JPS602727B2 - Method for producing intermetallic superconductor - Google Patents

Method for producing intermetallic superconductor

Info

Publication number
JPS602727B2
JPS602727B2 JP50114982A JP11498275A JPS602727B2 JP S602727 B2 JPS602727 B2 JP S602727B2 JP 50114982 A JP50114982 A JP 50114982A JP 11498275 A JP11498275 A JP 11498275A JP S602727 B2 JPS602727 B2 JP S602727B2
Authority
JP
Japan
Prior art keywords
filament
superconductor
amorphous
superconducting
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50114982A
Other languages
Japanese (ja)
Other versions
JPS5238895A (en
Inventor
英純 森合
祐治 石上
賢吉 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP50114982A priority Critical patent/JPS602727B2/en
Publication of JPS5238895A publication Critical patent/JPS5238895A/en
Publication of JPS602727B2 publication Critical patent/JPS602727B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 この発明はN広Sn、V3Ga、N公W等の非常に脆く
加工性のない金属間化合物系超電導体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing intermetallic superconductors such as N-based Sn, V3Ga, N-based W, etc., which are extremely brittle and have no workability.

N広Sn等の金属閥化合物系超電導体はNb−Ti、N
b−Ti−Zn等の合金系超電導体に較べて臨界温度、
臨界磁場が高い異に高磁場超電導磁石用として製造法の
開発が進められている。
Metallic compound-based superconductors such as Nb-Ti and N
critical temperature compared to alloy superconductors such as b-Ti-Zn,
Development of manufacturing methods for use in unusually high-field superconducting magnets with high critical magnetic fields is underway.

しかし乍らその腕この為に製造上、使用上の制約が多い
。従来から行なわれていた方法はN&Snを例にとれば
、Nb又はNb合金をベースとする方法が用いられ、1
つはテープ状のNb上にSnをメッキした後100ぴ○
以上で熱処理を行なって約1一程度の薄いNbぶn層を
生成させる方法、もう一つはCu−Sn合金中にNbの
紬線を多数本埋め込み600〜800℃で熱処理を行な
ってNb線表面に1〆程度のNQSnを生成させる方法
である。何れも絶縁処理、コイル成形時の曲げによる超
電導特性の努下をNなSn層を薄くすることによつて避
けようとする考えに基いている。
However, because of this skill, there are many restrictions in manufacturing and usage. Taking N&Sn as an example, the conventional method used is a method based on Nb or Nb alloy.
One is after plating Sn on tape-shaped Nb.
One method is to perform heat treatment as described above to form a thin Nb layer with a thickness of approximately 11, and the other method is to embed a large number of Nb pongee wires in a Cu-Sn alloy and perform heat treatment at 600 to 800 degrees Celsius to form Nb wires. This is a method of generating NQSn of about 1 on the surface. All of these methods are based on the idea that by making the N/Sn layer thinner, efforts to improve the superconducting properties due to insulation treatment and bending during coil forming can be avoided.

しかし乍ら、化合物層が薄いため電流容量が大きくとれ
ず、曲げによる特性劣下はある程度見込まねばならない
。しかもCu−Sn合金マトリックスを用いる場合超電
導破壊を生じた時に電流バイパスとしての役をなさない
等問題が多い。これに対してコイル成形後に熱処理を施
して化合物層を生成させ、曲げによる特性劣下を避ける
方法も提案されているが、化合物生成には600〜80
0qoで数岬時間の加熱が必要であり、それに耐える絶
縁材は現在は未だ開発されていないのが実情である。
However, since the compound layer is thin, a large current capacity cannot be obtained, and a certain degree of deterioration in characteristics due to bending must be expected. Moreover, when a Cu--Sn alloy matrix is used, there are many problems such as that it does not function as a current bypass when superconducting breakdown occurs. On the other hand, a method has been proposed in which heat treatment is performed after coil forming to generate a compound layer to avoid deterioration of properties due to bending.
Heating for several hours is required at 0qo, and the reality is that no insulating material that can withstand this has yet been developed.

以上のような諸問題の起因は、NらSnのごとき金属間
化合物が本質的に脆性の大きい材料であることに由来す
るものであり、もしN公Snを生成するまでの製造過程
において十分な冷間加工を加えることができるようにす
ることができ、最終的にNQSnを低温で生成せしめ得
れば、かかる問題点の解消することはいうまでもない。
The causes of the above-mentioned problems stem from the fact that intermetallic compounds such as N and Sn are essentially brittle materials. Needless to say, this problem can be solved if cold working can be applied and NQSn can be finally produced at a low temperature.

この発明は以上のような知見に立ってなされたものでN
広Sn、V30e、N公Q等の金属間化合物系超電導材
の製造に当り、中途いったんこれを非結晶質化すなわち
いわゆるアモルファス化し、アモルファス合金の大きな
特質である冷間加工性を利用してこれを所要形状に加工
し、最終的にこれを熱処理して結晶化することにより超
電導特性を有する金属間化合物に生成せしめようとする
ものである。通常の金属や合金は常温では原子配列に一
定の規則性を有する結晶としての構造を有している。例
えばNQSnは8一W型と呼ばれる結晶構造よりなり、
Nbの立方晶の面心部にSnの原子が規則的に置換され
た結晶構造よりなる。このような結晶構造のために脆性
が強く、冷間加工が困難となり、前記のような製造上の
問題点が付随してくるのである。しかして、上記のよう
に結晶性を有する金属や合金も、高温の溶融状態ではガ
ラス状の非晶質であり、原子配列はランダムである。
This invention was made based on the above knowledge.N
When manufacturing intermetallic compound-based superconducting materials such as Sn, V30e, and N-Q, they are made into non-crystalline materials, that is, so-called amorphous materials, and are made using cold workability, which is a major characteristic of amorphous alloys. The idea is to form an intermetallic compound with superconducting properties by processing it into a desired shape and finally heat-treating and crystallizing it. Ordinary metals and alloys have a crystalline structure with a certain regularity in atomic arrangement at room temperature. For example, NQSn has a crystal structure called 81W type,
It has a crystal structure in which Sn atoms are regularly substituted in the face-centered part of a cubic Nb crystal. This crystal structure makes it highly brittle and difficult to cold work, resulting in the manufacturing problems mentioned above. However, even metals and alloys that have crystallinity as described above are glass-like amorphous in a high-temperature molten state, and the atomic arrangement is random.

アモルファス合金は「 この溶融状態の非晶質の原子配
列のまま急速度に冷却し「結晶化する時間を与えず常温
に持ち末つたものであり、原子配列のランダム性の故に
袷間加工に際して脆性が大中に低下し、これに容易に袷
間加工をほどこすことができる。いったん非晶質化され
たアモルファス合金はLこれを低温で再加熱すると原子
移動が起り、それぞれの原子が熱力学的にもっとも安定
した位置に再配列を開始して、いわゆる結晶化が起る。
この結晶化温度は300〜400oCであり、例えば7
0%Nb−30%Snの組成からなるアモルファス合金
は、この結晶化温度において、非晶質状態から結晶状態
となり、この組成の原子群にとってもっとも安定した8
−W型の金属間化合物を生成し、N広Snが生成されて
超電導特性を発揮するようになる。この結晶化温度は先
に説明した拡散生成によるNCSnの生成温度600〜
100000に比べれば格段に低温である。上記アモル
ファス合金を製造するには真空蒸着法や電着法、無電解
〆ツキ法などがあるが、工業的な製造にはいずれもなじ
まない。
Amorphous alloys are "rapidly cooled in the amorphous atomic arrangement of this molten state and kept at room temperature without giving time for crystallization, and due to the randomness of the atomic arrangement, they become brittle when processed between sleeves." The amorphous alloy is made into an amorphous alloy.When the amorphous alloy is reheated at a low temperature, atomic movement occurs, and each atom changes according to thermodynamics. They begin to rearrange to the most stable position, and so-called crystallization occurs.
This crystallization temperature is 300-400oC, for example 7
An amorphous alloy with a composition of 0%Nb-30%Sn changes from an amorphous state to a crystalline state at this crystallization temperature, and is the most stable atomic group for this composition.
- A W-type intermetallic compound is generated, and N-rich Sn is generated, which exhibits superconducting properties. This crystallization temperature ranges from 600 to the formation temperature of NCSn due to diffusion formation as explained earlier.
This is much lower than 100,000. There are vacuum evaporation methods, electrodeposition methods, electroless finishing methods, and other methods for producing the above-mentioned amorphous alloys, but none of them are suitable for industrial production.

工業的には、この発明が採用している液体急袷法が適し
ている。
Industrially, the liquid lining method adopted by this invention is suitable.

以下にN広Snの場合の実施例に基き、この発明につい
て具体的に説明する。
The present invention will be specifically described below based on an example in the case of N wide Sn.

N広Snを生成する成分比は重量比においてほぼ70%
Nb−30%Snである。
The component ratio that generates N-wide Sn is approximately 70% by weight.
It is Nb-30%Sn.

この組成よりなる原材料は、高周波浮遊溶解法により溶
解される。図は単にフィラメント製造の様子を示すため
のものであるため、省略図として示されているが、容器
2については、パイプ状を有し、上方に細長い形状より
なる。かかる容器は石英ガラスよりなり、底部には約0
.2側径の同じ石英ガラスよりなるノズル3があり、上
部は関口されて原材料の投入ならびに不活性ガスの吹入
がここより行なわれる。パイプ状容器の周囲に高周波コ
イルが巻かれ、高周波電流が通電される。すると、容器
内の原材料は電磁力により空間に保持されコイルの間に
浮遊し、かつ高周波電流による譲導加熱を受けt容器内
において浮遊したまま溶解される。溶解が完了したら高
周波電流を切る。すると電磁力が消失し、溶融状態の溶
湯4が容器の底部に落下する。容器内には不活性ガスが
吹き入れられているから「 この不活性ガスによる内圧
が発生しており底部に落下した溶湯4はこの内圧によっ
て直ちにノズル3より吹き出され、銅製の回転筒亀の内
面にいきおいよく噴射された瞬間に凝固する。このとき
の冷却速度は1ぴ℃′secであり「凝固した原材料は
原子の拡散するいとまがなく溶融状態の非晶賞のままの
アモルファス合金として生成される。なお、上記におけ
る銅製回転筒の内径は300肋「その回転速度は300
机′minである。回転髄1については冷却処置しても
よいが、実用上常温のままで問題はない。このようにし
て回転筒1の内面に噴射された原材料は、中ほぼ4脚前
後厚さほぼ20ム程度のフィラメント5に凝固しし凝固
すると同時に回転筒1の内面より自ら剥離し、アモルフ
ァス合金よりなる細いコイル状フィラメント5として形
成される。
The raw material having this composition is melted by high frequency flotation melting method. Although the figure is shown as an omitted view because it merely shows the state of filament production, the container 2 has a pipe shape and is elongated upward. Such containers are made of quartz glass and have approximately 0.0
.. There is a nozzle 3 made of quartz glass with the same diameter on two sides, and the upper part is a gateway through which raw materials are introduced and inert gas is blown. A high-frequency coil is wound around the pipe-shaped container, and a high-frequency current is applied. Then, the raw material in the container is held in space by electromagnetic force and floats between the coils, and is melted while floating in the container by being subjected to conductive heating by the high-frequency current. When melting is complete, turn off the high frequency current. Then, the electromagnetic force disappears, and the molten metal 4 falls to the bottom of the container. Since an inert gas is blown into the container, an internal pressure is generated by this inert gas, and the molten metal 4 that has fallen to the bottom is immediately blown out from the nozzle 3 due to this internal pressure, and the inner surface of the rotating copper cylinder turtle. It solidifies at the moment it is injected quickly and smoothly.The cooling rate at this time is 1 pi°C'sec, and the solidified raw material has no time for atoms to diffuse, forming an amorphous alloy that remains in the molten state. In addition, the inner diameter of the copper rotating cylinder in the above is 300 mm, and the rotation speed is 300 mm.
The desk is min. Although the rotating spinal cord 1 may be subjected to cooling treatment, there is no problem in practical use if it remains at room temperature. The raw material injected onto the inner surface of the rotary tube 1 in this way solidifies into a filament 5 with a thickness of about 20 mm in the front and back of the four legs, and at the same time as it solidifies, it peels off by itself from the inner surface of the rotary tube 1, forming an amorphous alloy. It is formed as a thin coiled filament 5.

このようなフィラメント5はすでに説明したようなアモ
ルファス合金の性質を有し、容易に冷間加工をほどこす
ことができる。
Such a filament 5 has the properties of an amorphous alloy as described above, and can be easily subjected to cold working.

このようなフィラメント5は、安定化材としての高純度
鋼やアルミとともに冷間加工により所要線材に加工され
、絶縁被覆が示されてコイルに成形される。
Such a filament 5 is processed into a required wire material by cold working together with high-purity steel or aluminum as a stabilizing material, coated with insulation, and formed into a coil.

このままではNb−Sn合金は未だアモルファス合金で
あるから、所定の超電導特性は有しない。
As it is, the Nb-Sn alloy is still an amorphous alloy, and therefore does not have predetermined superconducting properties.

この後コイル成形体を熱処理して内在するフィラメント
を結晶化させ、フィラメントに超露特・性をもたせるこ
とによってNb3Snによる超電導磁石が得られるが、
この熱処理はいわゆる結晶化温度への加熱であり、すで
に説明したように従来の拡散反応方法に比べて遥かに低
温でよく、従って施された耐熱絶縁材を劣化させること
はなく、安全化金属としての節の純度を下げるようなこ
ともなし・。勿論、銅中に存在するNb・Snのフィラ
メントはこの熱処理によってその大部分が超電導化合物
(N広Sn)となるため、電流容量が大きくとれ、埋設
する量によりその電流容量を容易に調節することもでき
る。このようなことは超電導体がN広Snの場合に限ら
ず他の化合物系超電導体例えばV3G、Nb3Q等にも
同様である。
After this, a superconducting magnet made of Nb3Sn can be obtained by heat-treating the coil molded body to crystallize the filament contained therein and giving the filament super-conducting properties.
This heat treatment is heating to the so-called crystallization temperature, and as explained above, it can be used at a much lower temperature than the conventional diffusion reaction method, so it does not deteriorate the applied heat-resistant insulation material and can be used as a safety metal. There is no reduction in the purity of the knots. Of course, most of the Nb/Sn filaments present in the copper become superconducting compounds (N-Sn) through this heat treatment, so the current capacity can be increased, and the current capacity can be easily adjusted depending on the amount buried. You can also do it. This is not limited to the case where the superconductor is N-rich Sn, but also applies to other compound-based superconductors such as V3G and Nb3Q.

以上の説明から明らかなようにこの発明は安定化金属中
に埋設されている超電導フィラメントとして非結晶質な
ものを用いることによって加工性を高め従来の絶縁材の
使用を可能にすると共に高純度な金属で安定化された化
合物超電導コイルの提供を可能とし、更にフィラメント
の量による電流容量の調節をも可能としたもので、製品
のコスト低減化、特性安定化等その産業上の利用価値は
極めて高いものである。
As is clear from the above description, the present invention improves workability by using an amorphous superconducting filament embedded in a stabilizing metal, making it possible to use conventional insulating materials and achieving high purity. This makes it possible to provide a compound superconducting coil stabilized with metal, and it also makes it possible to adjust the current capacity by adjusting the amount of filament, and its industrial value is extremely high, such as reducing the cost of the product and stabilizing its characteristics. It's expensive.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明に係る方法に適用されるフィラメントの製
法の例を示す説明図である。 1:回転筒、2:容器、3:ノズル、4:溶湯、5:フ
ィラメント。
The figure is an explanatory view showing an example of a filament manufacturing method applied to the method according to the present invention. 1: rotating cylinder, 2: container, 3: nozzle, 4: molten metal, 5: filament.

Claims (1)

【特許請求の範囲】[Claims] 1 超電導性の金属間化合物を構成する金属の細い混合
溶湯流を急速に冷却して連続する細い非結晶質なフイラ
メントを得た後、このフイラメントを安定化金属及び絶
縁材と組合せて所定の形状に成形し、しかる後その成形
体を熱処理して前記フイラメントに結晶質超電導体を生
成させることを特徴とする金属間化合物系超電導体の製
造方法。
1 A thin mixed molten stream of metals constituting a superconducting intermetallic compound is rapidly cooled to obtain a continuous thin amorphous filament, which is then combined with a stabilizing metal and an insulating material to form a predetermined shape. 1. A method for manufacturing an intermetallic superconductor, which comprises molding the filament into a crystalline superconductor, and then heat-treating the molded body to form a crystalline superconductor in the filament.
JP50114982A 1975-09-23 1975-09-23 Method for producing intermetallic superconductor Expired JPS602727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50114982A JPS602727B2 (en) 1975-09-23 1975-09-23 Method for producing intermetallic superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50114982A JPS602727B2 (en) 1975-09-23 1975-09-23 Method for producing intermetallic superconductor

Publications (2)

Publication Number Publication Date
JPS5238895A JPS5238895A (en) 1977-03-25
JPS602727B2 true JPS602727B2 (en) 1985-01-23

Family

ID=14651410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50114982A Expired JPS602727B2 (en) 1975-09-23 1975-09-23 Method for producing intermetallic superconductor

Country Status (1)

Country Link
JP (1) JPS602727B2 (en)

Also Published As

Publication number Publication date
JPS5238895A (en) 1977-03-25

Similar Documents

Publication Publication Date Title
JPH01100003A (en) Production fo superconductive oxide and superconductive oxide/metal composite material
US6372054B1 (en) Process for producing ultrafine multifilamentary Nb3(A1,Ge) or Nb3(A1,Si) superconducting wire
US5304534A (en) Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates
USRE32178E (en) Process for producing compound based superconductor wire
Takeuchi et al. Effects of additive elements on continuous ultra-fine Nb/sub 3/Al MF superconductor
JPH04245113A (en) Manufacture of oxide superconductive material
US4341572A (en) Method for producing Nb3 Sn superconductors
JPS602727B2 (en) Method for producing intermetallic superconductor
US6376099B1 (en) CU-containing NB3A1 multifilamentary superconductive wire and process for producing the same
US5229357A (en) Method of producing superconducting ceramic wire and product
WO2006129861A1 (en) Nb3Sn SUPERCONDUCTING WIRE, PROCESS FOR PRODUCING THE SAME, AND SINGLE-CORE COMPOSITE WIRE USED IN PRODUCTION OF Nb3Sn SUPERCONDUCTING WIRE
JPS63225413A (en) Manufacture of compound superconductive wire
EP0543399A1 (en) Compound superconducting wire and method of producing the same
JPH01143744A (en) Production of oxide superconducting fine wire
JP3607940B2 (en) Manufacturing method of oxide superconductor
JPH05301797A (en) Production of oxide high-temperature superconductor
JP2004319256A (en) Silver tape, its manufacturing method, and superconducting wire
JPH05101719A (en) Oxide superconductive wire rod and manufacture thereof
JPH0471279A (en) Manufacture of oxide superconducting material
JPH04292452A (en) Production of oxide superconductor and wire
JPH02158012A (en) Manufacture of oxide superconductive liner body
GB2374557A (en) Producing superconductors by epitaxial growth
JPS6239219B2 (en)
JPH0656426A (en) Thermal treatment of oxide superconductor wire
JPH0419917A (en) Manufacture of compound superconductive wire