JP2010114623A - Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu - Google Patents

Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu Download PDF

Info

Publication number
JP2010114623A
JP2010114623A JP2008285113A JP2008285113A JP2010114623A JP 2010114623 A JP2010114623 A JP 2010114623A JP 2008285113 A JP2008285113 A JP 2008285113A JP 2008285113 A JP2008285113 A JP 2008285113A JP 2010114623 A JP2010114623 A JP 2010114623A
Authority
JP
Japan
Prior art keywords
onu
signal
olt
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008285113A
Other languages
Japanese (ja)
Inventor
Katsumi Iwatsuki
岩月  勝美
Naoto Yoshimoto
直人 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008285113A priority Critical patent/JP2010114623A/en
Publication of JP2010114623A publication Critical patent/JP2010114623A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power splitter type WDM-PON without using a wavelength-variable filter, and a colorless ONU compatible with a carrier supply method. <P>SOLUTION: In the optical communication system, a station-side OLT and a plurality of user-side ONUs are connected through a power splitter and an optical fiber transmission path. Each ONU includes: one or more subcarrier frequencies allocated thereto, and includes a transmitter including an RF modulation means to generate an RF modulation signal obtained by modulating an RF carrier of the subcarrier frequency with a transmission signal; and a light modulator for transmitting, to the OLT as an up-link signal, modulated light obtained by inputting, through the power splitter, CW light output from a WDM light source on the station side and having a plurality of wavelength components and modulating the CW light by the RF modulation signal. The OLT includes: a receiver including an optical receiver for converting the up-link signals respectively transmitted from each of the ONUs to electric signals as subcarrier-multiplexed up-link signals, and an RF demodulator compatible with the ONUs for demodulating the transmission signals of the ONUs from the electric signals based on the subcarrier frequencies of the ONUs. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光アクセスシステムの高速化に適する光通信システムに関する。また、本発明は、光通信システムにおけるONUの送信器、OLTの受信器、およびONUの上り信号送信方法に関する。   The present invention relates to an optical communication system suitable for increasing the speed of an optical access system. The present invention also relates to an ONU transmitter, an OLT receiver, and an ONU upstream signal transmission method in an optical communication system.

光アクセスシステムの高速化は著しく、この5年程度の間に 100倍の高速・広帯域化が進み、ギガビットクラスのブロードバンドサービスがGE−PON(Gigabit Ethernet( 登録商標)−Passive Optical Network)システムの商用導入で経済的に提供されている。さらなる高速・広帯域化に向けた次世代PON技術のアプローチとしては、主に、これまでの延長技術である時間軸上でユーザ多重を行う時間多重(TDM)方式と、波長軸上でユーザ多重を行う波長多重(WDM)方式があり、後者をWDM−PONと呼んでいる。   The speed of optical access systems has been remarkably high, and in the last five years, the speed and bandwidth have increased by a factor of 100. Gigabit-class broadband services are now commercially available for GE-PON (Gigabit Ethernet (registered trademark)-Passive Optical Network) systems. Provided economically with introduction. The next-generation PON technology approach to further increase the speed and bandwidth is mainly the time multiplexing (TDM) method that performs user multiplexing on the time axis, which is an extension technology, and the user multiplexing on the wavelength axis. There is a wavelength division multiplexing (WDM) system, and the latter is called WDM-PON.

図1は、WDM−PONシステムの構成例を示す(非特許文献1)。
図において、局側に配置されるOLT(Optical Line Terminal:光加入者線終端盤)10と、ユーザ側に配置されるONU(Optical Network Unit:光ネットワーク終端装置)20−1〜20−n(nは自然数)とが、光ファイバ伝送路31、波長スプリッタ33またはパワースプリッタ34、n本の光ファイバ伝送路32を介して1対nで接続される。
FIG. 1 shows a configuration example of a WDM-PON system (Non-Patent Document 1).
In the figure, an OLT (Optical Line Terminal: optical subscriber line terminal board) 10 arranged on the station side and ONUs (Optical Network Unit: optical network termination devices) 20-1 to 20-n (on the user side) n is a natural number) is connected 1 to n through the optical fiber transmission line 31, the wavelength splitter 33 or the power splitter 34, and the n optical fiber transmission lines 32.

図1(a) の波長スプリッタ型WDM−PONでは、ONU20−1〜20−nにそれぞれ対応する波長λd1〜λdnの下り信号は、波長スプリッタ33で波長分波して各ONUに伝送される。また、ONU20−1〜20−nからそれぞれ出力される波長λu1〜λunの上り信号は、波長スプリッタ33で波長合波してOLT10に伝送される。   In the wavelength splitter type WDM-PON of FIG. 1A, the downstream signals of wavelengths λd1 to λdn corresponding to the ONUs 20-1 to 20-n are demultiplexed by the wavelength splitter 33 and transmitted to each ONU. Further, the upstream signals of wavelengths λu1 to λun respectively output from the ONUs 20-1 to 20-n are wavelength-multiplexed by the wavelength splitter 33 and transmitted to the OLT 10.

図1(b) のパワースプリッタ型WDM−PONでは、ONU20−1〜20−nにそれぞれ対応する波長λd1〜λdnの下り信号は、パワースプリッタ34でn分岐して各ONUに伝送される。各ONUは、それぞれ対応する波長λd1〜λdnの下り信号を選択して受信する。ONU20−1〜20−nからそれぞれ出力される波長λu1〜λunの上り信号は、パワースプリッタ34で合流してOLT10に伝送される。   In the power splitter type WDM-PON of FIG. 1B, downstream signals of wavelengths λd1 to λdn corresponding to the ONUs 20-1 to 20-n are branched into n by the power splitter 34 and transmitted to each ONU. Each ONU selects and receives downlink signals of the corresponding wavelengths λd1 to λdn. Uplink signals of wavelengths λu1 to λun output from the ONUs 20-1 to 20-n are joined by the power splitter 34 and transmitted to the OLT 10.

WDM−PONの物理的なトポロジーはパッシブダブルスターで、伝送路である光ファイバを複数のユーザで共用しているが、ユーザごとに異なる波長を割り当てているため、論理的なトポロジーはシングルスターとなっている。このため、伝送路をユーザで共用しながら、他のユーザに影響を与えることなく、ユーザごとに独立にサービスを設定・変更することができる。
K.Iwatsuki, J.Kani, H.Suzuki, and M.Fujiwara,"Access and Metro Networks based on WDM Technologies", IEEE J.Lightwave Technol.,Vol.22, No.11, pp.2623-2630,(2004)
The physical topology of WDM-PON is passive double star, and the optical fiber that is the transmission path is shared by multiple users, but since different wavelengths are assigned to each user, the logical topology is single star. It has become. Therefore, the service can be set and changed independently for each user without affecting other users while sharing the transmission path with the user.
K. Iwatsuki, J. Kani, H. Suzuki, and M. Fujiwara, "Access and Metro Networks based on WDM Technologies", IEEE J. Lightwave Technol., Vol. 22, No. 11, pp. 2623-2630, ( 2004)

WDM−PONでは、各ONUに波長が固定的に割り当てられるため、ユーザごとに送信波長が異なるONUを用意しなければならず、ユーザの利便性や保守運用性に欠けることになる。このため、波長を意識することなく使いやすいONUを実現するには、ONUを単一品種化し、局側(OLT側)からONUの送信波長を設定できるようにする必要があり、このような機能を実現する技術をONUのカラーレス技術と呼んでいる。   In WDM-PON, since a wavelength is fixedly assigned to each ONU, it is necessary to prepare ONUs having different transmission wavelengths for each user, and the convenience and maintenance operability for the user are lacking. For this reason, in order to realize an easy-to-use ONU without being aware of the wavelength, it is necessary to make the ONU as a single product so that the transmission wavelength of the ONU can be set from the station side (OLT side). This technology is called ONU's colorless technology.

カラーレス技術は、自発光方式と搬送波供給方式に大別できる。自発光方式は、図2(a) に示すように、ONU自身に波長選択性をもつ光源が搭載されており、開通時に局側から各ONUの送信波長を設定する。ここでは、ONU20−1〜20−nの送信器がそれぞれ波長λu1〜λunの上り信号を送信する。   Colorless technology can be broadly divided into a self-luminous system and a carrier wave supply system. As shown in FIG. 2 (a), in the self-light emitting method, a light source having wavelength selectivity is mounted on the ONU itself, and the transmission wavelength of each ONU is set from the station side at the time of opening. Here, the transmitters of the ONUs 20-1 to 20-n transmit uplink signals having wavelengths λu1 to λun, respectively.

搬送波供給方式は、図2(b) に示すように、ONU20−1〜20−nの送信器に光変調器が搭載されており、OLT10の光源から送信された波長λu1〜λunのCW光を波長スプリッタ33で波長分波し、各ONUに供給される各波長のCW光を変調して上り信号を生成している。例えば、ONU20−1に波長λd1の下り信号と波長λu1のCW光が入力し、波長λu1のCW光を変調して上り信号として折り返す構成を示す。   As shown in FIG. 2 (b), the carrier wave supply system has an optical modulator mounted on the transmitters of the ONUs 20-1 to 20-n, and the CW light having the wavelengths λu1 to λun transmitted from the light source of the OLT 10 is received. The wavelength splitter 33 demultiplexes the wavelength and modulates the CW light of each wavelength supplied to each ONU to generate an upstream signal. For example, a configuration is shown in which a downstream signal of wavelength λd1 and CW light of wavelength λu1 are input to ONU 20-1, and the CW light of wavelength λu1 is modulated and returned as an upstream signal.

図3は、既存PON(GE−PON)とWDM−PONが共存するシステム構成例を示す。ここでは、既存PONの光スプリッタはパワースプリッタであるため、共存するWDM−PONは図1(b) に示すパワースプリッタ34を用いた構成となる。   FIG. 3 shows a system configuration example in which an existing PON (GE-PON) and a WDM-PON coexist. Here, since the optical splitter of the existing PON is a power splitter, the coexisting WDM-PON has a configuration using the power splitter 34 shown in FIG.

図において、GE−PONに対応するOLT(GE−OLT)とONU(GE−ONU)、WDM−PONで波長λ1 を占有するOLT(λ1 −OLT)とONU(λ1 −ONU)、WDM−PONで波長λ2 を占有するOLT(λ2 −OLT)とONU(λ2 −ONU)は、波長合分波器35、光ファイバ伝送路31、パワースプリッタ34、光ファイバ伝送路32を介して接続される。GE−PONは、1波長を複数のONUで共用し、複数のONUで帯域を時間的にシェアする帯域共有サービスである。WDM−PONは、GE−PONとは別の波長帯でONUごとに1つの波長λ1,λ2を割り当て、各波長ごとに伝送速度の設定が可能な帯域占有サービスである。   In the figure, OLT (GE-OLT) and ONU (GE-ONU) corresponding to GE-PON, OLT (λ1 -OLT) and ONU (λ1 -ONU) occupying wavelength λ1 in WDM-PON, and WDM-PON The OLT (λ 2 -OLT) and the ONU (λ 2 -ONU) occupying the wavelength λ 2 are connected via a wavelength multiplexer / demultiplexer 35, an optical fiber transmission line 31, a power splitter 34, and an optical fiber transmission line 32. GE-PON is a bandwidth sharing service in which one wavelength is shared by a plurality of ONUs, and the bandwidth is temporally shared by a plurality of ONUs. The WDM-PON is a band occupation service in which one wavelength λ1 and λ2 is assigned to each ONU in a wavelength band different from that of the GE-PON, and a transmission rate can be set for each wavelength.

図3に示すパワースプリッタ型WDM−PONにおいて、搬送波供給方式のカラーレスONUの送信器は、図2(b) に示す波長スプリッタ型対応で分波された波長のCW光をそのまま変調して折り返す構成と異なり、OLTの光源から各ONUに供給される波長λu1〜λunのCW光の中から任意の波長のCW光を選択するために、波長可変フィルタが用いられる。しかし、応答性が高く、広帯域で選択波長を可変できる安価な波長可変フィルタを実現することは困難であり、パワースプリッタ型WDM−PONおよび搬送波供給方式に対応するカラーレスONUを実現する上で課題になっていた。   In the power splitter type WDM-PON shown in FIG. 3, the carrierless type colorless ONU transmitter modulates the CW light of the wavelength demultiplexed corresponding to the wavelength splitter type shown in FIG. Unlike the configuration, a wavelength tunable filter is used to select CW light having an arbitrary wavelength from CW light having wavelengths λu1 to λun supplied from the OLT light source to each ONU. However, it is difficult to realize an inexpensive wavelength tunable filter that has high responsiveness and is capable of varying the selected wavelength in a wide band, and there are problems in realizing a colorless ONU corresponding to the power splitter type WDM-PON and the carrier wave supply system. It was.

本発明は、波長可変フィルタを用いずにパワースプリッタ型WDM−PONおよび搬送波供給方式に対応するカラーレスONUを実現できる光通信システム、ONUの送信器、OLTの受信器、およびONUの上り信号送信方法を提供することを目的とする。   The present invention relates to an optical communication system capable of realizing a colorless ONU corresponding to a power splitter type WDM-PON and a carrier wave supply system without using a wavelength tunable filter, an ONU transmitter, an OLT receiver, and an ONU upstream signal transmission. It aims to provide a method.

第1の発明は、局側に配置されるOLTと、複数のユーザ側にそれぞれ配置されるONUがパワースプリッタおよび光ファイバ伝送路を介して接続された光通信システムにおいて、各ONUは、互いに異なる少なくとも1つのサブキャリア周波数が割り当てられ、それぞれ割り当てられたサブキャリア周波数のRF搬送波を送信信号で変調したRF変調信号を生成するRF変調手段と、局側のWDM光源から出力された複数の波長成分を有するCW光をパワースプリッタを介して入力し、RF変調信号でCW光を変調した変調光を上り信号としてOLTに送信する光変調器とを含む送信器を備え、OLTは、各ONUからそれぞれ送信された上り信号をパワースプリッタを介してサブキャリア多重された上り信号として受光して電気信号に変換する受光器と、各ONUに割り当てられたサブキャリア周波数に基づいて電気信号から各ONUの送信信号を復調する各ONU対応のRF復調器とを含む受信器を備える。   The first invention is an optical communication system in which an OLT arranged on a station side and ONUs arranged on a plurality of users are connected via a power splitter and an optical fiber transmission line, and each ONU is different from each other. At least one subcarrier frequency is assigned, and RF modulation means for generating an RF modulation signal obtained by modulating an RF carrier wave of the assigned subcarrier frequency with a transmission signal, and a plurality of wavelength components output from the WDM light source on the station side And a transmitter including an optical modulator that transmits the modulated light obtained by modulating the CW light using an RF modulation signal as an upstream signal to the OLT. The transmitted upstream signal is received as an upstream signal that is subcarrier multiplexed via a power splitter and converted into an electrical signal. Comprising a receiver for a receiver including a respective ONU corresponding RF demodulator for demodulating a transmission signal of each ONU from the electric signal based on the subcarrier frequencies allocated to each ONU.

各ONUの光変調器は、上り信号を増幅する光増幅器を含む構成としてもよい。OLTは、受光器の前段に、複数の波長成分を有する上り信号が光ファイバ伝送路の波長分散によって生じた遅延差を補償する遅延補償器を備える構成としてもよい。   Each ONU optical modulator may include an optical amplifier that amplifies an upstream signal. The OLT may be configured to include a delay compensator that compensates for a delay difference caused by an upstream signal having a plurality of wavelength components caused by chromatic dispersion in an optical fiber transmission line, in front of the optical receiver.

また、OLTは、複数の波長成分を有する上り信号を各波長成分に分波する波長分波器と、各ONU対応の受光器とを備え、波長分波器で分波された各波長成分の上り信号を各ONU対応の受光器でそれぞれ電気信号に変換し、各ONU対応のRF復調器で復調する構成としてもよい。   The OLT includes a wavelength demultiplexer that demultiplexes an upstream signal having a plurality of wavelength components into each wavelength component, and a receiver that supports each ONU, and each wavelength component demultiplexed by the wavelength demultiplexer. The upstream signal may be converted into an electrical signal by each ONU-compatible light receiver, and demodulated by each ONU-compatible RF demodulator.

第2の発明は、第1の発明の光通信システムのONUの送信器において、各ONUに対して互いに異なる少なくとも1つのサブキャリア周波数が割り当てられ、それぞれ割り当てられたサブキャリア周波数のRF搬送波を送信信号で変調したRF変調信号を生成するRF変調手段と、局側のWDM光源から出力された複数の波長成分を有するCW光をパワースプリッタを介して入力し、RF変調信号でCW光を変調した変調光を上り信号としてOLTに送信する光変調器とを備える。   According to a second aspect of the present invention, in the ONU transmitter of the optical communication system of the first aspect, at least one subcarrier frequency different from each other is assigned to each ONU, and RF carriers of the assigned subcarrier frequencies are transmitted. RF modulation means for generating an RF modulation signal modulated with a signal and CW light having a plurality of wavelength components output from a WDM light source on the station side are input via a power splitter, and the CW light is modulated with the RF modulation signal And an optical modulator that transmits the modulated light as an upstream signal to the OLT.

第3の発明は、第1の発明の光通信システムのOLTの受信器において、各ONUからそれぞれ送信された上り信号をパワースプリッタを介してサブキャリア多重された上り信号として受光して電気信号に変換する受光器と、各ONUに割り当てられたサブキャリア周波数に基づいて電気信号から各ONUの送信信号を復調する各ONU対応のRF復調器とを備える。   According to a third aspect of the present invention, in the OLT receiver of the optical communication system according to the first aspect, the upstream signal transmitted from each ONU is received as an upstream signal that is subcarrier multiplexed via the power splitter and converted into an electrical signal. A light receiver for conversion and an RF demodulator for each ONU that demodulates the transmission signal of each ONU from an electrical signal based on a subcarrier frequency assigned to each ONU.

第4の発明は、第1の発明の光通信システムのONUの上り信号送信方法において、各ONUに対して互いに異なる少なくとも1つのサブキャリア周波数が割り当てられたRF変調手段が、それぞれ割り当てられたサブキャリア周波数のRF搬送波を送信信号で変調したRF変調信号を生成し、局側のWDM光源から出力された複数の波長成分を有するCW光をパワースプリッタを介して入力する光変調器が、RF変調信号でCW光を変調した変調光を生成し、上り信号としてOLTに送信する。   According to a fourth aspect of the present invention, in the upstream signal transmission method for an ONU of the optical communication system according to the first aspect of the present invention, the RF modulation means to which at least one subcarrier frequency different from each other is assigned to each ONU An optical modulator that generates an RF modulated signal obtained by modulating an RF carrier wave of a carrier frequency with a transmission signal and inputs CW light having a plurality of wavelength components output from a WDM light source on the station side via a power splitter is RF modulated. Modulated light obtained by modulating the CW light with the signal is generated and transmitted to the OLT as an upstream signal.

本発明は、互いに異なるサブキャリア周波数を利用する各ONUにおいて、サブキャリア周波数のRF搬送波を送信信号で変調したRF変調信号を生成し、WDM光源から与えられる複数の波長成分を有するCW光に対して一括してRF変調信号で変調し、上り信号を生成する。各ONUから送信された上り信号は、パワースプリッタを介してサブキャリア多重された上り信号としてOLTに入力される。OLTでは、この上り信号を電気信号に変換し、各ONUに割り当てられたサブキャリア周波数に基づいて電気信号から各ONUの送信信号を復調する。   The present invention generates an RF modulation signal obtained by modulating an RF carrier having a subcarrier frequency with a transmission signal in each ONU using different subcarrier frequencies, and for CW light having a plurality of wavelength components given from a WDM light source. And collectively modulating with an RF modulation signal to generate an upstream signal. The uplink signal transmitted from each ONU is input to the OLT as an uplink signal that is subcarrier multiplexed via the power splitter. In the OLT, this upstream signal is converted into an electric signal, and the transmission signal of each ONU is demodulated from the electric signal based on the subcarrier frequency assigned to each ONU.

このように、RF搬送波のサブキャリア周波数を各ONUとOLTの各RF復調器で対応させることにより、ONUとRF変調器が1対1に対応し、波長可変フィルタを用いずにパワースプリッタ型WDM−PONおよび搬送波供給方式に対応するカラーレスONUを実現することができる。なお、ONUに電子回路からなるRF変調手段をもたせた方が、ONUに光モジュールである波長可変フィルタをもたせるよりも圧倒的に安価なONUを実現することができる。   In this way, by making the subcarrier frequency of the RF carrier correspond to each ONU and each RF demodulator of the OLT, the ONU and the RF modulator correspond one-to-one, and a power splitter type WDM without using a wavelength tunable filter. A colorless ONU corresponding to the PON and the carrier wave supply method can be realized. Note that when the ONU is provided with RF modulation means made of an electronic circuit, an ONU that is overwhelmingly less expensive than when the ONU is provided with a wavelength tunable filter that is an optical module can be realized.

(第1の実施形態)
図4は、本発明の光通信システムの第1の実施形態を示す。
図において、局側に配置されるOLT10と、複数のユーザ側にそれぞれ配置されるONU20−1〜20−nは、光ファイバ伝送路31,32およびパワースプリッタ34を介して1対nに接続され、OLT10のWDM光源11から出力される波長λ1 〜λn のCW光(連続光)は分波されることなく各ONUに到着する。ONU20−1〜20−nの送信器に光変調器が搭載されており、OLT10のWDM光源11から各ONUに供給される波長λ1 〜λn のCW光を変調して上り信号を生成する。ここでは、ONU20−1〜20−nの送信器および各ONUに対応する上り信号を受信するOLT10の受信器の構成例を示し、下り信号の伝送系であるOLT10の送信器およびONU20−1〜20−nの受信器の構成は省略している。
(First embodiment)
FIG. 4 shows a first embodiment of the optical communication system of the present invention.
In the figure, the OLT 10 arranged on the station side and the ONUs 20-1 to 20-n arranged on the plurality of user sides are connected in a one-to-n relationship via optical fiber transmission lines 31, 32 and a power splitter 34, respectively. The CW light (continuous light) of wavelengths λ1 to λn output from the WDM light source 11 of the OLT 10 arrives at each ONU without being demultiplexed. The optical modulators are mounted on the transmitters of the ONUs 20-1 to 20-n, and the upstream signals are generated by modulating the CW light of the wavelengths λ1 to λn supplied from the WDM light source 11 of the OLT 10 to each ONU. Here, a configuration example of a transmitter of the ONUs 20-1 to 20-n and a receiver of the OLT 10 that receives an upstream signal corresponding to each ONU is shown, and a transmitter of the OLT 10 that is a downstream signal transmission system and the ONUs 20-1 to 20-1 The configuration of the 20-n receiver is omitted.

なお、本実施形態では、OLT10内にWDM光源11を備え、WDM光源11から出力される波長λ1 〜λn のCW光を光ファイバ伝送路31に入力し、下り信号とともにパワースプリッタ34を介してONU20−1〜20−nに供給する例を示したが、WDM光源11はOLT10の外部にあってもよく、また下り信号とは別の経路で各ONUに供給する構成であってもよい。以下に示す他の実施形態においても同様である。   In this embodiment, a WDM light source 11 is provided in the OLT 10, CW light of wavelengths λ 1 to λ n output from the WDM light source 11 is input to the optical fiber transmission line 31, and the ONU 20 via the power splitter 34 together with the downstream signal. Although the example of supplying to -1 to 20-n has been shown, the WDM light source 11 may be outside the OLT 10 or may be configured to supply to each ONU through a route different from the downstream signal. The same applies to other embodiments described below.

ONU20−nの送信器は、乗算器21でサブキャリア周波数fn のRF搬送波にベースバンド送信信号を重畳し、フィルタ22で乗算器21から出力されるRF変調信号の片側帯波およびRF搬送波成分を切り出し、増幅器23で増幅して光変調器24に入力する構成である。光変調器24は、波長λ1 〜λn のCW光をサブキャリア周波数fn のRF変調信号で一括して光変調して変調光を出力する。なお、フィルタ22は省いてもよい。   The transmitter of the ONU 20-n superimposes the baseband transmission signal on the RF carrier having the subcarrier frequency fn by the multiplier 21, and the one-sideband and RF carrier component of the RF modulation signal output from the multiplier 21 by the filter 22. This is a configuration that is cut out, amplified by the amplifier 23 and input to the optical modulator 24. The optical modulator 24 optically modulates CW light of wavelengths λ1 to λn with an RF modulation signal of subcarrier frequency fn and outputs modulated light. The filter 22 may be omitted.

ここで、ONU20−1〜20−nの各送信器でベースバンド送信信号が重畳されるRF搬送波は、互いに異なるサブキャリア周波数f1 〜fn が用いられる。したがって、パワースプリッタ34で各ONUからの上り信号(変調光)が合流したときに、波長λ1 〜λn のCW光に対してそれぞれサブキャリア周波数f1 〜fn の変調成分がサブキャリア多重された状態になる。   Here, mutually different subcarrier frequencies f1 to fn are used for RF carriers on which baseband transmission signals are superimposed by the transmitters of the ONUs 20-1 to 20-n. Therefore, when the upstream signals (modulated light) from the ONUs are merged by the power splitter 34, the modulation components of the subcarrier frequencies f1 to fn are subcarrier multiplexed with respect to the CW lights of wavelengths λ1 to λn, respectively. Become.

OLT10の受信器は、受信する変調光を受光器12で電気信号に変換し、増幅器13で増幅し、増幅した電気信号を分配器14で各ONU対応の中心周波数f1 〜fn のRF復調器15−1〜15−nに分配する構成である。中心周波数fn のRF復調器15−nは、波長λ1 〜λn の変調光に対応する電気信号からサブキャリア周波数fn 成分を復調することにより、ONU20−nから送信されたベースバンド送信信号を抽出する。   The receiver of the OLT 10 converts the modulated light to be received into an electric signal by the light receiver 12, amplifies the amplified signal by the amplifier 13, and an RF demodulator 15 having center frequencies f 1 to f n corresponding to each ONU by the distributor 14. It is the structure distributed to -1 to 15-n. The RF demodulator 15-n having the center frequency fn extracts the baseband transmission signal transmitted from the ONU 20-n by demodulating the subcarrier frequency fn component from the electrical signal corresponding to the modulated light having the wavelengths λ1 to λn. .

このように、RF搬送波のサブキャリア周波数f1 〜fn をONU20−1〜20−nとOLT10のRF復調器15−1〜15−nで対応させることにより、ONUとRF変調器が1対1に対応し、波長可変フィルタを用いずにパワースプリッタ型WDM−PONおよび搬送波供給方式に対応するカラーレスONUを実現することができる。   In this way, the ONUs and RF modulators have a one-to-one correspondence by making the subcarrier frequencies f1 to fn of the RF carrier correspond to the ONUs 20-1 to 20-n and the RF demodulators 15-1 to 15-n of the OLT 10. Correspondingly, it is possible to realize a colorless ONU corresponding to the power splitter type WDM-PON and the carrier wave supply system without using the wavelength tunable filter.

なお、WDM光源11に代えて1波長のCW光を出力する光源を用い、各ONUで1波長のCW光をそれぞれサブキャリア周波数f1 〜fn のRF変調信号で変調する構成としても、波長可変フィルタを用いないカラーレスONUの実現は可能である。それに対して、図1に示すように、例えばONU20−nにおいて、波長λ1 〜λn のCW光をサブキャリア周波数fn のRF変調信号で一括して光変調し、OLT10の中心周波数fn のRF復調器15−nにおいて、波長λ1 〜λn の変調光に対応する電気信号から周波数fn 成分を復調することにより、1波長を用いる構成に比べてn倍のSN比を確保することができる。   Note that a wavelength tunable filter may be used instead of the WDM light source 11 by using a light source that outputs CW light of one wavelength and modulating the CW light of one wavelength at each ONU with an RF modulation signal having subcarrier frequencies f1 to fn. It is possible to realize a colorless ONU without using. On the other hand, as shown in FIG. 1, for example, in the ONU 20-n, the CW light of the wavelengths λ1 to λn is optically modulated at once with the RF modulation signal of the subcarrier frequency fn, and the RF demodulator of the center frequency fn of the OLT 10 is obtained. In 15-n, by demodulating the frequency fn component from the electrical signal corresponding to the modulated light of wavelengths λ1 to λn, it is possible to secure an SN ratio that is n times that of the configuration using one wavelength.

(第2の実施形態)
図5は、本発明の光通信システムの第2の実施形態を示す。
本実施形態は、OLT10とONU20−1〜20−nとの間の伝送路である光ファイバが長延化された場合などにより、光損失が大きくなるとともに光ファイバの波長分散の影響が大きくなる場合に対応するものである。
(Second Embodiment)
FIG. 5 shows a second embodiment of the optical communication system of the present invention.
In the present embodiment, when the optical fiber that is a transmission path between the OLT 10 and the ONUs 20-1 to 20-n is elongated, the optical loss increases and the influence of the chromatic dispersion of the optical fiber increases. It corresponds to.

図において、ONU20−1〜20−nの送信器には、光変調器24の後段に光増幅器25を配置する他は図4の第1の実施形態と同様である。なお、光変調器24および光増幅器25に代えて、光増幅機能をもつ光変調器を用いてもよい。   In the figure, the transmitters of the ONUs 20-1 to 20-n are the same as those in the first embodiment in FIG. 4 except that an optical amplifier 25 is disposed after the optical modulator 24. Instead of the optical modulator 24 and the optical amplifier 25, an optical modulator having an optical amplification function may be used.

OLT10の受信器には、光ファイバ伝送路31,32およびパワースプリッタ34の波長分散により、複数の波長成分を有する上り信号に生じた遅延差を補償するために、受光器12の前段に遅延補償器40を配置し、波長ごとに遅延調整した変調光を受光器12に入力する構成とする。その他の構成は図4の第1の実施形態と同様である。遅延補償器40は、例えば図6に示すように、波長分波器41、遅延線42、波長合波器43を用い、波長ごとに異なる遅延を遅延線42で補正する構成とする。また、遅延補償器40は、光サーキュレータと波長対応の遅延量を与えるファイバグレーティングを用いた構成や、光ファイバ伝送路31,32の逆分散特性を有する光ファイバを用いてもよい。   In the receiver of the OLT 10, in order to compensate for the delay difference generated in the upstream signal having a plurality of wavelength components due to the chromatic dispersion of the optical fiber transmission lines 31 and 32 and the power splitter 34, the delay compensation is provided in the front stage of the light receiver 12. A configuration is adopted in which a modulator 40 is disposed and modulated light whose delay is adjusted for each wavelength is input to the light receiver 12. Other configurations are the same as those of the first embodiment of FIG. For example, as illustrated in FIG. 6, the delay compensator 40 uses a wavelength demultiplexer 41, a delay line 42, and a wavelength multiplexer 43, and has a configuration in which a delay that differs for each wavelength is corrected by the delay line 42. Further, the delay compensator 40 may use a configuration using an optical circulator and a fiber grating that provides a wavelength-corresponding delay amount, or an optical fiber having the inverse dispersion characteristics of the optical fiber transmission lines 31 and 32.

なお、本実施形態では、光損失の増大と光ファイバの波長分散の双方に対応する構成を示したが、光損失の増大に対応する光増幅器25と、伝送路の波長分散に対応する遅延補償器40を個別に配置する構成としてもよい。   In this embodiment, the configuration corresponding to both the increase in optical loss and the chromatic dispersion of the optical fiber is shown. However, the optical amplifier 25 corresponding to the increase in optical loss and the delay compensation corresponding to the chromatic dispersion in the transmission line are shown. It is good also as a structure which arrange | positions the container 40 separately.

(第3の実施形態)
図7は、本発明の光通信システムの第3の実施形態を示す。
本実施形態は、第1の実施形態のOLT10の構成を変更したものであるが、ONU20−1〜20−nとRF搬送波のサブキャリア周波数f1 〜fn を1対1に対応させ、よってONU20−1〜20−nとOLT10の中心周波数f1 〜fn のRF復調器15−1〜15−nを1対1で対応させるところは同じである。
(Third embodiment)
FIG. 7 shows a third embodiment of the optical communication system of the present invention.
In this embodiment, the configuration of the OLT 10 of the first embodiment is changed, but the ONUs 20-1 to 20-n and the subcarrier frequencies f1 to fn of the RF carrier are made to correspond one-to-one, and thus the ONU 20- 1 to 20-n and the RF demodulators 15-1 to 15-n of the center frequencies f1 to fn of the OLT 10 are the same in a one-to-one correspondence.

本実施形態のOLT10は、上り信号として入力する波長λ1 〜λn の変調光を波長フィルタ16で各波長に分波し、各波長の変調光をそれぞれ対応するOSU(Optical Subscriber Unit:光加入者線終端装置) 17−1〜17−nに入力する。例えばOSU17−nの受信器は、受信する波長λn の変調光を受光器12で電気信号に変換し、増幅器13で増幅し、増幅した電気信号を中心周波数fn のRF復調器15−nに入力する構成である。中心周波数fn のRF復調器15−nは、波長λn の変調光に対応する電気信号から周波数fn 成分を復調することにより、ONU20−nから送信されたベースバンド送信信号を抽出する。なお、本実施形態においてもOSUの下り信号の送信系の構成は省略している。   The OLT 10 of this embodiment demultiplexes modulated light of wavelengths λ1 to λn input as an upstream signal into each wavelength by the wavelength filter 16, and each of the modulated light of each wavelength corresponds to an OSU (Optical Subscriber Unit: optical subscriber line). Terminal device) 17-1 to 17-n. For example, the receiver of the OSU 17-n converts the received modulated light having the wavelength λn into an electric signal by the light receiver 12, amplifies it by the amplifier 13, and inputs the amplified electric signal to the RF demodulator 15-n having the center frequency fn. It is the structure to do. The RF demodulator 15-n having the center frequency fn extracts the baseband transmission signal transmitted from the ONU 20-n by demodulating the frequency fn component from the electrical signal corresponding to the modulated light having the wavelength λn. In this embodiment, the configuration of the transmission system for the OSU downlink signal is also omitted.

また、第1の実施形態は、波長λ1 〜λn の各変調光から例えば周波数fn のRF周波数成分を受信する構成であるが、本実施形態は、例えば波長λn の変調光から周波数fn のRF周波数成分を受信する構成であり、受信信号のSN比は第1の実施形態の方が優れている。   The first embodiment is configured to receive, for example, an RF frequency component of frequency fn from each modulated light of wavelengths λ1 to λn. In the present embodiment, for example, an RF frequency of frequency fn from the modulated light of wavelength λn is used. The configuration is such that the component is received, and the SN ratio of the received signal is superior to that of the first embodiment.

(第4の実施形態)
第1〜第3の実施形態では、ONU20−1〜20−nとRF搬送波のサブキャリア周波数f1 〜fn を1対1に対応させ、よってONU20−1〜20−nとOLT10の中心周波数f1 〜fn のRF復調器15−1〜15−nを1対1で対応させていた。
(Fourth embodiment)
In the first to third embodiments, the ONUs 20-1 to 20-n and the subcarrier frequencies f1 to fn of the RF carrier have a one-to-one correspondence, so that the center frequencies f1 to the ONUs 20-1 to 20-n and the OLT 10 The RF demodulators 15-1 to 15-n of fn are made to correspond one-to-one.

第1〜第3の実施形態において、各ONUに割り当てるRF搬送波のサブキャリア周波数を複数とし、例えば互いに異なるサブキャリア周波数のRF搬送波に複数のベースバンド送信信号を重畳した複数のRF変調信号を多重し、多重RF変調信号で波長λ1 〜λn のCW光を変調する。ONUの送信器の一例を図8に示す。図8では、ベースバンド送信信号a,bをそれぞれサブキャリア周波数fa,fb のRF搬送波で変調したRF変調信号を加算器26で加算し、多重RF変調信号としている。一方、OLT10においても各ONUごとに中心周波数をそれぞれ対応させたRF復調器を用いることにより、各ONUに割り当てる帯域の増大が可能となる。   In the first to third embodiments, a plurality of subcarrier frequencies of the RF carrier to be assigned to each ONU are set, for example, a plurality of RF modulation signals in which a plurality of baseband transmission signals are superimposed on RF carriers having different subcarrier frequencies are multiplexed. Then, the CW light of wavelengths λ1 to λn is modulated with the multiple RF modulation signal. An example of an ONU transmitter is shown in FIG. In FIG. 8, RF modulation signals obtained by modulating baseband transmission signals a and b with RF carriers of subcarrier frequencies fa and fb are added by an adder 26 to obtain a multiple RF modulation signal. On the other hand, in the OLT 10 as well, it is possible to increase the bandwidth allocated to each ONU by using an RF demodulator that corresponds to the center frequency for each ONU.

また、各ONUに割り当てる複数のRF搬送波のサブキャリア周波数を固定的ではなく、OLTからの制御信号により動的に変更することにより、各ONUに割り当てる帯域を可変制御することができる。例えば、ONUの変調方式にOFDM(Orthogonal Frequency Division Multiplexing) を利用し、OFDMの各周波数成分をONUとOLTのRF復調器との間で割り当てることにより、帯域割り当てのきめ細かい制御が可能となる。   Further, the subcarrier frequencies of a plurality of RF carriers assigned to each ONU are not fixed, but can be variably controlled by dynamically changing the subcarrier frequencies according to a control signal from the OLT. For example, by using OFDM (Orthogonal Frequency Division Multiplexing) as the modulation scheme of the ONU and assigning each frequency component of OFDM between the ONU and the RF demodulator of the OLT, fine control of band allocation becomes possible.

WDM−PONシステムの構成例を示す図。The figure which shows the structural example of a WDM-PON system. カラーレスONUを用いたWDM−PONシステムの構成例を示す図。The figure which shows the structural example of the WDM-PON system using a colorless ONU. 既存PON(GE−PON)とWDM−PONが共存するシステム構成例を示す図。The figure which shows the system structural example in which the existing PON (GE-PON) and WDM-PON coexist. 本発明の光通信システムの第1の実施形態を示す図。The figure which shows 1st Embodiment of the optical communication system of this invention. 本発明の光通信システムの第2の実施形態を示す図。The figure which shows 2nd Embodiment of the optical communication system of this invention. 遅延補償器40の構成例を示す図。The figure which shows the structural example of the delay compensator. 本発明の光通信システムの第3の実施形態を示す図。The figure which shows 3rd Embodiment of the optical communication system of this invention. 本発明の光通信システムの第4の実施形態におけるONUの送信器の一例を示す図。The figure which shows an example of the transmitter of ONU in 4th Embodiment of the optical communication system of this invention.

符号の説明Explanation of symbols

10 OLT(光加入者線終端盤)
11 WDM光源
12 受光器
13 増幅器
14 分配器
15 RF復調器
16 波長フィルタ
17 OSU(光加入者線終端装置)
20 ONU(光ネットワーク終端装置)
21 乗算器
22 フィルタ
23 増幅器
24 光変調器
25 光増幅器
26 加算器
31,32 光ファイバ伝送路
33 波長スプリッタ
34 パワースプリッタ
35 波長合分波器
40 遅延補償器
41 波長分波器
42 遅延線
43 波長合波器
10 OLT (Optical subscriber line terminal board)
DESCRIPTION OF SYMBOLS 11 WDM light source 12 Light receiver 13 Amplifier 14 Divider 15 RF demodulator 16 Wavelength filter 17 OSU (Optical subscriber line termination device)
20 ONU (Optical network terminator)
DESCRIPTION OF SYMBOLS 21 Multiplier 22 Filter 23 Amplifier 24 Optical modulator 25 Optical amplifier 26 Adder 31, 32 Optical fiber transmission line 33 Wavelength splitter 34 Power splitter 35 Wavelength multiplexer / demultiplexer 40 Delay compensator 41 Wavelength demultiplexer 42 Delay line 43 Wavelength Multiplexer

Claims (7)

局側に配置される光加入者線終端盤(以下「OLT」という)と、複数のユーザ側にそれぞれ配置される光ネットワーク終端装置(以下「ONU」という)がパワースプリッタおよび光ファイバ伝送路を介して接続された光通信システムにおいて、
前記各ONUは、互いに異なる少なくとも1つのサブキャリア周波数が割り当てられ、それぞれ割り当てられたサブキャリア周波数のRF搬送波を送信信号で変調したRF変調信号を生成するRF変調手段と、前記局側のWDM光源から出力された複数の波長成分を有するCW光を前記パワースプリッタを介して入力し、前記RF変調信号で前記CW光を変調した変調光を上り信号として前記OLTに送信する光変調器とを含む送信器を備え、
前記OLTは、前記各ONUからそれぞれ送信された前記上り信号を前記パワースプリッタを介してサブキャリア多重された上り信号として受光して電気信号に変換する受光器と、前記各ONUに割り当てられたサブキャリア周波数に基づいて前記電気信号から前記各ONUの送信信号を復調する各ONU対応のRF復調器とを含む受信器を備えた
ことを特徴とする光通信システム。
An optical subscriber line termination board (hereinafter referred to as “OLT”) disposed on the station side and an optical network termination device (hereinafter referred to as “ONU”) disposed on each of a plurality of users are connected to the power splitter and the optical fiber transmission line. In an optical communication system connected via
Each ONU is assigned at least one subcarrier frequency different from each other, and an RF modulation means for generating an RF modulation signal obtained by modulating an RF carrier of the assigned subcarrier frequency with a transmission signal; and a WDM light source on the station side And an optical modulator that inputs CW light having a plurality of wavelength components output from the power splitter and transmits the modulated light obtained by modulating the CW light with the RF modulation signal to the OLT as an upstream signal. With a transmitter,
The OLT receives the upstream signal transmitted from each ONU as a subcarrier multiplexed upstream signal via the power splitter and converts it into an electrical signal, and a sub-assignment assigned to each ONU. An optical communication system comprising: a receiver including an ONU-compatible RF demodulator that demodulates a transmission signal of each ONU from the electrical signal based on a carrier frequency.
請求項1に記載の光通信システムにおいて、
前記各ONUの前記光変調器は、前記上り信号を増幅する光増幅器を含む構成である
ことを特徴とする光通信システム。
The optical communication system according to claim 1,
An optical communication system, wherein the optical modulator of each ONU includes an optical amplifier that amplifies the upstream signal.
請求項1に記載の光通信システムにおいて、
前記OLTは、前記受光器の前段に、前記複数の波長成分を有する前記上り信号が前記光ファイバ伝送路の波長分散によって生じた遅延差を補償する遅延補償器を備えた
ことを特徴とする光通信システム。
The optical communication system according to claim 1,
The OLT includes a delay compensator that compensates for a delay difference caused by chromatic dispersion of the optical fiber transmission line in the upstream signal having the plurality of wavelength components, in front of the optical receiver. Communications system.
請求項1に記載の光通信システムにおいて、
前記OLTは、前記複数の波長成分を有する前記上り信号を各波長成分に分波する波長分波器と、前記各ONU対応の受光器とを備え、前記波長分波器で分波された各波長成分の上り信号を前記各ONU対応の受光器でそれぞれ電気信号に変換し、前記各ONU対応のRF復調器で復調する構成である
ことを特徴とする光通信システム。
The optical communication system according to claim 1,
The OLT includes a wavelength demultiplexer that demultiplexes the upstream signal having the plurality of wavelength components into each wavelength component, and a receiver that corresponds to each ONU, and each of the wavelengths demultiplexed by the wavelength demultiplexer An optical communication system, wherein an upstream signal of a wavelength component is converted into an electrical signal by each of the ONU-compatible light receivers and demodulated by the ONU-compatible RF demodulator.
請求項1に記載の光通信システムのONUの送信器において、
前記各ONUに対して互いに異なる少なくとも1つのサブキャリア周波数が割り当てられ、それぞれ割り当てられたサブキャリア周波数のRF搬送波を送信信号で変調したRF変調信号を生成するRF変調手段と、
前記局側のWDM光源から出力された複数の波長成分を有するCW光を前記パワースプリッタを介して入力し、前記RF変調信号で前記CW光を変調した変調光を上り信号として前記OLTに送信する光変調器と
を備えたことを特徴とするONUの送信器。
The ONU transmitter of the optical communication system according to claim 1,
RF modulation means for generating at least one subcarrier frequency different from each other for each ONU, and generating an RF modulation signal obtained by modulating an RF carrier of the assigned subcarrier frequency with a transmission signal;
CW light having a plurality of wavelength components output from the WDM light source on the station side is input via the power splitter, and modulated light obtained by modulating the CW light with the RF modulation signal is transmitted as an upstream signal to the OLT. An ONU transmitter comprising: an optical modulator.
請求項1に記載の光通信システムのOLTの受信器において、
前記各ONUからそれぞれ送信された前記上り信号を前記パワースプリッタを介してサブキャリア多重された上り信号として受光して電気信号に変換する受光器と、
前記各ONUに割り当てられたサブキャリア周波数に基づいて前記電気信号から前記各ONUの送信信号を復調する各ONU対応のRF復調器と
を備えたことを特徴とするOLTの受信器。
The OLT receiver of the optical communication system according to claim 1,
A receiver that receives the upstream signal transmitted from each ONU as an upstream signal that is subcarrier-multiplexed via the power splitter and converts it into an electrical signal;
An OLT receiver comprising: an RF demodulator corresponding to each ONU that demodulates a transmission signal of each ONU from the electrical signal based on a subcarrier frequency assigned to each ONU.
請求項1に記載の光通信システムのONUの上り信号送信方法において、
前記各ONUに対して互いに異なる少なくとも1つのサブキャリア周波数が割り当てられたRF変調手段が、それぞれ割り当てられたサブキャリア周波数のRF搬送波を送信信号で変調したRF変調信号を生成し、
前記局側のWDM光源から出力された複数の波長成分を有するCW光を前記パワースプリッタを介して入力する光変調器が、前記RF変調信号で前記CW光を変調した変調光を生成し、上り信号として前記OLTに送信する
ことを特徴とするONUの上り信号送信方法。
The ONU upstream signal transmission method of the optical communication system according to claim 1,
RF modulation means to which at least one subcarrier frequency different from each other is assigned to each ONU generates an RF modulation signal obtained by modulating an RF carrier of the assigned subcarrier frequency with a transmission signal,
An optical modulator that inputs CW light having a plurality of wavelength components output from the WDM light source on the station side via the power splitter generates modulated light obtained by modulating the CW light with the RF modulation signal, and An uplink signal transmission method for an ONU, wherein the signal is transmitted to the OLT as a signal.
JP2008285113A 2008-11-06 2008-11-06 Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu Pending JP2010114623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008285113A JP2010114623A (en) 2008-11-06 2008-11-06 Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008285113A JP2010114623A (en) 2008-11-06 2008-11-06 Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu

Publications (1)

Publication Number Publication Date
JP2010114623A true JP2010114623A (en) 2010-05-20

Family

ID=42302840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008285113A Pending JP2010114623A (en) 2008-11-06 2008-11-06 Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu

Country Status (1)

Country Link
JP (1) JP2010114623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457663A (en) * 2012-06-01 2013-12-18 中兴通讯股份有限公司 Path building method and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183519A (en) * 1992-01-07 1993-07-23 Nec Corp Subscriber system optical network communication system
JP2004248096A (en) * 2003-02-14 2004-09-02 Nippon Telegr & Teleph Corp <Ntt> Optical subscriber device
JP2006197489A (en) * 2005-01-17 2006-07-27 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiplexing system, optical terminating device and optical network unit
JP2006246104A (en) * 2005-03-04 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength division multiplex transmitter, optical wavelength division multiplex transmission system, and optical transmission circuit
JP2006304170A (en) * 2005-04-25 2006-11-02 Mitsubishi Electric Corp Pon system and dispersion compensating method therefor
JP2008160719A (en) * 2006-12-26 2008-07-10 Nec Corp Optical signal transmission apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183519A (en) * 1992-01-07 1993-07-23 Nec Corp Subscriber system optical network communication system
JP2004248096A (en) * 2003-02-14 2004-09-02 Nippon Telegr & Teleph Corp <Ntt> Optical subscriber device
JP2006197489A (en) * 2005-01-17 2006-07-27 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiplexing system, optical terminating device and optical network unit
JP2006246104A (en) * 2005-03-04 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength division multiplex transmitter, optical wavelength division multiplex transmission system, and optical transmission circuit
JP2006304170A (en) * 2005-04-25 2006-11-02 Mitsubishi Electric Corp Pon system and dispersion compensating method therefor
JP2008160719A (en) * 2006-12-26 2008-07-10 Nec Corp Optical signal transmission apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457663A (en) * 2012-06-01 2013-12-18 中兴通讯股份有限公司 Path building method and device
CN103457663B (en) * 2012-06-01 2018-08-28 中兴通讯股份有限公司 path establishment method and device

Similar Documents

Publication Publication Date Title
Abbas et al. The next generation of passive optical networks: A review
Song et al. Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms
US8705970B2 (en) Method for data processing in an optical network, optical network component and communication system
Qian et al. A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks
US8934773B2 (en) Method for data processing in an optical network, optical network component and communication system
KR100785436B1 (en) Wavelength division multiplexing passive optical network for convergence broadcasting service and communication service
CN102833206B (en) Polarization multiplexing band interpolation based OFDMA-PON (orthogonal frequency division multiple access-passive optical network) system
US20100021164A1 (en) Wdm pon rf/video broadcast overlay
US20110076018A1 (en) Improved Optical Access Network and Nodes
JP2010245987A (en) Optical/radio access system
US20070177873A1 (en) Hybrid passive optical network
WO2010064999A1 (en) Wavelength division multiplexed passive optical network
JP5896415B2 (en) Optical transceiver
JP2010114621A (en) Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu
JP5122498B2 (en) Optical signal transmission method, optical communication system, optical transmitter and optical receiver
Lam et al. Evolution of fiber access networks
Altabas et al. Passive optical networks: Introduction
JP4699413B2 (en) Wavelength multiplexer
JP2010114622A (en) Optical communication system, transmitter of optical subscriber unit, receiver of optical network unit, and method for transmitting outgoing signal of optical subscriber unit
JP5122499B2 (en) Optical signal transmission method, optical communication system, optical transmitter and optical receiver
JP2010114623A (en) Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu
JP2014014028A (en) Optical communication method, optical transmitter, optical receiver, and optical communication system
Sekkiou et al. Bidirectional WDM-OOFDM access network based on a sliceable optical transceiver with colorless ONUs
WO2007135407A1 (en) A method and apparatus for combining electrical signals
Zhou et al. A novel multi-band OFDMA-PON architecture using signal-to-signal beat interference cancellation receivers based on balanced detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911