity of the light at the corresponding wavelengths, but when they are combined, the degree of the intensity of the light at these wavelengths is Will be weakened. Therefore, in the light receiving elements 6a to 6d, the total light intensity is reduced to a fraction of the branch due to the intensity branching, and the change rate of the light intensity is also a change in the light intensity in the light modulators 3a to 3d. Decreases to a fraction of the rate. However, if only a specific wavelength is detected by the wavelength selection system of the light receiving elements 6a to 6d, an optical signal corresponding to the intensity of the wavelength can be detected.

この実施形態によれば、単一の光源1と単一の光伝送路5によって、複数の波長λないしλに信号を乗せて伝搬させる波長多重通信が可能となる。 According to this embodiment, the single light source 1 and the single optical transmission line 5 enable wavelength multiplexing communication in which signals are propagated on a plurality of wavelengths λ 1 to λ 4 .

次に図4を用いて、第2の実施形態を説明する。光信号伝送装置に含まれる、光源1、分岐器2a、合波器4、光伝送路5、受光素子6a〜6dは、実施例1(図1)におけるものと同じである。相違点は、光変調器14a〜14dの機能および受光素子の配置方法の2点である。   Next, a second embodiment will be described with reference to FIG. The light source 1, branching device 2a, multiplexer 4, optical transmission line 5, and light receiving elements 6a to 6d included in the optical signal transmission device are the same as those in the first embodiment (FIG. 1). There are two differences in the functions of the optical modulators 14a to 14d and the arrangement method of the light receiving elements.

実施例1(図1)の光変調器3a〜3dの出力は、光源1のスペクトルを分岐器2aで分岐したスペクトルの中から、特定の波長の光強度だけを変化させるものであったが、光変調器14a〜14dの出力は特定の波長の光だけを抽出したものとする。   The outputs of the optical modulators 3a to 3d of the first embodiment (FIG. 1) were to change only the light intensity of a specific wavelength from the spectrum obtained by branching the spectrum of the light source 1 by the branching unit 2a. Assume that the outputs of the optical modulators 14a to 14d extract only light of a specific wavelength.

このとき、複数の光変調器14a〜14dの出力を合波器4で合波させた光のスペクトルは、各光変調器14a〜14dに対応する波長の光強度の強弱に信号が乗せられた形になっている。   At this time, in the spectrum of the light obtained by combining the outputs of the plurality of optical modulators 14a to 14d by the multiplexer 4, a signal is put on the intensity of the light intensity of the wavelength corresponding to each of the optical modulators 14a to 14d. It is in shape.

光変調器14a〜14dで変調され、合波器4で合波された後の変調光のスペクトルを図5(a)に模式的に示す。それぞれの波長において、信号の乗せられない光変調器からのバイアス出力は0となっているので、受光素子6a〜6dにおける信号検出の0レベルと1レベルの差を大きく取ることができる。   The spectrum of the modulated light after being modulated by the optical modulators 14a to 14d and multiplexed by the multiplexer 4 is schematically shown in FIG. At each wavelength, the bias output from the optical modulator on which no signal is placed is 0, so that the difference between the 0 level and 1 level of signal detection in the light receiving elements 6a to 6d can be made large.

したがって、図4に示すように、直列に受光素子6a〜6dを配置する構成を採用することが可能となる。実施例2の装置における受光素子6a〜6dにおける光強度は、実施例1における光強度と比較してより大きい変化を観測することができる。   Therefore, as shown in FIG. 4, it is possible to employ a configuration in which the light receiving elements 6a to 6d are arranged in series. The light intensity in the light receiving elements 6a to 6d in the apparatus of the second embodiment can be observed to be larger than that in the first embodiment.

図5(b)は、受光素子6a〜6dによって受光することのできる波長帯域を模式的に示す図である。図5(a)に示した変調光スペクトルの各ピークに、各受光素子6a〜6dの受光可能な波長帯域が含まれる。   FIG. 5B is a diagram schematically illustrating wavelength bands that can be received by the light receiving elements 6a to 6d. Each peak of the modulated light spectrum illustrated in FIG. 5A includes a wavelength band in which each of the light receiving elements 6a to 6d can receive light.

次に図6を用いて、第3の実施例を説明する。第1および第2の実施例においては、図1および図4に示すように、スペクトルの広い光源からの光を分岐器2aで分岐してから、それぞれの分岐において光変調器を用いた光の変調を行っているが、第3の実施例では、分岐器を用いず、直列に配置した光変調器3a〜3dにより、それぞれの波長における光強度の変調を行う。ここでの光変調器3a〜3dの作用は、図2に示したように、相互作用するそれぞれの波長で電気信号の0ないし1を光強度の1ないし0へと変調し、相互作用しない波長域の光はそのまま透過させる。   Next, a third embodiment will be described with reference to FIG. In the first and second embodiments, as shown in FIGS. 1 and 4, after the light from the light source having a wide spectrum is branched by the branching device 2a, the light using the light modulator in each branch is divided. Although the modulation is performed, in the third embodiment, the light intensity at each wavelength is modulated by the optical modulators 3a to 3d arranged in series without using the branching device. The functions of the optical modulators 3a to 3d here are as shown in FIG. 2, in which the electrical signals 0 to 1 are modulated to the light intensity 1 to 0 at the wavelengths that interact with each other, and the wavelengths that do not interact with each other. The light in the area is transmitted as it is.

この光変調であれば、光源1からの光を分岐させることなく、光変調器を直列に接続して、それぞれの光変調器3a〜3dの変調可能な波長帯域において、信号を順次乗せていくことができる。   With this optical modulation, the optical modulators are connected in series without branching the light from the light source 1, and signals are sequentially placed in the wavelength bands that can be modulated by the respective optical modulators 3a to 3d. be able to.

このように複数の光変調器に3a〜3dによって、複数の波長域に異なる信号が乗せられた光は、単一の光伝送路5を経由して受光素子6a〜6dへ伝送される。受光素子6a〜6dも波長選択性を有し、それぞれ受光可能な波長帯域の光の強弱を電気信号へ変換する。また受光不能な波長帯域の光はそのまま透過させる波長選択機構を受光素子に設けた場合は、光変調器3a〜3dと同様に、受光素子6a〜6dも直列に接続することができる。このように、単一の光源1と光伝送路5によって、複数の波長域にそれぞれ信号を乗せる波長多重の信号伝送が可能となる。   In this way, light in which different signals are placed in a plurality of wavelength regions by the light modulators 3 a to 3 d is transmitted to the light receiving elements 6 a to 6 d via the single optical transmission path 5. The light receiving elements 6a to 6d also have wavelength selectivity, and convert the intensity of light in a wavelength band that can be received respectively into electrical signals. In addition, when the light receiving element is provided with a wavelength selection mechanism that transmits light in a wavelength band that cannot be received as it is, the light receiving elements 6a to 6d can be connected in series like the light modulators 3a to 3d. As described above, the single light source 1 and the optical transmission line 5 enable wavelength-multiplexed signal transmission in which signals are respectively placed in a plurality of wavelength ranges.

以上、実施例1ないし3のいずれの波長多重システムの場合も、発光スペクトルの広い光源を用い、そのスペクトル中の特定波長の光とのみ相互作用をする光変調器と受光素子を組み合わせることにより構成されている。受光時の信号の品質を向上させるために、変調されていない波長域に対する受光感度は低いことが好ましい。そのため、受光素子の受光可能な波長帯域は、いずれかの光変調器の変調可能な波長帯域の中に包含されていることが好ましい。   As described above, in any of the wavelength multiplexing systems of Examples 1 to 3, a light source having a wide emission spectrum is used, and a light modulator that interacts only with light of a specific wavelength in the spectrum and a light receiving element are combined. Has been. In order to improve the quality of the signal at the time of light reception, it is preferable that the light reception sensitivity for the unmodulated wavelength region is low. Therefore, it is preferable that the wavelength band that can be received by the light receiving element is included in the wavelength band that can be modulated by any one of the optical modulators.

一般に、波長選択性を有する光素子においては、その選択性は温度に依存する。これは、物質の光学定数が温度依存性を持つためである。いま、伝送距離が短く送信側と受信側が同一の温度下にある場合を考える。ここで、光変調器と受光素子の波長選択性の原理を等しくすることで、周辺温度が変化した場合に、それぞれの機器の波長帯域は同一の変化を示す。したがって、温度が変わっても伝送品質の低下を防ぐことが可能となる。   In general, in an optical element having wavelength selectivity, the selectivity depends on temperature. This is because the optical constant of the substance has temperature dependence. Consider a case where the transmission distance is short and the transmitting side and the receiving side are under the same temperature. Here, by making the principle of wavelength selectivity of the optical modulator and the light receiving element equal, when the ambient temperature changes, the wavelength bands of the respective devices show the same change. Therefore, it is possible to prevent a decrease in transmission quality even if the temperature changes.

波長選択性が鋭い、すなわち、波長帯域の両端が鋭く立ち上がるほど、波長多重性を向上させることができる。したがって、光変調器および受光素子は限られた波長帯域の光とのみ相互作用することが望ましい。例えば、光変調器および受光素子の双方に、光導波路と、その光導波路に光学的に結合する共鳴構造とを備えることにより、鋭い波長選択性を得ることができる。   As the wavelength selectivity becomes sharper, that is, the both ends of the wavelength band rise sharper, the wavelength multiplexing property can be improved. Therefore, it is desirable that the optical modulator and the light receiving element interact only with light of a limited wavelength band. For example, sharp wavelength selectivity can be obtained by providing both the optical modulator and the light receiving element with an optical waveguide and a resonant structure optically coupled to the optical waveguide.

共鳴構造の温度依存性を抑えるため、材料や構造を変化させることで、屈折率を変化させることが好ましい。例えば、共鳴構造として、導波路に回折格子を設け、周期的に屈折率を変化させてもよい。   In order to suppress the temperature dependence of the resonance structure, it is preferable to change the refractive index by changing the material or the structure. For example, as the resonance structure, a diffraction grating may be provided in the waveguide, and the refractive index may be periodically changed.

また、発光、光変調器、受光素子として、上記の波長帯域の関係が満たされるものであれば、上記の波長選択の実現方法には限定されない。つまり、受光素子の受光可能な波長帯域を含むより広い範囲で光変調を行うことができる光変調器であればよい。光変調器の変調機構に関しても、半導体薄膜の吸収係数の電界強度依存性を利用するものであってもよいし、光導波路との結合を外部電界で変調させるものであってもよい。   Moreover, as long as the relationship of said wavelength band is satisfy | filled as light emission, an optical modulator, and a light receiving element, it is not limited to the implementation | achievement method of said wavelength selection. That is, any optical modulator that can perform light modulation in a wider range including the wavelength band in which the light receiving element can receive light may be used. Regarding the modulation mechanism of the optical modulator, the dependence of the absorption coefficient of the semiconductor thin film on the electric field strength may be used, or the coupling with the optical waveguide may be modulated by an external electric field.

光源については、光変調器の波長帯域を含む範囲に発光スペクトルを有するものが必要であり、この条件を満足するものであれば、スーパールミネッセンスダイオードであってもよいし、光ファイバーの非線形性を利用したスペクトル幅の広い光源であってもよい。また発光スペクトル帯域が広ければよいので、ファブリペローモードで多数の軸モードで発光している半導体レーザを光源とし、そのスペクトル帯域にすべての光変調器の波長帯域が含まれるようにしてもよい。   The light source needs to have an emission spectrum in a range including the wavelength band of the optical modulator, and if it satisfies this condition, it may be a super luminescence diode or use the nonlinearity of the optical fiber. A light source having a wide spectral width may be used. Further, since it is sufficient that the emission spectral band is wide, a semiconductor laser emitting light in a number of axial modes in the Fabry-Perot mode may be used as a light source, and the wavelength band of all the optical modulators may be included in the spectral band.

本発明の第1の実施例に係る光信号伝送装置の構成図である。It is a block diagram of the optical signal transmission apparatus which concerns on 1st Example of this invention. (a)本発明の第1および第3の実施例に係る光変調器により、変調された後の光スペクトルを模式的に示す図である。(b)受光素子の受光可能な波長帯域を模式的に示す図である。(A) It is a figure which shows typically the optical spectrum after being modulated by the optical modulator which concerns on the 1st and 3rd Example of this invention. (B) It is a figure which shows typically the wavelength range which can receive light of a light receiving element. 光変調器の実施例を示す図である。信号を付与する光が入出射する導波路と、これと近接して配置されると共に、入射した光に対する干渉光を誘導する導波路と、干渉光を誘導する電極の平面図である。It is a figure which shows the Example of an optical modulator. FIG. 3 is a plan view of a waveguide through which light for giving a signal enters and exits, a waveguide that is arranged in the vicinity of the waveguide and that guides interference light with respect to incident light, and an electrode that guides the interference light. 本発明の第2の実施例に係る光信号伝送装置の構成図である。It is a block diagram of the optical signal transmission apparatus which concerns on 2nd Example of this invention. (a)本発明の第2の実施例に係る光変調器により、変調された後の光スペクトルの様子を模式的に示す図である。(b)受光素子の受光可能な波長帯域を模式的に示す図である。(A) It is a figure which shows typically the mode of the optical spectrum after being modulated by the optical modulator which concerns on the 2nd Example of this invention. (B) It is a figure which shows typically the wavelength range which can receive light of a light receiving element. 本発明の第3の実施例に係る光信号伝送装置の構成図である。It is a block diagram of the optical signal transmission apparatus which concerns on 3rd Example of this invention.

符号の説明Explanation of symbols

1 光源
2a、2b 分岐器
3a〜3d 光変調器
4 合波器
5 光伝送路
6a〜6d 受光素子
7 信号光に対する光導波路
8 干渉光に対する光導波路
9、10 干渉光を誘導するための電極
11 入射光のスペクトルの模式図
12 干渉光のスペクトルの模式図
13 出射光のスペクトルの模式図
14a〜14d 光変調器
DESCRIPTION OF SYMBOLS 1 Light source 2a, 2b Branch device 3a-3d Optical modulator 4 Multiplexer 5 Optical transmission path 6a-6d Light-receiving element 7 Optical waveguide 8 with respect to signal light Optical waveguide 9, 10 with respect to interference light Electrode 11 for inducing interference light Schematic diagram of the spectrum of incident light 12 Schematic diagram of the spectrum of interference light 13 Schematic diagrams of the spectrum of outgoing light 14a to 14d Optical modulator

Claims (3)

光を発する光源と、
複数の経路に前記光を分岐する分岐器と、
分岐ごとに設けられ、前記分岐された光を変調することで、伝送すべき信号を該光に付与する光変調器と、
前記変調された光を合波する合波器と、
前記合波された光を伝送する単一の光伝送路と、
前記伝送された光を受光して電気信号へ変換する、前記光変調器と同数以上の受光素子と、を備えた光信号伝送装置であって、
前記光源の波長帯域中に前記光変調器の変調可能な波長帯域が含まれるように構成され、
前記光変調器の変調可能な波長帯域がそれぞれ異なるように構成され、
前記光変調器それぞれの変調可能な波長帯域の中に、前記受光素子の受光可能な波長帯域が少なくとも1つ含まれるように構成されたことを特徴とする光信号伝送装置。
A light source that emits light;
A branching device for branching the light into a plurality of paths;
An optical modulator that is provided for each branch and modulates the branched light to give a signal to be transmitted to the light;
A multiplexer for multiplexing the modulated light;
A single optical transmission line for transmitting the combined light;
An optical signal transmission device comprising: a light receiving element that receives the transmitted light and converts it into an electrical signal;
The wavelength band of the light source is configured to include a wavelength band that can be modulated by the optical modulator,
Each of the optical modulators is configured to have a different wavelength band that can be modulated,
An optical signal transmission device configured to include at least one wavelength band that can be received by the light receiving element in a wavelength band that can be modulated by each of the optical modulators.
光を発する光源と、
前記光の伝搬経路に直列に設けられ、前記光を変調する複数の光変調器と、
前記変調された光を伝送する単一の光伝送路と、
前記光の伝搬経路に直列に設けられ、前記伝送された光を受光して電気信号へ変換する、前記光変調器と同数以上の受光素子と、を備えた光信号伝送装置であって、
前記光源の波長帯域中に前記光変調器の変調可能な波長帯域が含まれるように構成され、
前記複数の光変調器は、それぞれ変調可能な波長帯域が異なるとともに、前記光源からの入射のうちの該変調可能な波長帯域の光の強度を、電気信号に応じて変調するように構成され、
前記受光素子の受光可能な波長帯域が異なるように構成され、
前記光変調器それぞれの変調可能な波長帯域の中に、前記受光素子の受光可能な波長帯域が少なくとも1つ含まれるように構成されたことを特徴とする光信号伝送装置。
A light source that emits light;
A plurality of optical modulators that are provided in series in the light propagation path and modulate the light;
A single optical transmission line for transmitting the modulated light;
An optical signal transmission device provided in series with the light propagation path, and receiving the transmitted light and converting it into an electrical signal, the light modulator having the same number or more as the light modulator,
The wavelength band of the light source is configured to include a wavelength band that can be modulated by the optical modulator,
The plurality of optical modulators have different wavelength bands that can be modulated , and are configured to modulate the intensity of light in the wavelength band that can be modulated among incident light from the light source in accordance with an electrical signal. ,
The light receiving element is configured to receive different wavelength bands,
An optical signal transmission device configured to include at least one wavelength band that can be received by the light receiving element in a wavelength band that can be modulated by each of the optical modulators.
前記複数の光変調器は、それぞれ、Each of the plurality of optical modulators is
前記光源からの入射光を導波する第1の光導波路と、A first optical waveguide for guiding incident light from the light source;
前記入射光に対する干渉光を導波する第2の光導波路と、を備え、A second optical waveguide for guiding interference light with respect to the incident light,
前記第1の光導波路および前記第2の光導波路は、前記入射光と前記干渉光とが互いに干渉するように配置されていることを特徴とする、請求項1または2に記載の光信号伝送装置。The optical signal transmission according to claim 1 or 2, wherein the first optical waveguide and the second optical waveguide are arranged so that the incident light and the interference light interfere with each other. apparatus.
JP2006349978A 2006-12-26 2006-12-26 Optical signal transmission device Expired - Fee Related JP4957234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006349978A JP4957234B2 (en) 2006-12-26 2006-12-26 Optical signal transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349978A JP4957234B2 (en) 2006-12-26 2006-12-26 Optical signal transmission device

Publications (2)

Publication Number Publication Date
JP2008160719A JP2008160719A (en) 2008-07-10
JP4957234B2 true JP4957234B2 (en) 2012-06-20

Family

ID=39661088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349978A Expired - Fee Related JP4957234B2 (en) 2006-12-26 2006-12-26 Optical signal transmission device

Country Status (1)

Country Link
JP (1) JP4957234B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114623A (en) * 2008-11-06 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu
JP5710499B2 (en) * 2009-01-09 2015-04-30 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Optical engine for point-to-point communication
US8644649B2 (en) 2011-05-27 2014-02-04 Micron Technology, Inc. Optical waveguide with cascaded modulator circuits

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779212A (en) * 1993-09-06 1995-03-20 Nippon Telegr & Teleph Corp <Ntt> Light wavelength multiplex optical transmitter
JPH11103286A (en) * 1997-09-25 1999-04-13 Nec Corp Wavelength multiplexed light transmitting device
JP2000019335A (en) * 1998-07-01 2000-01-21 Fuji Elelctrochem Co Ltd Multi-wavelength light source unit for multi- wavelength optical communication

Also Published As

Publication number Publication date
JP2008160719A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
KR100617806B1 (en) Remote antenna unit and wavelength division multiplexing radio-over-fiber network using the same
CN105531946B (en) A kind of method of sending and receiving of equation of light sub-signal, device and system
KR101961533B1 (en) Method and apparatus providing wave division multiplexing optical communication system with active carrier hopping
De Heyn et al. Ultra-dense 16x56Gb/s NRZ GeSi EAM-PD arrays coupled to multicore fiber for short-reach 896Gb/s optical links
WO2016029070A1 (en) Transceivers for signal switching architecture
JP4957234B2 (en) Optical signal transmission device
US6205269B1 (en) Optical add/drop multiplexer
US7019907B2 (en) Integrated lithium niobate based optical transmitter
Doi et al. 400GbE demonstration utilizing 100GbE optical sub-assemblies and cyclic arrayed waveguide gratings
EP1349302A2 (en) Optical transmission systems
US20030185573A1 (en) Optical transmission systems
KR102126238B1 (en) Transmitter for transmitting for optical signal in optical communication system and operation method therefor
US6496611B1 (en) Multichannel optical spectrum slicer and method of measuring modal birefringence and/or polarization mode dispersion of slicer itself
KR100264950B1 (en) Wavelength-variable light extraction / transmission filter for WDM communication without feedback noise
Tomkos et al. Filter concatenation penalties for 10-Gb/s chirped transmitters suitable for WDM metropolitan area networks
JP7438472B2 (en) Optical modules and optical communication systems
WO2018014328A1 (en) Optical add/drop multiplexer, control method therefor, and transceiver
WO2021100070A1 (en) Optical modulator and optical transmitter
JP4076928B2 (en) Automatic dispersion compensator
US6295150B1 (en) Wavelength division multiplexing device
EP1365528B1 (en) Optical transmission system incorporating optical filters
Boiyo et al. An integrated OADM based on Bragg trans-reflectance in 1550 nm VCSEL optical fibre access networks
Lai et al. Energy-efficient colourless photonic technologies for next-generation DWDM metro and access networks
JP4598615B2 (en) Optical wavelength division multiplexing signal transmitter / receiver
CN106301585A (en) A kind of optical module and the method sending modulated signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees