JPH11103286A - Wavelength multiplexed light transmitting device - Google Patents

Wavelength multiplexed light transmitting device

Info

Publication number
JPH11103286A
JPH11103286A JP9276666A JP27666697A JPH11103286A JP H11103286 A JPH11103286 A JP H11103286A JP 9276666 A JP9276666 A JP 9276666A JP 27666697 A JP27666697 A JP 27666697A JP H11103286 A JPH11103286 A JP H11103286A
Authority
JP
Japan
Prior art keywords
dispersion
transmission line
transmission
optical fiber
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9276666A
Other languages
Japanese (ja)
Inventor
Toshiharu Ito
俊治 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9276666A priority Critical patent/JPH11103286A/en
Priority to GB9820737A priority patent/GB2330026A/en
Priority to CA002248626A priority patent/CA2248626A1/en
Publication of JPH11103286A publication Critical patent/JPH11103286A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/2525Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using dispersion-compensating fibres
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/254Distortion or dispersion compensation before the transmission line, i.e. pre-compensation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the characteristic of a transmission line by arranging all channels in a normal distribution area without increasing the size of a dispersion compensating device. SOLUTION: A transmission line is composed of a dispersion compensating fiber (a 2nd dispersion compensating device) arranged near a transmitting/ receiving terminal and a transmission line optical fiber 1 occupying a large part of the transmission line. Since the transmission characteristic of a normal dispersion area in the transmission line is higher than that of an abnormal dispersion area, the fiber 1 is set up so that all channels are arranged in the normal dispersion area. The dispersion compensating device arranged on the transmitting/receiving terminal is composed of plural 1st dispersion compensating devices 1 to N and a 2nd dispersion compensating device consisting of an optical fiber having positive dispersion for compensating large negative dispersion stored due to the transmission of all channels in the normal dispersion area. Since the 2nd dispersion compensating device can be used also as a transmission line, the size of the device is not increased as compared with a conventional system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は長距離(数千km
〜)波長多重光伝送システムに関し、特に、送受信器の
構成及び伝送路全体の最適な分散配置を含む波長多重光
伝送装置に関する。
TECHNICAL FIELD The present invention relates to a long distance (thousands of km)
The present invention relates to a wavelength division multiplexing optical transmission system, and more particularly, to a wavelength division multiplexing optical transmission device including a configuration of a transceiver and an optimal dispersion arrangement of the entire transmission line.

【0002】[0002]

【従来の技術】高性能な光ファイバ増幅器の登場により
数千kmを越えるような伝送距離においても、中継器に
おける電気的な3R動作(re_timing,re_shaping,re_ge
nerating)なしに光信号を伝送することが可能となり、
その結果システムの信頼性、コスト等の面で光伝送技術
が大幅に向上することになった。
2. Description of the Related Art With the advent of high-performance optical fiber amplifiers, electrical 3R operation (re_timing, re_shaping, re_ge
nerating) without transmitting optical signals.
As a result, optical transmission technology has been greatly improved in terms of system reliability, cost, and the like.

【0003】また、1つの伝送路に複数の異なる波長を
有する波長多重通信が研究された結果、1本のファイバ
で1Tb/sを越える伝送容量も実現してきている。
Further, as a result of research on wavelength division multiplexing communication having a plurality of different wavelengths in one transmission line, transmission capacity exceeding 1 Tb / s has been realized with one fiber.

【0004】このような伝送距離及び伝送容量に関する
性能の向上は光増幅器が単チャネル、又は複数チャネル
の信号光を一括して増幅する能力を持つことに起因す
る。このような光ファイバ増幅器と波長多重技術とを用
いることにより長距離大容量の光通信を実現するための
研究が積極的に行われている。
[0004] Such an improvement in performance with respect to transmission distance and transmission capacity is due to the ability of the optical amplifier to amplify signal light of a single channel or a plurality of channels at once. Research for realizing long-distance and large-capacity optical communication by using such an optical fiber amplifier and the wavelength multiplexing technique has been actively conducted.

【0005】従来の長距離波長多重光伝送システムとし
ては、チャネル数32、1チャネルあたりの伝送速度5
Gb/s(全容量160Gb/s)、伝送距離10,0
00km弱の光増幅中継伝送の実験が報告されている
([1]NealS.Bergano et al,OFC'97,PD16,[2]N.Sh
imojoh et al Electronics Letters,vol.33,No.10,pp,8
77-879、1997参照。)。文献[1]記載の伝送実験は、正
常分散領域と異常分散領域とを利用した伝送路光ファイ
バを使用した光伝送装置において伝送中に蓄積される分
散量は受信端で一括して補償する補償法を採用したもの
に関し、また、文献[2]記載の伝送実験は、同様の伝
送路光ファイバを使用した光ファイバ伝送装置において
蓄積される分散量を送信端及び受信端の両方で補償する
補償法を採用したものに関する。
As a conventional long-distance WDM optical transmission system, the number of channels is 32, and the transmission rate per channel is 5
Gb / s (total capacity 160 Gb / s), transmission distance 10.0
Experiments on optical amplification repeater transmission of less than 00 km have been reported ([1] NealS. Bergano et al, OFC'97, PD16, [2] N.Sh
imojoh et al Electronics Letters, vol. 33, No. 10, pp, 8
77-879, 1997. ). In the transmission experiment described in Document [1], the amount of dispersion accumulated during transmission in an optical transmission device using a transmission line optical fiber using a normal dispersion region and an abnormal dispersion region is compensated for collectively at the receiving end. The transmission experiment described in the document [2] is based on a compensation method for compensating the dispersion amount accumulated in an optical fiber transmission device using a similar transmission line optical fiber at both the transmission end and the reception end. Regarding those that adopted the law.

【0006】ところで、上述のような長距離波長多重通
信における重要な課題には、中継光増幅器の特性改善
(雑音指数、帯域拡張、平坦化等)、伝送路の分散配
置、分散補償法及び伝送路中で生ずる各種非線形光学効
果の抑圧などがある。
[0006] By the way, important problems in the long-distance WDM communication as described above include improvement of characteristics (noise figure, band expansion, flattening, etc.) of the relay optical amplifier, dispersion arrangement of transmission lines, dispersion compensation method, and transmission. There is suppression of various nonlinear optical effects occurring in the road.

【0007】前記非線形光学効果のなかで波長多重通信
特有の問題として、自己位相変調効果と群速度分散との
相互作用であるSPM−GVD効果による波形劣化があ
る。SPM−GVD効果とは、”自己位相変調による信
号光スペクトルの広がり+波長分散による波形変化”の
繰り返しによる波形劣化のことであり、非可逆な過程の
ため波形回復は困難である。この影響は伝送路の零分散
波長から離れたチャネルにおいてより顕著となる。
[0007] Among the nonlinear optical effects, a problem peculiar to wavelength multiplex communication is waveform deterioration due to the SPM-GVD effect, which is an interaction between the self-phase modulation effect and the group velocity dispersion. The SPM-GVD effect is a waveform deterioration due to repetition of “spread of signal light spectrum due to self-phase modulation + waveform change due to chromatic dispersion”, and it is difficult to recover the waveform due to an irreversible process. This effect is more pronounced in channels away from the zero dispersion wavelength of the transmission line.

【0008】SPM−GVD効果を抑圧するためには、
伝送路中の信号光強度は低いことがが望ましい。しかし
信号光強度の低下は信号対雑音比の劣化につながり、そ
の下限は光増幅器の雑音特性(つまり雑音指数)に依存
して決定されるもので極端に低下させることはできな
い。
[0008] In order to suppress the SPM-GVD effect,
It is desirable that the signal light intensity in the transmission path be low. However, a decrease in the signal light intensity leads to a deterioration in the signal-to-noise ratio, and the lower limit thereof is determined depending on the noise characteristics (that is, noise figure) of the optical amplifier and cannot be extremely reduced.

【0009】信号光強度を下げる以外のSPM−GVD
効果耐力の向上の手法としては、強度変調された信号光
にビット同期の正弦波位相変調を重畳する方法が知られ
ている(例えば、[3]NealS.Bergano et al,OFC'96,T
uN1,1996)。また、このような位相変調の重畳は前記文
献[1]及び[2]記載の伝送実験でも採用されてい
る。ただし上記実験中では位相変調としてではなく、偏
波変調という形で信号光に位相変調が重畳されている。
SPM-GVD other than lowering signal light intensity
As a method of improving the effect tolerance, a method of superimposing a bit-synchronous sinusoidal phase modulation on the intensity-modulated signal light is known (for example, [3] NealS. Bergano et al, OFC'96, T
uN1, 1996). Such superposition of phase modulation is also employed in the transmission experiments described in the above-mentioned documents [1] and [2]. However, in the above experiment, the phase modulation is superimposed on the signal light in the form of polarization modulation instead of phase modulation.

【0010】ビット同期位相変調の重畳によって伝送特
性が向上する理由は、次の2つと考えられる。まず、ビ
ット同位相変調された信号光に適当な量の分散を付加す
ると波形が改善される効果があること。もう一つは、位
相変調により信号光スペクトルは過剰に拡大されるので
伝送路中の分散により激しく波形が変化し、その結果ピ
ークパワーが下がりSPMが低減することである。
The following two reasons are considered to improve the transmission characteristics due to the superposition of the bit synchronous phase modulation. First, adding an appropriate amount of dispersion to the bit-phase modulated signal light has the effect of improving the waveform. The other is that the signal light spectrum is excessively expanded by the phase modulation, so that the waveform changes drastically due to dispersion in the transmission path, and as a result, the peak power decreases and the SPM decreases.

【0011】このビット同期の位相変調の重畳による伝
送特性の改善に関しては、データ成分と位相変調の位相
関係については前記文献[3]において、また、伝送路
中で蓄積される分散量を送信端及び受信端の両方で補償
する補償法を採用する蓄積分散補償方法に関しては特開
平9−46318号公報([4])において、それぞれ
最適な構成が述べられている。
Regarding the improvement of the transmission characteristics by the superposition of the bit-synchronous phase modulation, the above document [3] describes the phase relationship between the data component and the phase modulation, and the transmission end accumulates the amount of dispersion accumulated in the transmission path. Japanese Patent Application Laid-Open No. 9-46318 ([4]) describes an optimal configuration for a storage dispersion compensation method that employs a compensation method for compensating at both the receiving end and the receiving end.

【0012】使用した光中継増幅器の雑音特性が劣り、
伝送路中の信号光強度が高く設定されたにも拘わらず、
文献[1]記載の伝送実験と比較して文献[2]記載の
伝送実験の方が優れた伝送特性を示している。これは公
報[4]記載の蓄積分散補償に関する改善された分散補
償法によるところが大きい。
The noise characteristics of the used optical repeater amplifier are inferior,
Despite the signal light intensity in the transmission path being set high,
Compared with the transmission experiment described in Reference [1], the transmission experiment described in Reference [2] shows superior transmission characteristics. This is largely due to the improved dispersion compensation method relating to the storage dispersion compensation described in the publication [4].

【0013】前記公報[4]中で提案されている改善さ
れた分散補償法とは、各チャネルが伝送路中で受け蓄積
される残留分散を送信端及び受信端で50%ずつ分割し
て補償するというものである。なお、前述のように文献
[1]記載の伝送実験では分散補償を受信端で一括して
補償する方法をとっている。
The improved dispersion compensation method proposed in the above publication [4] is to compensate for the residual dispersion that each channel receives and accumulates in the transmission path by dividing the residual dispersion by 50% at the transmitting end and the receiving end. It is to do. As described above, in the transmission experiment described in Reference [1], a method is adopted in which dispersion compensation is collectively compensated at the receiving end.

【0014】文献[2]においては、32チャネルの信
号光は1545.0nmから1560.5nmの間に
0.5nm間隔に配置されている。また、伝送路の零分
散は明記されていないが、1552.5nm付近である
ことが各チャネルの非線形効果によるスペクトル広がり
より推測される。これは使用する信号光帯域の中心付近
であるから、前記チャネルは前記公報[4]の中で提案
されているとおり正常分散側と異常分散側に等しい数ず
つチャネルが分配されている。
In document [2], signal light of 32 channels is arranged at intervals of 0.5 nm between 1545.0 nm and 1560.5 nm. Further, although the zero dispersion of the transmission line is not specified, it is estimated from around 1552.5 nm from the spectrum spread due to the nonlinear effect of each channel. Since this is near the center of the signal light band to be used, the channels are distributed by the same number on the normal dispersion side and the abnormal dispersion side as proposed in the above publication [4].

【0015】[0015]

【発明が解決しようとする課題】伝送路の正常分散領域
と異常分散領域とでは伝送特性が異なるため、信号光に
重畳する位相変調(チャープ)は、正常分散領域で正の
向きに、異常分散領域で負の向きにするというように、
両者で逆向きにする必要性が前記公報[4]で述べられ
ている。
Since the transmission characteristics are different between the normal dispersion region and the extraordinary dispersion region of the transmission line, the phase modulation (chirp) superimposed on the signal light causes the extraordinary dispersion in the positive direction in the normal dispersion region. In the negative direction in the area,
The necessity of turning the both sides in the opposite direction is described in the above publication [4].

【0016】零分散付近においては、伝送特性自体は優
れているものの自己位相変調効果によるスペクトル広が
りが顕著となるので、隣接チャネルとのスペクトルの重
なりによって生ずるコヒーレントクロストークを避ける
ためにチャネル間隔を広げる必要がある。また、スペク
トル広がりを抑圧するため信号光強度をある程度低く抑
える必要があり、伝送後の信号対雑音比を向上させるの
には限度がある。
In the vicinity of zero dispersion, although the transmission characteristic itself is excellent, the spectrum spread due to the self-phase modulation effect becomes remarkable. Therefore, the channel interval is widened to avoid coherent crosstalk caused by the overlap of the spectrum with the adjacent channel. There is a need. Further, it is necessary to suppress the signal light intensity to some extent in order to suppress the spectrum spread, and there is a limit in improving the signal-to-noise ratio after transmission.

【0017】また、ビット同期の位相変調によるSPM
−GVD効果耐力の向上は、異常分散領域では正常分散
領域におけるほどの効果はない。
Further, the SPM by the bit synchronization phase modulation
-The improvement of the GVD effect resistance is not as effective in the abnormal dispersion region as in the normal dispersion region.

【0018】このように、伝送路零分散を挟み正常分散
領域と異常分散領域を両方とも利用するためには、チャ
ネルごとに送信器の動作条件を変える必要があること、
零分散付近のスペクトル広がりに気を配る必要があるこ
と、といった問題がある。
As described above, in order to use both the normal dispersion region and the abnormal dispersion region with the transmission line zero dispersion in between, it is necessary to change the operating condition of the transmitter for each channel.
There is a problem that it is necessary to pay attention to the spectrum spread near zero dispersion.

【0019】以上の結果により伝送路の異常分散領域及
び零分散付近を避け、全てのチャネルを正常分散領域で
伝送させることが好ましいと考えられる。
Based on the above results, it is considered preferable that all channels are transmitted in the normal dispersion region while avoiding the abnormal dispersion region and the vicinity of zero dispersion of the transmission line.

【0020】しかしこの場合、最短波長のチャネルは、
より伝送路零分散波長から離れるので、余計に分散補償
を行う必要があり、公報[4]で提案されている構成の
ままでは、送受信端に配置される分散補償装置が大型化
してしまうという間題が生ずる。
However, in this case, the shortest wavelength channel is
Since the wavelength is farther away from the transmission line zero dispersion wavelength, it is necessary to perform extra dispersion compensation, and if the configuration proposed in the official gazette [4] is used, the dispersion compensator disposed at the transmission / reception end becomes large. The title arises.

【0021】(発明の目的)本発明の目的は、各種非線
形光学効果の抑圧など、伝送路特性の改善を可能にする
波長多光重伝送装置を提供することにある。
(Object of the Invention) It is an object of the present invention to provide a multi-wavelength multiple transmission device capable of improving transmission path characteristics such as suppression of various nonlinear optical effects.

【0022】本発明の他の目的は、送信器の動作条件等
をチャネルごとに調整する必要がなく、全てのチャネル
の送信器を同一の条件により動作させることを可能にし
た波長多光重伝送装置を提供することにある。
Another object of the present invention is to provide a multi-wavelength optical multi-transmission system capable of operating transmitters of all channels under the same conditions without having to adjust operating conditions of the transmitter for each channel. It is to provide a device.

【0023】本発明の更に他の目的は、送信端及び受信
端に配置される分散補償装置を大型化することなく、か
つ全てのチャネルを伝送路の正常分散領域に配置して伝
送させることのできる波長多重光伝送装置を提供するこ
とにある。
Still another object of the present invention is to provide a dispersion compensator disposed at a transmitting end and a receiving end without increasing the size thereof and for transmitting all channels in a normal dispersion area of a transmission path. It is an object of the present invention to provide a wavelength-division multiplexing optical transmission device capable of performing the above.

【0024】[0024]

【課題を解決するための手段】本発明の波長多重光伝送
装置は、1本の伝送路光ファイバ中に波長の異なる複数
の信号光を伝送させる波長多重伝送システムにおいて、
すべてのチャネルが伝送路光ファイバの正常分散領域に
配置されるように伝送路の分散を設定し、かつ中央付近
のチャネルが伝送路中で蓄積される分散量がちょうど補
償されるように伝送路の両端に正分散光ファイバを配置
する。また、前記構成の波長多重光伝送装置において、
前記分散補償用の正分散光ファイバを、送信端及び受信
端でほぼ等量に分配する配置する。
SUMMARY OF THE INVENTION A wavelength division multiplexing optical transmission apparatus according to the present invention is a wavelength division multiplexing transmission system for transmitting a plurality of signal lights having different wavelengths in one transmission line optical fiber.
Set the dispersion of the transmission line so that all channels are located in the normal dispersion region of the transmission line optical fiber, and set the transmission line so that the channels near the center just compensate for the amount of dispersion accumulated in the transmission line. A positive dispersion optical fiber is arranged at both ends of the optical fiber. Further, in the wavelength division multiplexing optical transmission device having the above configuration,
The dispersion compensating positive dispersion optical fiber is arranged so as to be substantially equally distributed at the transmitting end and the receiving end.

【0025】更に、前記波長多重光伝送装置において、
各チャネルが伝送路で蓄積される分散量から前記分散補
償用の正分散光ファイバで補償される分散量を差し引い
た残りの分散量を補償するため、送信器の出力から波長
多重用の光合波器の間に、また波長分離用の光分波器か
ら各チャネルの受信器の入力の間に、各チャネルごとに
分散補償用の光ファイバを配置する。また、前記構成の
波長多重光伝送装置において、各チャネルごとの分散補
償用の光ファイバは、送信端及び受信端にそれぞれ略5
0%ずつ分配する。
Further, in the wavelength division multiplexing optical transmission device,
In order to compensate for the remaining amount of dispersion obtained by subtracting the amount of dispersion compensated by the dispersion-compensating positive dispersion optical fiber from the amount of dispersion accumulated in the transmission path of each channel, optical multiplexing for wavelength multiplexing is performed from the output of the transmitter. An optical fiber for dispersion compensation is arranged for each channel between the devices and between the optical demultiplexer for wavelength separation and the input of the receiver of each channel. Further, in the wavelength division multiplexing optical transmission apparatus having the above-mentioned configuration, the optical fiber for dispersion compensation for each channel is approximately 5 at each of the transmitting end and the receiving end.
Distribute by 0%.

【0026】(作用)全てのチャネルを正常分散領域に
設定することで伝送信号に対する各種非線形光学効果を
抑制するとともに、チャネルごとの送信器動作条件等の
調整の容易化及びチャネル間隔の短縮化を可能とし、ま
た、この設定により増大する分散補償量を送信端及び受
信端に配分することで分散補償装置が大型化するのを回
避する。
(Operation) By setting all channels in the normal dispersion region, various nonlinear optical effects on transmission signals can be suppressed, and adjustment of transmitter operating conditions and the like for each channel can be facilitated and channel spacing can be shortened. By distributing the increased amount of dispersion compensation by the setting to the transmitting end and the receiving end, it is possible to avoid an increase in the size of the dispersion compensator.

【0027】[0027]

【発明の実施の形態】次に、本発明の波長多重光伝送装
置の一実施の形態について図面を参照して詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the wavelength division multiplexing optical transmission device of the present invention will be described in detail with reference to the drawings.

【0028】図1は、本発明の実施の形態の送信端及び
受信端の波長多重光伝送装置の基本構成と、伝送路の分
散マップを示す図である。
FIG. 1 is a diagram showing a basic configuration of a wavelength division multiplexing optical transmission device at a transmitting end and a receiving end according to an embodiment of the present invention, and a dispersion map of a transmission line.

【0029】同図において、送信端はそれぞれ使用波長
λ1〜λNの送信機1〜N、前置第一分散補償装置1〜
N、波長多重用の光合波器及び前置第二分散補償装置を
備える。受信端は受信光信号に対する後置分散補償装置
と、多重分離用光分波器1〜N、分散補償器1〜N及び
受信機1〜Nを備える。
In the figure, the transmitting ends are transmitters 1 to N of the used wavelengths λ 1 to λ N , respectively,
N, an optical multiplexer for wavelength multiplexing and a second dispersion compensator in front. The receiving end includes a post-dispersion compensator for the received optical signal, optical demultiplexers for demultiplexing 1 to N, dispersion compensators 1 to N, and receivers 1 to N.

【0030】伝送路1は、平均分散が全てのチャネルの
信号光波長において若干の負(右下がり)になるように
構成する。例えば、使用する光ファイバとして負の分散
を有する光ファイバ2、具体的には、分散値-2ps/nm/km
程度のNZDSF(Non Zero Dispersion Shift Fi
ber)と、分散値+17ps/nm/km程度の正の分散を持つ
光ファィバ3、例えば、1.3μm零分散光ファイバに
よって、分散量が全てのチャネルの信号光波長において
若干の負になるように構成することができる。
The transmission line 1 is configured so that the average dispersion is slightly negative (downward to the right) at the signal light wavelengths of all the channels. For example, an optical fiber 2 having a negative dispersion as an optical fiber to be used, specifically, a dispersion value of -2 ps / nm / km
NZDSF (Non Zero Dispersion Shift Fi
ber) and an optical fiber 3 having a positive dispersion of about +17 ps / nm / km, for example, a 1.3 μm zero-dispersion optical fiber, so that the dispersion becomes slightly negative at the signal light wavelengths of all the channels. Can be configured.

【0031】この場合、伝送路は、1.3μm零分散光
ファイバの使用波長における分散値が+17ps/nm/kmと
すると、NZDSF 500kmに対し1.3μm零分
散光ファイバを約55km程度接続するようにして、こ
れを繰り返すことにより伝送路の平均分散が全てのチャ
ネルにおいて負(右下がり)になるように伝送路を構成
することができる。つまり、このような伝送路では波長
多重された各信号光は高次分散のためそれぞれ異なる平
均分散を受けるが、全てのチャネルを正常分散領域にお
いて伝送させるため、全てのチャネルにおいて伝送路の
平均分散が負になるようにNZDSFと1.3μm零分
散光ファイバの比率を調整する。より具体的には伝送路
の平均零分散が最長波長チャネルより1〜2nm程度長
波長側になるようにする。
In this case, assuming that the dispersion value of the 1.3 μm zero-dispersion optical fiber at the working wavelength is +17 ps / nm / km, the transmission line connects about 1.3 km of 1.3 μm zero-dispersion optical fiber to 500 km of NZDSF. By repeating this, the transmission path can be configured such that the average dispersion of the transmission path becomes negative (downward to the right) in all the channels. That is, in such a transmission line, each wavelength-multiplexed signal light receives a different average dispersion due to higher-order dispersion, but since all channels are transmitted in the normal dispersion region, the average dispersion of the transmission line in all channels is The ratio between NZDSF and 1.3 μm zero-dispersion optical fiber is adjusted so that becomes negative. More specifically, the average zero dispersion of the transmission line is set to be on the longer wavelength side by about 1 to 2 nm than the longest wavelength channel.

【0032】ところで、このような伝送路は信号波長に
対して正常分散寄りに設定されるため、伝送路の両端に
おいて正の分散補償を行う必要がある。前記公報[4]
記載の方式と比較すると、伝送路で受ける分散量は大き
いのでこのような方式を採用したのでは分散補償装置は
大型化してしまう。
By the way, since such a transmission line is set closer to the normal dispersion with respect to the signal wavelength, it is necessary to perform positive dispersion compensation at both ends of the transmission line. The publication [4]
Compared with the described method, the amount of dispersion received on the transmission path is large, and thus adopting such a method would increase the size of the dispersion compensator.

【0033】本実施の形態では分散補償装置が大型化す
るという課題を克服するため、送信端及び受信端に配置
される分散補償装置をそれぞれ2つの部分で構成する。
また、送信端及び受信端に配置される分散補償装置は、
光増幅器の方向等を除けば同一の構成により実現する。
In the present embodiment, in order to overcome the problem that the size of the dispersion compensator is increased, the dispersion compensators disposed at the transmitting end and the receiving end are each composed of two parts.
Further, the dispersion compensating devices arranged at the transmitting end and the receiving end,
It is realized by the same configuration except for the direction of the optical amplifier.

【0034】そこで、次に本実施の形態における分散補
償装置として送信端に配置される分散補償装置について
説明する。本実施の形態の分散補償装置は各チャネルご
との第一分散補償装置と波長多重における第二分散補償
装置とで構成される。
Therefore, a dispersion compensating device arranged at the transmitting end will be described as the dispersion compensating device in the present embodiment. The dispersion compensator of the present embodiment includes a first dispersion compensator for each channel and a second dispersion compensator for wavelength division multiplexing.

【0035】第一分散補償装置は、伝送路の高次分散の
存在により生ずる各チャネル間の蓄積分散量の差を補償
するためのものであり、チャネルごとに蓄積分散の値に
応じた正または負の値をつ分散補償用の光ファイバによ
って構成する。具体的には、中央のチャネルに対して長
波長側のチャネルについては信号光波長において負の分
散を持つ分散補償光ファイバを、また、短波長側のチャ
ネルについては正の分散を持つ光ファイバを使用する。
The first dispersion compensator is for compensating for the difference in the amount of accumulated dispersion between the channels caused by the presence of higher-order dispersion in the transmission path. A dispersion compensating optical fiber having a negative value is used. Specifically, a dispersion compensating optical fiber having negative dispersion at the signal light wavelength is used for the channel on the long wavelength side with respect to the central channel, and an optical fiber having positive dispersion is used for the channel on the short wavelength side. use.

【0036】第二分散補償装置は、全てのチャネルを伝
送路の正常分散領域で用いるためのものであり、正の値
を持つ分散補償用の光ファイバにより構成される。その
分散量は中央のチャネルが伝送路で蓄積される分散量の
50%(送、受信端で計100%)に設定する。
The second dispersion compensator is for using all channels in the normal dispersion region of the transmission line, and is composed of a dispersion compensating optical fiber having a positive value. The amount of dispersion is set to 50% of the amount of dispersion accumulated in the transmission path in the central channel (100% in total at the sending and receiving ends).

【0037】このように、送信端では、各チャネルは信
号光波長と伝送路の距離と高次分散の大きさによって決
定される第一の分散補償器をそれぞれ通過した後に光合
波器により合波され、続いて正の分散を持つ第二の分散
補償装置の光ファイバを通る。
As described above, at the transmitting end, each channel is multiplexed by the optical multiplexer after passing through the first dispersion compensator determined by the signal light wavelength, the distance of the transmission path, and the magnitude of the higher-order dispersion. And then through the optical fiber of a second dispersion compensator with positive dispersion.

【0038】他方、受信端では、受信信号光は送信端と
同一構成の正の値を持つ分散補償光ファイバで構成され
中央のチャネルが伝送路で蓄積される分散量の50%に
設定された後置第二分散補償装置を通過した後に光分波
器により分波され、続いて各チャネルはチャネル間蓄積
分散量の差を補償する後置第一の分散補償器を通る。
On the other hand, at the receiving end, the received signal light is constituted by a dispersion compensating optical fiber having the same configuration as the transmitting end and having a positive value, and the central channel is set to 50% of the amount of dispersion accumulated in the transmission line. After passing through the second post-dispersion compensator, it is demultiplexed by the optical demultiplexer, and then each channel passes through the first post-dispersion compensator that compensates for the difference in the amount of accumulated dispersion between channels.

【0039】本実施の形態によれば、第二分散補償装置
は伝送路として使用することができる。そのため、送信
端及び受信端に配置される分散補償装置は第一分散補償
装置だけであり、分散補償装置としては公報[4]記載
の構成と比較しても大型化、複雑化することはない。
According to the present embodiment, the second dispersion compensator can be used as a transmission path. Therefore, only the first dispersion compensating device is disposed at the transmitting end and the receiving end, and the dispersion compensating device does not increase in size and complexity as compared with the configuration described in the official gazette [4]. .

【0040】また、第二分散補償装置に例えば+2ps/
nm/km程度のNZDSFを採用すると、最短波長チャネ
ルの最大残留分散量を減らすことができ、その結果伝送
特性を向上させることができる。
Further, for example, +2 ps /
When NZDSF of about nm / km is adopted, the maximum residual dispersion amount of the shortest wavelength channel can be reduced, and as a result, transmission characteristics can be improved.

【0041】次に、本実施の形態における送信端の構
成、特に分散補償装置の具体的構成について説明する。
Next, the configuration of the transmitting end in the present embodiment, in particular, the specific configuration of the dispersion compensator will be described.

【0042】図2(a)は、送信端の分散補償器等の第
一の構成例を示す図である。
FIG. 2A is a diagram showing a first configuration example of the dispersion compensator and the like at the transmitting end.

【0043】各チャネルの送信機の構成は、所望の信号
光波長を出力する光源(LD)10と、光源に接続され
データ信号を信号光に重畳せるための強度変調器11
と、前記強度変調器に接続され信号光にビット同期の位
相変調を重畳する位相変調器12と、位相変調器に接続
された第一分散補償装置13を有する。また、第一分散
補償装置13はチャネルごとの分散量の異なる分散補償
光ファイバ1〜Nと、それを一つに束ねる光合波器によ
って構成される。なお、分散補償光ファイバが長いため
光増幅器を途中で挿入する必要がある場合には、分散補
償光ファイバ中に光増幅器を挿入することがある。
The configuration of the transmitter of each channel includes a light source (LD) 10 for outputting a desired signal light wavelength, and an intensity modulator 11 connected to the light source for superimposing a data signal on the signal light.
A phase modulator 12 connected to the intensity modulator for superposing bit-synchronous phase modulation on the signal light; and a first dispersion compensator 13 connected to the phase modulator. The first dispersion compensator 13 is composed of dispersion compensating optical fibers 1 to N having different amounts of dispersion for each channel, and an optical multiplexer that bundles them. If an optical amplifier needs to be inserted in the middle because the dispersion compensating optical fiber is long, the optical amplifier may be inserted into the dispersion compensating optical fiber.

【0044】第二分散補償装置14は、正の分散を持つ
光ファイバにより構成され、第一の分散補償装置13内
の光合波器の出力に接続される。
The second dispersion compensator 14 is composed of an optical fiber having positive dispersion, and is connected to the output of the optical multiplexer in the first dispersion compensator 13.

【0045】第一及び第二分散補償装置13、14内で
付加される分散量は以下のように求められる。
The amount of dispersion added in the first and second dispersion compensators 13 and 14 is obtained as follows.

【0046】まず、第二分散補償装置14の分散補償量
を伝送路中で蓄積される分散量を考慮して決定する。中
央のチャネルの波長をλC[nm]、伝送路零分散波長をλ0
[nm]、伝送路中の平均分散スロープの大ききをa[ps/nm
2km]、伝送距離をL[km]とする。
First, the amount of dispersion compensation of the second dispersion compensator 14 is determined in consideration of the amount of dispersion accumulated in the transmission path. The wavelength of the center channel is λC [nm], and the zero dispersion wavelength of the transmission line is λ0.
[nm], the magnitude of the average dispersion slope in the transmission path is a [ps / nm]
2 km] and the transmission distance is L [km].

【0047】この場合、中央のチャネルが受ける蓄積分
散量の大きさは、a*(λC−λ0)*L[ps/nm]である。
よって第二の分散補償装置14で付加すべき分散量は-
*(λc−λ0)*L/2[ps/nm]となる。
In this case, the magnitude of the accumulated dispersion received by the central channel is a * (λC-λ0) * L [ps / nm].
Therefore, the amount of dispersion to be added by the second dispersion compensator 14 is-
a * (λc−λ0) * L / 2 [ps / nm].

【0048】続いて、第一分散補償装置13における各
チャネルヘ付加する分散量を求める。波長λのチャネル
が伝送路中で受ける蓄積分散量はa**(λ−λ0)**L[p
s/nm]である。このうち送信端及び受信端に配置される
それぞれの第二分散補償装置において合計-a*(λc−
λ0)*L[ps/nm]が補償される。よって残りの-a*
−λc)*L[ps/nm]分だけ補償する必要があり、送信端
及び受信端の2回を考えると-a*(λ−λ0)*L/2[ps/n
m]となる。
Subsequently, the amount of dispersion added to each channel in the first dispersion compensator 13 is obtained. Accumulated dispersion amount channel of wavelength lambda is subjected in the transmission path a * * (λ-λ0) * * L [p
s / nm]. Among them, the sum of −a * (λc−) is obtained in each of the second dispersion compensators arranged at the transmitting end and the receiving end.
λ0) * L [ps / nm] is compensated. Therefore, the remaining -a *
−λc) * It is necessary to compensate by L [ps / nm], and considering two times of the transmitting end and the receiving end, −a * (λ−λ0) * L / 2 [ps / n
m].

【0049】図2(b)は、送信端の分散補償器等の第
二の構成例を示す図である。この構成例は、図2(a)
に示す構成の位相変調器12を偏波変調器15に替えた
ものである。長距離光伝送システムでは、各コンポーネ
ントに含まれる偏波依存性損失、光増幅器中の偏波ホー
ルバーニングといった信号光の偏光状態に依存した効果
が伝送特性を劣化させることが知られている。このため
信号光の偏光状態をあらかじめスクランブルし、わざと
無偏光化した状態で伝送することを行う。この信号光の
無偏光化を信号の1ビットの中で行うビット同期偏波ス
クランブルは同時にチャープを信号光に重畳させるた
め、位相変調器によるビット同期位相変調と同様の効果
を持つ。
FIG. 2B is a diagram showing a second configuration example of the dispersion compensator and the like at the transmitting end. This configuration example is shown in FIG.
In this embodiment, the phase modulator 12 having the configuration shown in FIG. In long-distance optical transmission systems, it is known that effects depending on the polarization state of signal light, such as polarization-dependent loss included in each component and polarization hole burning in an optical amplifier, deteriorate transmission characteristics. Therefore, the polarization state of the signal light is scrambled in advance, and the signal light is transmitted in a depolarized state on purpose. The bit-synchronous polarization scrambling, in which the signal light is depolarized in one bit of the signal, has the same effect as the bit-synchronous phase modulation by the phase modulator because the chirp is simultaneously superimposed on the signal light.

【0050】図3は、送信端の第一分散補償装置等の他
の構成例を示す図である。各チャネルの送信器に対し直
列接続した前置分散補償器を共有して使用する構成を採
用するものである。この場合各前置分散補償器の分散量
は、隣接チャネル間の蓄積分散量の差によって決定され
る。この構成を用いると分散補償光ファイバを共有する
ため分散補償装置を小型化することができる。
FIG. 3 is a diagram showing another configuration example of the first dispersion compensator at the transmitting end and the like. This embodiment employs a configuration in which a pre-dispersion compensator connected in series is used in common for the transmitter of each channel. In this case, the amount of dispersion of each pre-dispersion compensator is determined by the difference in the amount of accumulated dispersion between adjacent channels. With this configuration, the dispersion compensating optical fiber is shared, so that the dispersion compensating device can be downsized.

【0051】[0051]

【発明の効果】本発明によれば、長距離波長多重光通信
における分散補償装置の大型化、高コスト化を回避する
ことができ、また、全てのチャネルを伝送特性が優れた
正常分散領域に配置することが可能である。
According to the present invention, it is possible to avoid an increase in the size and cost of a dispersion compensator in long-distance wavelength division multiplexing optical communication, and to set all channels to a normal dispersion region having excellent transmission characteristics. It is possible to arrange.

【0052】また、各チャネルが伝送路の零分散領域や
異常分散領域を使用することがないため、このような領
域を用いた伝送システムと比較すると伝送路中の光強度
を充分高くすることができる。
Further, since each channel does not use the zero dispersion region or the anomalous dispersion region of the transmission line, it is possible to sufficiently increase the light intensity in the transmission line as compared with a transmission system using such a region. it can.

【0053】一般に波長多重光通信においては、チャネ
ル間隔は中継増幅器の増幅帯域と平坦性及び補償分散量
に大きく影響を与えるのでなるべく狭くなることが好ま
しい。本発明によれば、零分散付近のスペクトル広がり
を考慮しなくてよいので、従来方式より信号光強度の向
上に加えてチャネル間隔の短縮が可能となる。
In general, in wavelength division multiplexing optical communication, it is preferable that the channel spacing be as narrow as possible because it greatly affects the amplification band, flatness, and compensation amount of the relay amplifier. According to the present invention, it is not necessary to consider the spectrum spread near zero dispersion, so that it is possible to shorten the channel interval in addition to improving the signal light intensity as compared with the conventional method.

【0054】更に、本発明は、全てのチャネルを正常分
散領域に設定するので、送信器の動作条件等をチャネル
ごとに調整する必要がないので、全てのチャネルの送信
器を同一の条件により動作させることができシステムの
簡略化が実現できる。
Further, according to the present invention, since all the channels are set in the normal dispersion area, it is not necessary to adjust the operating conditions of the transmitters for each channel. Therefore, the transmitters of all the channels operate under the same conditions. And simplification of the system can be realized.

【0055】以上のように本発明は、長距離波長多重光
伝送に適した伝送システムを構築するうえで好適であ
る。
As described above, the present invention is suitable for constructing a transmission system suitable for long-distance WDM optical transmission.

【0056】[0056]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明の実施の形態における分散補償装置の構
成例である。
FIG. 2 is a configuration example of a dispersion compensation device according to an embodiment of the present invention.

【図3】本発明の実施の形態における分散補償装置の他
の構成例である。
FIG. 3 is another configuration example of the dispersion compensating apparatus according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 伝送路 2 負分散NZDSF 3 1.3μm零分散光ファイバ 10 光源(LD) 11 強度変調器 12 位相変調器 13 第一分散補償装置 14 第二分散補償装置 15 偏波変調器 Reference Signs List 1 transmission line 2 negative dispersion NZDSF 3 1.3 μm zero dispersion optical fiber 10 light source (LD) 11 intensity modulator 12 phase modulator 13 first dispersion compensator 14 second dispersion compensator 15 polarization modulator

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 1本の伝送路光ファイバ中に波長の異な
る複数の信号光を伝送する波長多重光伝送装置におい
て、 全てのチャネルが伝送路光ファイバの正常分散領域に配
置されるように伝送路の分散を設定し、かつ中央付近の
チャネルが伝送路中で蓄積される分散量が補償されるよ
うに伝送路の両端に分散補償用の正分散光ファイバを配
置することを特徴とする波長多重光伝送装置。
1. A wavelength division multiplexing optical transmission device for transmitting a plurality of signal lights having different wavelengths in one transmission line optical fiber, wherein all channels are transmitted in a normal dispersion region of the transmission line optical fiber. Wavelength dispersion, wherein a dispersion compensating positive dispersion optical fiber is disposed at both ends of the transmission line so that the dispersion of the transmission line is set, and a channel near the center is compensated for the amount of dispersion accumulated in the transmission line. Multiplexed optical transmission device.
【請求項2】 前記分散補償用の正分散光ファイバは、
送信端及び受信端で略等量に分配されることを特徴とす
る請求項1記載の波長多重光伝送装置。
2. The dispersion-compensating positive dispersion optical fiber,
2. The wavelength division multiplexing optical transmission device according to claim 1, wherein the transmission end and the reception end are distributed in substantially equal amounts.
【請求項3】 1本の伝送路光ファイバ中に波長の異な
る複数の信号光を伝送する波長多重光伝送装置におい
て、 全てのチャネルが伝送路光ファイバの正常分散領域に配
置されるように伝送路の分散を設定し、かつ中央付近の
チャネルが伝送路中で蓄積される分散量が補償されるよ
うに伝送路の両端に分散補償用の正分散光ファイバを配
置するとともに、各チャネルが伝送路で蓄積する分散量
から前記分散補償用の正分散光ファイバで補償される分
散量を差し引いた残りの分散量を補償するための、送信
器の出力から波長多重用の光合波器の間及び波長分離用
の光分波器から各チャネルの受信器の入力の間に各チャ
ネルごとに分散補償用の光ファイバを配置することを特
徴とする波長多重光伝送装置。
3. A wavelength division multiplexing optical transmission apparatus for transmitting a plurality of signal lights having different wavelengths in one transmission line optical fiber, wherein all channels are transmitted in a normal dispersion region of the transmission line optical fiber. Set the dispersion of the transmission line, and arrange the dispersion-compensating positive dispersion optical fibers at both ends of the transmission line so that the amount of dispersion accumulated in the transmission line near the center is compensated. In order to compensate for the remaining amount of dispersion obtained by subtracting the amount of dispersion compensated by the dispersion-compensating positive dispersion optical fiber from the amount of dispersion accumulated in the path, between the output of the transmitter and the optical multiplexer for wavelength multiplexing and A wavelength-division multiplexing optical transmission device comprising: an optical fiber for dispersion compensation arranged for each channel between an input of a wavelength demultiplexer and an input of a receiver for each channel.
【請求項4】 各チャネルごとの分散補償用の光ファイ
バは、送信端及び受信端に略50%ずつ分配されること
を特徴とする請求項3記載の波長多重光伝送装置。
4. The wavelength division multiplexing optical transmission device according to claim 3, wherein the dispersion compensating optical fiber for each channel is distributed to the transmitting end and the receiving end by approximately 50%.
【請求項5】 伝送路は負の分散値を有する光ファイバ
と、正の分散値を有する光ファイバとを交互に接続した
伝送路光ファイバでなることを特徴とする請求項1、
2、3又は4記載の波長多重光伝送装置。
5. The transmission line according to claim 1, wherein the transmission line comprises a transmission line optical fiber in which optical fibers having a negative dispersion value and optical fibers having a positive dispersion value are alternately connected.
5. The wavelength division multiplexing optical transmission device according to 2, 3, or 4.
JP9276666A 1997-09-25 1997-09-25 Wavelength multiplexed light transmitting device Pending JPH11103286A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9276666A JPH11103286A (en) 1997-09-25 1997-09-25 Wavelength multiplexed light transmitting device
GB9820737A GB2330026A (en) 1997-09-25 1998-09-23 WDM optical signal dispersion compensation
CA002248626A CA2248626A1 (en) 1997-09-25 1998-09-24 Wdm optical signal transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9276666A JPH11103286A (en) 1997-09-25 1997-09-25 Wavelength multiplexed light transmitting device

Publications (1)

Publication Number Publication Date
JPH11103286A true JPH11103286A (en) 1999-04-13

Family

ID=17572634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9276666A Pending JPH11103286A (en) 1997-09-25 1997-09-25 Wavelength multiplexed light transmitting device

Country Status (3)

Country Link
JP (1) JPH11103286A (en)
CA (1) CA2248626A1 (en)
GB (1) GB2330026A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002011337A1 (en) * 2000-07-31 2002-02-07 Mitsubishi Denki Kabushiki Kaisha Optical wavelength division multiplexing device
US6456755B1 (en) 1999-02-17 2002-09-24 Nec Corporation Optical wavelength division multiplex system and method thereof
JP2004266603A (en) * 2003-03-03 2004-09-24 Fujitsu Ltd Multiple wavelength light relay transmission method and relay unit
JP2008160719A (en) * 2006-12-26 2008-07-10 Nec Corp Optical signal transmission apparatus
JP2008209775A (en) * 2007-02-27 2008-09-11 Japan Science & Technology Agency Nonlinear optical loop mirror and optical a/d converter
US7580642B2 (en) 2001-01-23 2009-08-25 At&T Corp. Modulation scheme for tedons
WO2010099706A1 (en) * 2009-03-06 2010-09-10 华为技术有限公司 Method and device for dispersion slope compensation
JP2011501549A (en) * 2007-10-16 2011-01-06 エクステラ コミュニケーションズ リミティド Phase shift keying high speed signaling
JP2012068673A (en) * 2011-12-02 2012-04-05 Furukawa Electric Co Ltd:The Nonlinear optical loop mirror and optical a/d converter
JP5316643B2 (en) * 2009-09-02 2013-10-16 富士通株式会社 Communication system, distributed slope applicator, and communication method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6571032B1 (en) * 2000-11-06 2003-05-27 Tyco Telecommunications (Us) Inc. Apparatus and method for multiplexing and/or demultiplexing optical signals having substantially equal dispersion
US6943935B2 (en) 2001-03-16 2005-09-13 Corning Incorporated Dispersion-managed cable for raman-assisted transmission
CN108352900B (en) 2016-03-03 2021-01-29 华为技术有限公司 Multiplexer/demultiplexer and passive optical network system
CN110855366A (en) * 2018-08-20 2020-02-28 华为技术有限公司 Dispersion compensation method, dispersion compensation device and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743972B2 (en) * 1992-06-09 1998-04-28 国際電信電話株式会社 Optical amplification repeater transmission method and system device
US5224183A (en) * 1992-07-23 1993-06-29 Alcatel Network Systems, Inc. Multiple wavelength division multiplexing signal compensation system and method using same
JP3396270B2 (en) * 1993-08-10 2003-04-14 富士通株式会社 Optical dispersion compensation method
US5559920A (en) * 1995-03-01 1996-09-24 Lucent Technologies Inc. Dispersion compensation in optical fiber communications
GB2299473A (en) * 1995-03-27 1996-10-02 Hitachi Cable Broadband long-distance optical fibre communications
JPH0946318A (en) * 1995-08-01 1997-02-14 Fujitsu Ltd Wavelength multiplexed optical transmission system and optical transmitter to be used for same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456755B1 (en) 1999-02-17 2002-09-24 Nec Corporation Optical wavelength division multiplex system and method thereof
US7236703B1 (en) 2000-07-31 2007-06-26 Mitsubishi Denki Kabushiki Kaisha Optical wavelength division multiplexing device
WO2002011337A1 (en) * 2000-07-31 2002-02-07 Mitsubishi Denki Kabushiki Kaisha Optical wavelength division multiplexing device
US7580642B2 (en) 2001-01-23 2009-08-25 At&T Corp. Modulation scheme for tedons
US7848658B2 (en) 2001-01-23 2010-12-07 At&T Intellectual Property Ii, L.P. Modulation scheme for tedons
JP2004266603A (en) * 2003-03-03 2004-09-24 Fujitsu Ltd Multiple wavelength light relay transmission method and relay unit
US7616893B2 (en) 2003-03-03 2009-11-10 Fujitsu Limited Wavelength division multiplexing optical repeating transmission method and repeating apparatus
JP4576094B2 (en) * 2003-03-03 2010-11-04 富士通株式会社 Wavelength division multiplexing optical repeater transmission method and repeater
JP2008160719A (en) * 2006-12-26 2008-07-10 Nec Corp Optical signal transmission apparatus
JP2008209775A (en) * 2007-02-27 2008-09-11 Japan Science & Technology Agency Nonlinear optical loop mirror and optical a/d converter
JP2011501549A (en) * 2007-10-16 2011-01-06 エクステラ コミュニケーションズ リミティド Phase shift keying high speed signaling
WO2010099706A1 (en) * 2009-03-06 2010-09-10 华为技术有限公司 Method and device for dispersion slope compensation
JP5316643B2 (en) * 2009-09-02 2013-10-16 富士通株式会社 Communication system, distributed slope applicator, and communication method
JP2012068673A (en) * 2011-12-02 2012-04-05 Furukawa Electric Co Ltd:The Nonlinear optical loop mirror and optical a/d converter

Also Published As

Publication number Publication date
CA2248626A1 (en) 1999-03-25
GB2330026A (en) 1999-04-07
GB9820737D0 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
JP3464867B2 (en) Optical transmitting apparatus, wavelength multiplexing optical transmitting apparatus and optical transmission system using the same
US6275314B1 (en) Optical wavelength multiplex transmission method and optical dispersion compensation method
US6043914A (en) Dense WDM in the 1310 nm band
US6567577B2 (en) Method and apparatus for providing chromatic dispersion compensation in a wavelength division multiplexed optical transmission system
US20030170028A1 (en) Optical transmitter, optical repeater, optical receiver and optical transmission method
JPH11103286A (en) Wavelength multiplexed light transmitting device
JP3464424B2 (en) Chromatic dispersion compensation method and optical transmission system
JP3320996B2 (en) WDM optical transmission equipment
US20020131132A1 (en) Optical transmission system
JP2000299660A (en) Wavelength division multiplex optical transmission system, optical amplifier and dispersion compensator
US7376353B2 (en) Method and apparatus for dispersion management in optical mesh networks
JP4094973B2 (en) Chromatic dispersion compensation system
Chraplyvy et al. Terabit/second transmission experiments
JP4259186B2 (en) Optical transmission system
EP1241809A1 (en) Optical transmission system using dispersion compensating optical transmission line
JP2002504777A (en) Dense wavelength division multiplexing method and system in 1310 nm band
JP2006129503A (en) Optical network, optical transmitter, optical receiver, optical amplifier, dispersion compensator, method of selecting signal light wavelength in optical network, wavelength multiplexer and wavelength demultiplexer
JP3756354B2 (en) WDM transmission system
KR100533600B1 (en) Wavelength division multiplexed metro optical communication apparatus
Zhu et al. Polarisation-channel-interleaved carrier-suppressed RZ ETDM/DWDM transmission at 40 Gbit/s with 0.8 bit/s/Hz spectral efficiency
JP2001094535A (en) Optical transmission system
JP3596403B2 (en) Optical wavelength division multiplex transmitter, optical wavelength division multiplex receiver, optical repeater, and optical wavelength division multiplex transmission system
US20060147167A1 (en) Advanced dispersion map for DSF transmission system
JP3727520B2 (en) WDM transmission system
JP3965351B2 (en) Optical repeater, optical repeater, optical transmission system, and optical transfer method