JPH0471279A - Manufacture of oxide superconducting material - Google Patents

Manufacture of oxide superconducting material

Info

Publication number
JPH0471279A
JPH0471279A JP2185081A JP18508190A JPH0471279A JP H0471279 A JPH0471279 A JP H0471279A JP 2185081 A JP2185081 A JP 2185081A JP 18508190 A JP18508190 A JP 18508190A JP H0471279 A JPH0471279 A JP H0471279A
Authority
JP
Japan
Prior art keywords
amorphous alloy
superconducting material
oxide superconducting
wire
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2185081A
Other languages
Japanese (ja)
Inventor
Hisashi Otani
久 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2185081A priority Critical patent/JPH0471279A/en
Publication of JPH0471279A publication Critical patent/JPH0471279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To improve the freedom in profile by a method wherein the title manufacture is composed of the process bringing about the amorphous alloy state comprising the stoichiometric composition of metallic elements comprising the objective oxide superconducting material and the process oxidizing the amorphous alloy. CONSTITUTION:In order to manufacture an amorphous alloy out of yttrium base superconducting material (Y1Ba2Cu3O7-y) by single rolling process, a metallic powder mixed in the ratio of Y:Ba:Cu=1:2:3 is fed into a crucible 1 to be heated and melted down using high-frequency coils 2 and then high pressure argon gas is led into the crucible l by a pressure regulator 5 to spray a melted solution over a roll 4 from a stopper nozzle 3. This roll 4 is structured to be driven at high speed so that cooling water may be fed to the inside. The ribbon type amorphous alloy is processed while being pressurized in vacuum atmosphere at relatively low temperature to relieve the structure and successively this film is heat-treated in oxygen atmosphere to form a superconductor layer. Through these procedures, the superconducting layer can take the specific shape while keeping the superconductivity.

Description

【発明の詳細な説明】 (a)発明の利用分野 本発明は酸化物超伝導材料の作成方法に関する。[Detailed description of the invention] (a) Field of application of the invention The present invention relates to a method for making oxide superconducting materials.

(b)従来の技術 従来の酸化物超伝導材料の作成方法は、それか酸化物で
あるため他のセラミクスと同様の手段で行なわれてきた
。その方法とは基本的には酸化物や炭酸塩の原料粉末を
混合し焼成するというものであった。混合法としては乳
鉢等を用いた方法が最も一般的で、より均一性を高める
ために共沈法等が行われている。その後、より良質な膜
等を作成するために半導体作成のプロセスが導入された
(b) Prior Art Conventional methods for producing oxide superconducting materials, since they are oxides, have been carried out in the same manner as for other ceramics. The method basically involved mixing raw powders of oxides and carbonates and firing them. The most common mixing method is a method using a mortar or the like, and a coprecipitation method is used to further improve uniformity. Subsequently, semiconductor manufacturing processes were introduced to create better quality films.

その方法とはCVD法やスパッタ法等であり現在もこれ
らの方法が主流となっている。また、超伝導マグネット
作成等のために重要と考えられる線材については、シー
ス材の内部に粉末を詰め、線引きした後に焼成するとい
う方法が現在量も一般的に行われている。
The methods include the CVD method and the sputtering method, and these methods are still the mainstream. Furthermore, for wire rods that are considered important for producing superconducting magnets, etc., the current common method is to fill powder inside a sheath material, draw the wire, and then fire it.

(c)従来の技術の問題点 物質が材料として使用に耐えうるためには第一に所望の
形状を持ちその形状で十分な機能を有することが必要で
あり、次いでコストが低いことか必要であるか、従来の
作成法においてはそれが十分に達成出来ているとは言い
がたい現状である。
(c) Problems with conventional technology In order for a substance to be usable as a material, it must first have a desired shape and have sufficient functionality in that shape, and secondly, it must be low cost or necessary. At present, it is difficult to say that this has been fully achieved using conventional production methods.

粉末法においては複雑な形状を持ちつつ超伝導性も十分
に機能するようなものを得ることは非常に困難であり、
また仮に得られたとしてもそれらは結晶の配向性が悪い
上に粒界等の制御か難しく信頼性の低いものである。C
VD法等の薄膜の作製においても、基板上にエピタキシ
ャルに成長させた膜は確かに実用上十分な機能を持ちつ
つあるか、形状の自由度が低い上に、出発原料や装置の
価格が高く、成膜に時間かかかる等実用上コストが高い
という問題がある。線材については現状でも形状の自由
度は確保されているものの、シース材として用いられて
いるのは銀がほとんどであり、やはりコストに問題かあ
り、また表面が非超伝導材料で覆われていることから高
周波等の様な表面電流として流れるものには向かないと
いう問題もある。
Using the powder method, it is extremely difficult to obtain materials that have a complex shape and still have sufficient superconductivity.
Furthermore, even if they were obtained, they would have poor crystal orientation and would be difficult to control grain boundaries, resulting in low reliability. C
Even in the production of thin films using the VD method, films grown epitaxially on substrates do not seem to have sufficient functionality for practical use.They have a low degree of freedom in shape, and the starting materials and equipment are expensive. However, there are problems in that it takes a long time to form a film and is expensive in practice. Although wire rods still have a degree of freedom in shape, most of the sheath material used is silver, which poses a cost problem, and the surface is covered with a non-superconducting material. Therefore, there is a problem that it is not suitable for things that flow as surface current, such as high frequency waves.

(d)発明の目的 本発明は実用上十分な超伝導性を確保しつつ所望の形状
を持たせることを可能とする酸化物超伝導材料の作成方
法の開発をその目的とする。また、その作成方法におい
てCVD法等の様にコストのかかる方法ではなく、産業
上実用に耐えられる安価な方法で酸化物超伝導材料を作
製することを目的とする。
(d) Purpose of the Invention The purpose of the present invention is to develop a method for producing an oxide superconducting material that allows it to have a desired shape while ensuring practically sufficient superconductivity. Another object of the present invention is to produce an oxide superconducting material using an inexpensive method that can withstand industrial practical use, rather than using a costly method such as the CVD method.

(e)発明の構成 本発明は、酸化物超伝導材料を作成する工程において、
目的とする酸化物超伝導材料を構成する金属元素をその
量論比含む非晶質合金状態をとる工程、及び、その非晶
質合金を酸化する工程を有することを特徴とする。本発
明における非晶質とは、長距離秩序を有する結晶とは異
なり、短距離秩序及び中距離秩序のみを有するという意
味で使用しており、そのミクロな構造が微結晶であるか
分相であるか等は問わない。
(e) Structure of the invention The present invention provides, in the process of creating an oxide superconducting material,
It is characterized by comprising a step of taking an amorphous alloy state containing metal elements constituting the target oxide superconducting material in a stoichiometric ratio, and a step of oxidizing the amorphous alloy. In the present invention, amorphous is used to mean that it has only short-range order and medium-range order, unlike crystals that have long-range order, and its microstructure is microcrystalline or phase-split. I don't care if there is.

酸化物超伝導材料の作成工程において非晶質工程を経る
ことはそれほど目新しくないか、従来行なわれてきたの
は酸化物の非晶質工程であり、それらは結晶の配向性を
上げることかその主たる目的であった。しかし本発明に
おける非晶質工程は構成金属の非晶質工程であり、その
目的は金属が持つ塑性の大きさを利用して所望の形状を
与えることであることが本質的に異なる。また合金を結
晶化させず非晶質化とする理由として次の様なことが挙
げられる。まず超伝導材料の様に多元系の金属元素を完
全に固溶した状態で含む合金を作製することは非常に困
難であるのに比べ、非晶質であればそれらかい(っかに
分相していてもマクロに見れば均一な材料が得られるこ
と。次に非晶質化させることにより塑性が増大すること
。また−度結晶化させてしまった物質は安定であるため
元の結晶の結合を切って再結晶させる際に大きなエネル
ギーを必要とするのに対し、非晶質状態は準安定状態で
エネルギー的に高い状態であるため、酸化処理によって
結晶化させる際に容易であるという利点もある。本発明
における非晶質工程は、成分金属の溶融、急冷過程を有
すればその成性は問わない。例えば金属粉末を量論比混
合し、ベレット状に成形した原料をターゲットとしてス
パッタ法等によっても作成出来るし、一般的なロール法
による急冷等でも作成出来る。また、その非晶質合金を
酸化する工程は適当な温度、酸素雰囲気中で、比較的短
時間の熱処理によって超伝導性を持たせることか可能で
あり、他の酸化物を焼成する場合と同様に酸化中に電流
を流したり(特開昭63−233068)、温度勾配を
有する炉て熱処理する(特願平 2−25526)こと
により結晶の方位を揃え、その特性を向上させることが
可能である。またこの酸化させる工程において、内部に
金属の部分を残すことにより構造的安定性、信頼性の向
上か可能である。
The use of an amorphous process in the production process of oxide superconducting materials may not be that new, or the amorphous process of oxides has traditionally been carried out, and they are designed to improve the crystal orientation. That was the main purpose. However, the amorphous process in the present invention is an amorphous process for the constituent metals, and its purpose is essentially different in that the purpose is to provide a desired shape by utilizing the degree of plasticity possessed by the metal. Further, the following reasons can be cited for making the alloy amorphous instead of crystallizing it. First of all, it is extremely difficult to create alloys containing multi-component metal elements in complete solid solution, such as superconducting materials. Even if the material is crystallized, it is possible to obtain a uniform material from a macroscopic perspective.Next, by making it amorphous, the plasticity increases.In addition, the material that has been crystallized is stable, so the original crystal is While cutting bonds and recrystallizing requires a large amount of energy, the amorphous state is a metastable state with high energy, so it has the advantage of being easy to crystallize through oxidation treatment. The amorphous process in the present invention does not matter as long as it involves melting and quenching the component metals.For example, metal powders are mixed in a stoichiometric ratio, and the raw material formed into a pellet is used as a target for sputtering. The amorphous alloy can be made by quenching using a general roll method, etc. In addition, the process of oxidizing the amorphous alloy is performed by heat treatment at an appropriate temperature in an oxygen atmosphere for a relatively short period of time to make it superconducting. As in the case of firing other oxides, it is possible to pass an electric current through the oxidation process (Japanese Patent Application Laid-Open No. 63-233068), or heat it in a furnace with a temperature gradient (Japanese Patent Application No. -25526), it is possible to align the crystal orientation and improve its properties.Also, by leaving metal parts inside in this oxidation process, it is possible to improve structural stability and reliability. be.

以下に実施例を示し、より詳細に本発明を説明する。EXAMPLES The present invention will be explained in more detail with reference to Examples below.

(f)実施例1 イツトリウム系の超伝導物質(YIBa2Cu30□−
7)を超伝導材料として選び、単ロール法によって非晶
質合金を作成した。非晶質合金を作成する際に用いた装
置の概略を第1図に示す。Y:Ba:Cu=1:2:3
として混合した金属粉末をアルミナ製のルツボ1に投入
し、高周波コイル2によって1500°C以上に加熱し
溶融させた。溶融液の温度は熱電対9によって測定した
。金属が完全に溶融した後、圧力制御器5によって高圧
のアルゴンガスをルツボ1の内部に導入し、ストッパノ
ズル3よりロール4に溶融液を吹きつけた。このストッ
パノズル3もルツボlと同様にアルミナ製であり、ノズ
ルの孔径は0.5mmの円形をしていた。ロール4は直
径250 t+m、厚さ20mmで800Orpmで高
速回転し、内部に冷却水がポンプ7より流される構造と
なっている。この酸洗における冷却速度は約10’に/
seeであり、溶融液が結晶化することなく非晶質合金
を作成することが出来た。尚、上記の全ての工程は酸化
を防ぐために真空容器7の内部を真空ポンプ8によって
10−”Torr以下まで内部の空気を真空引きした後
に、Ar等の不活性ガスを充填した状態で行なった。得
られた試料は幅が1〜2鵬、厚さが数10μmのリボン
状であり、XRD測定によって非晶質であることが確認
された。
(f) Example 1 Yttrium-based superconducting material (YIBa2Cu30□-
7) was selected as a superconducting material, and an amorphous alloy was created by a single roll method. Figure 1 shows an outline of the apparatus used to create the amorphous alloy. Y:Ba:Cu=1:2:3
The mixed metal powder was put into an alumina crucible 1, and heated to 1500°C or higher by a high frequency coil 2 to melt it. The temperature of the melt was measured by a thermocouple 9. After the metal was completely melted, high-pressure argon gas was introduced into the crucible 1 by the pressure controller 5, and the molten liquid was sprayed onto the roll 4 from the stopper nozzle 3. This stopper nozzle 3 was also made of alumina like the crucible 1, and the hole diameter of the nozzle was circular with a diameter of 0.5 mm. The roll 4 has a diameter of 250 t+m and a thickness of 20 mm, rotates at a high speed of 800 rpm, and has a structure in which cooling water is flowed inside from a pump 7. The cooling rate in this pickling is approximately 10'/
See, it was possible to create an amorphous alloy without crystallizing the melt. All of the above steps were performed in a state in which the inside of the vacuum container 7 was evacuated to 10-'' Torr or less using a vacuum pump 8 to prevent oxidation, and then filled with an inert gas such as Ar. The obtained sample had a ribbon shape with a width of 1 to 2 mm and a thickness of several tens of μm, and was confirmed to be amorphous by XRD measurement.

上記の方法によって得られたリボン状の非晶質合金を比
較的低温、例えば400°Cにおいて真空中で圧力をか
けながら処理することにより構造緩和を施し、厚さ約5
0μm、2t+m角の膜を得た。この膜を酸素雰囲気中
で700℃〜900℃、例えば800”C,30m1n
〜3hr熱処理することにより超伝導体層を形成するこ
とが出来た。臨界温度T、は約90にで再現性は良かっ
た。XRD測定によって、この膜は一部ab軸配向の部
分が見られるものの、はぼC軸配向した膜であることが
わかった。この膜を切断し、断面をSEM観察してみる
と、酸化処理が30m1nのものについては内部に金属
部分が残っており第2図の様な構造となっていたが、酸
化処理の時間を長くするとこの金属の領域は小さくなり
やがて完全に内部まで酸化されることがわかった。
The ribbon-shaped amorphous alloy obtained by the above method is subjected to structural relaxation by processing it at a relatively low temperature, for example, 400°C while applying pressure in a vacuum, and the thickness is about 5.
A film of 0 μm and 2t+m square was obtained. This film is heated at 700°C to 900°C in an oxygen atmosphere, e.g. 800"C, 30m1n.
A superconductor layer could be formed by heat treatment for ~3 hours. The critical temperature T was about 90, and the reproducibility was good. XRD measurement revealed that this film was mostly oriented along the C axis, although some portions were oriented along the ab axis. When this film was cut and the cross section was observed using a SEM, it was found that the metal part remained inside the film that had been oxidized to 30 m1n, resulting in a structure like that shown in Figure 2, but the oxidation process took a long time. It was found that this metal region became smaller and eventually became completely oxidized to the inside.

第2図において10は酸化処理によって超伝導体層とな
った部分を示し11はまだ酸化されずに残っている金属
部分を示す。内部に金属部分が残った試料について、酸
化物層を研磨し、内部の金属部分のXRD測定をした結
果、この金属部分は既に結晶化していることがわかった
In FIG. 2, numeral 10 indicates a portion that has become a superconductor layer through oxidation treatment, and numeral 11 indicates a metal portion that remains unoxidized. As for the sample in which the metal part remained inside, the oxide layer was polished and the internal metal part was subjected to XRD measurement. As a result, it was found that this metal part had already been crystallized.

(g)実施例2 実施例1と同様の方法によって得たリボン状の非晶質合
金を比較的低温、例えば400℃において真空中で圧力
をかけながら処理することにより構造緩和を施し、その
後線引きすることによって直径が約50μmの線材を得
た。この線材を第3図に示す様な装置で酸化を行った。
(g) Example 2 A ribbon-shaped amorphous alloy obtained by the same method as in Example 1 was subjected to structural relaxation by treatment at a relatively low temperature, for example, 400° C., while applying pressure in vacuum, and then wire-drawn. By doing this, a wire rod having a diameter of about 50 μm was obtained. This wire was oxidized using an apparatus as shown in FIG.

第4図に示す様な方法で、石英炉心管21中に非晶質合
金線材19をアルミナプレート20上に静置し、電気炉
12をモーターによって5 min/cmの一定速度で
動かし、線材全体の酸化を行った。アルミナプレート2
0は石英炉心管21と非晶質合金線材19との反応を防
ぐ為に使用した。電気炉12の温度は850℃で、マス
フローコントローラー16によって一定量の酸素を供給
しながら酸化を行った。その後温度が十分低くなってか
ら線材を注意深く取り出し抵抗率測定を行ったところ、
臨界温度Tcは約90にであった。XRD測定によって
、はぼC軸配向していることかわかった。内部にはわず
かながら金属が残っており、2重構造を有していること
が断面SEM観察より明らかとなった。0磁場において
臨界電流密度を測定した結果、約3XlO’A/cnf
程度のJcを有する線材であった。またこの線材は表面
が超伝導体層で囲まれているため、従来の銀シース材の
内部に超伝導体層が有るものより高周波を流した際の抵
抗は低かった。この線材の超伝導体層の一部に第5図に
示す様にレーザーを照射し酸素を抜くことにより非超伝
導層24を作製し、液体窒素中で抵抗率を測定したとこ
ろ、この線材の全抵抗は計算より求めた合金部分23の
抵抗値とほぼ等しいことが分かった。このことは合金部
分23にバイパス電流が流れることにより発熱を低く抑
え、他の超伝導体層への影響を小さくすることが可能な
ことを示すと考えられる。
In the method shown in FIG. 4, an amorphous alloy wire 19 is placed on an alumina plate 20 in a quartz furnace tube 21, and the electric furnace 12 is moved by a motor at a constant speed of 5 min/cm, so that the entire wire is heated. was oxidized. Alumina plate 2
0 was used to prevent reaction between the quartz furnace tube 21 and the amorphous alloy wire 19. The temperature of the electric furnace 12 was 850° C., and oxidation was performed while a constant amount of oxygen was supplied by the mass flow controller 16. After the temperature had cooled down enough, I carefully took out the wire and measured its resistivity.
The critical temperature Tc was approximately 90°C. It was found by XRD measurement that it was oriented along the C axis. A cross-sectional SEM observation revealed that a small amount of metal remained inside, and that it had a double structure. As a result of measuring the critical current density in 0 magnetic field, it is approximately 3XlO'A/cnf
The wire rod had a Jc of approximately Also, because the surface of this wire is surrounded by a superconductor layer, the resistance when high frequency waves are applied was lower than that of conventional silver sheath materials with a superconductor layer inside. As shown in FIG. 5, a part of the superconductor layer of this wire was irradiated with a laser to remove oxygen to create a non-superconducting layer 24, and the resistivity of this wire was measured in liquid nitrogen. It was found that the total resistance was approximately equal to the resistance value of the alloy portion 23 determined by calculation. This is considered to indicate that heat generation can be suppressed to a low level by allowing a bypass current to flow through the alloy portion 23, and the influence on other superconductor layers can be reduced.

(h)実施例3 実施例1と同様の方法によって得たリボン状の非晶質合
金を比較的低温、例えば400°Cにおいて真空中で圧
力をかけながら処理することにより構造緩和を施し、厚
さ約50μm、巾約2胴のリボン状の非晶質合金を作成
した。次に直径的100μmのハンダを前述のリボン状
非晶質合金を用いて巻き、その後線引きすることによっ
て直径か約50μmの線材を得た。その後上記の線材を
酸化して超伝導線材とした。酸化の条件及び酸化に使用
した装置は実施例2と同様である。尚、ハンダは融点か
低く上記の酸化工程において融解してしまうため、線材
の両端部分を残してその他の部分のみを酸化し、融けた
ハンダが流れ出ない様に注意した。
(h) Example 3 A ribbon-shaped amorphous alloy obtained by the same method as in Example 1 was treated at a relatively low temperature, for example 400°C, in a vacuum while applying pressure to relax the structure and reduce the thickness. A ribbon-shaped amorphous alloy with a length of about 50 μm and a width of about 2 cylinders was prepared. Next, solder having a diameter of 100 μm was wound using the aforementioned ribbon-shaped amorphous alloy, and then drawn to obtain a wire rod having a diameter of approximately 50 μm. Thereafter, the above wire was oxidized to obtain a superconducting wire. The oxidation conditions and the equipment used for oxidation were the same as in Example 2. Note that since solder has a low melting point and will melt during the above oxidation process, only the other parts were oxidized, leaving both ends of the wire, and care was taken to prevent the melted solder from flowing out.

こうして得られた超伝導線材の構造を第6図に示す。酸
化の時間が短くまだ合金部分か残っている線材(第6図
のa)は臨界温度Tcが約90にの超伝導性を示したが
、酸化の時間か長く合金部分か残っていない線材(第6
図のb)は超伝導性を示さなかった。超伝導性を示した
線材を2本押しつけ、200℃で熱処理することにより
2本の線材を接合することが出来た。この接合した線材
はハンダの部分の抵抗は有するものの、抵抗値は十分に
低かった。
The structure of the superconducting wire thus obtained is shown in FIG. The wire rod in which the oxidation time was short and the alloy part still remained (a in Figure 6) showed superconductivity with a critical temperature Tc of about 90, but the wire rod in which the oxidation time was long and the alloy part still remained (a) showed superconductivity with a critical temperature Tc of about 90. 6th
Figure b) did not exhibit superconductivity. By pressing two wires that exhibited superconductivity and heat-treating them at 200°C, the two wires could be joined. Although this bonded wire had some resistance at the solder portion, the resistance value was sufficiently low.

(i)発明の効果 本発明の酸洗により、所望の形状の超伝導材料を作成す
ることが可能となった。またこの方法で膜を作成した場
合、非晶質合金の可塑性を利用して圧延等でたやすく膜
か得られ、その膜には他の基板を必要としないという利
点かあった。同様にこの方法で線材を作成した場合、非
晶質合金の可塑性を利用してたやすく線材か得られ、内
部に金属部分を残した場合には、外側が全て超伝導体で
囲まれているため高周波用の導線として特に有効であっ
た。また、ハンダ等と組み合わせて作成した場合には、
接合が容易て、十分実用的な線材か得られた。信頼性と
いう側面より考えても、一部超伝導性が失われた際に金
属部分に電流か流れることにより発熱を低くすることが
出来、実用上優れていると考えられる。
(i) Effects of the Invention The pickling of the present invention makes it possible to create a superconducting material in a desired shape. Furthermore, when a film is created using this method, the film can be easily obtained by rolling or the like by utilizing the plasticity of the amorphous alloy, and the film has the advantage that it does not require any other substrate. Similarly, if a wire is created using this method, the wire can be easily obtained by utilizing the plasticity of the amorphous alloy, and if the metal part is left inside, the outside is entirely surrounded by superconductor. Therefore, it was particularly effective as a conductor for high frequencies. Also, if it is made in combination with solder etc.
It was easy to join and a sufficiently practical wire rod was obtained. From the standpoint of reliability, this is considered to be excellent in practical terms, as it is possible to reduce heat generation by allowing current to flow through the metal parts when some superconductivity is lost.

以上より、本発明は超伝導材料の実用化において非常に
大きな効果を有すると考えられる。
From the above, it is believed that the present invention has a very large effect on the practical application of superconducting materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非晶質合金作成装置の概略を示すものである。 第2図は酸化処理後の非晶質合金の断面の様子を示した
ものである。 第3図は非晶質合金の線材の酸化処理装置の概要を示す
ものである。 第4図は酸化過程における非晶質合金線材の配置方法を
示したものである。 第5図は超伝導線材上にレーザー照射により非超伝導体
層を一部作製することを模式的に示した図である。 第6図はハンダ部分を内部に含む超伝導線材の構造を示
すものである。 1・・・アルミナルツボ 2・・・高周波コイル 3 ・ 4 ・ 5 ・ 6 ・ 7 ・ 8 ・ 9 ・ lO・ 11・ 12・ 13・ 14・ 15・ 16・ 17・ 18・ 19・ 20・ 21・ 22・ ストッパノズル ロール 圧力制御器 ポンプ(冷却水用) 真空容器 真空ポンプ 熱電対(溶融液測温用) 酸化物層(超伝導体層) 合金層(非超伝導体層) 電気炉 炉心管(石英製) 台車 レール マスフ0−コントローラー 真空ポンプ 土台 非晶質合金線材 アルミナプレート 炉心管(第3図の12と同一) 超伝導体層 合金層(非超伝導体層) レーザー照射部分(非超伝導体層) レーザー 酸化物層(超伝導体層) 合金層(非超伝導体層) ハンダ層 酸化物層(非超伝導体層) ハンダ層
FIG. 1 schematically shows an apparatus for producing an amorphous alloy. FIG. 2 shows a cross-sectional view of the amorphous alloy after oxidation treatment. FIG. 3 schematically shows an apparatus for oxidizing amorphous alloy wire. FIG. 4 shows a method of arranging the amorphous alloy wire during the oxidation process. FIG. 5 is a diagram schematically showing that a non-superconductor layer is partially formed on a superconducting wire by laser irradiation. FIG. 6 shows the structure of a superconducting wire containing a solder portion inside. 1... Aluminum pot 2... High frequency coil 3 ・ 4 ・ 5 ・ 6 ・ 7 ・ 8 ・ 9 ・ 1O・ 11 ・ 12 ・ 13 ・ 14 ・ 15 ・ 16 ・ 17 ・ 18 ・ 19 ・ 20 ・ 21 ・22. Stopper nozzle roll pressure controller pump (for cooling water) Vacuum vessel vacuum pump thermocouple (for melt temperature measurement) Oxide layer (superconductor layer) Alloy layer (non-superconductor layer) Electric furnace core tube ( Made of quartz) Bogie rail mass 0 - Controller Vacuum pump base Amorphous alloy wire alumina plate Reactor core tube (same as 12 in Figure 3) Superconductor layer Alloy layer (non-superconductor layer) Laser irradiated part (non-superconductor layer) Laser oxide layer (superconductor layer) Alloy layer (non-superconductor layer) Solder layer oxide layer (non-superconductor layer) Solder layer

Claims (1)

【特許請求の範囲】 1、酸化物超伝導材料を作成する工程において、目的と
する酸化物超伝導材料を構成する金属元素の量論組成よ
り成る非晶質合金状態をとる工程と、前述の非晶質合金
を酸化する工程を有することを特徴とする酸化物超伝導
材料の作成方法。 2、特許請求の範囲第1項において、目的とする酸化物
超伝導材料を構成する金属元素の量論組成より成る非晶
質合金を酸化する際に、内部に合金部分を残すことを特
徴とする酸化物超伝導材料の作成方法。 3、酸化物超伝導材料を作成する工程において、目的と
する酸化物超伝導材料を構成する金属元素の量論組成よ
り成る非晶質合金状態をとる工程と、前述の非晶質合金
を所定の形状に加工する工程と酸化する工程を有するこ
とを特徴とする酸化物超伝導材料の作成方法。 4、特許請求の範囲第3項において、目的とする酸化物
超伝導材料を構成する金属元素の量論組成より成る非晶
質合金を酸化する際に、内部に合金部分を残すことを特
徴とする酸化物超伝導材料の作成方法。
[Claims] 1. In the step of creating an oxide superconducting material, a step of taking an amorphous alloy state consisting of a stoichiometric composition of the metal elements constituting the target oxide superconducting material, and A method for producing an oxide superconducting material, comprising a step of oxidizing an amorphous alloy. 2. Claim 1 is characterized in that when an amorphous alloy consisting of a stoichiometric composition of metal elements constituting the target oxide superconducting material is oxidized, an alloy portion is left inside. A method for creating oxide superconducting materials. 3. In the step of creating an oxide superconducting material, there is a step of taking an amorphous alloy state consisting of a stoichiometric composition of the metal elements constituting the desired oxide superconducting material, and a step of forming the aforementioned amorphous alloy into a predetermined state. 1. A method for producing an oxide superconducting material, comprising a step of processing it into a shape and a step of oxidizing it. 4. Claim 3 is characterized in that when an amorphous alloy consisting of a stoichiometric composition of metal elements constituting the target oxide superconducting material is oxidized, an alloy portion is left inside. A method for creating oxide superconducting materials.
JP2185081A 1990-07-11 1990-07-11 Manufacture of oxide superconducting material Pending JPH0471279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2185081A JPH0471279A (en) 1990-07-11 1990-07-11 Manufacture of oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2185081A JPH0471279A (en) 1990-07-11 1990-07-11 Manufacture of oxide superconducting material

Publications (1)

Publication Number Publication Date
JPH0471279A true JPH0471279A (en) 1992-03-05

Family

ID=16164492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2185081A Pending JPH0471279A (en) 1990-07-11 1990-07-11 Manufacture of oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH0471279A (en)

Similar Documents

Publication Publication Date Title
JPH113620A (en) Oxide superconducting wire and manufacture thereof
JP2866265B2 (en) Method for producing high critical temperature superconducting flexible conductor
US5304534A (en) Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates
JPH0328122A (en) Manufacture of object containing super conducting oxide material
JPH0471279A (en) Manufacture of oxide superconducting material
US5229357A (en) Method of producing superconducting ceramic wire and product
US4937228A (en) Method of producing composite oxide superconducting wires using a powder bath
JPH01134819A (en) Manufacture of oxide superconductive wire material
JPH027309A (en) Manufacture of oxide type superconductive wire
JP2006236652A (en) Oxide superconducting wire material with stabilizing layer and manufacturing method of the same
RU2148866C1 (en) Method for producing long wire covered with high- temperature superconducting material
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JPH01143744A (en) Production of oxide superconducting fine wire
JP2004319256A (en) Silver tape, its manufacturing method, and superconducting wire
JPH04296408A (en) Oxide superconducting wire rod and manufacture thereof
JPH03134917A (en) Manufacture of ceramic superconductor
JPH0640721A (en) Preparation of superconductive body with high critical electric current density
JPH01144524A (en) Manufacture of ceramic-based superconductive wire
JPH03112810A (en) Production of oxide superconducting film
JPH02201819A (en) Compound superconductive material and manufacture thereof
JPH01286208A (en) Oxide superconducting material and manufacture of oxide superconducting wire rod
JPH01164799A (en) Production of superconducting molded body
JPH03285805A (en) Production of oxide superconductor
JPS63274019A (en) Structure of superconductor and its manufacture
JPS602727B2 (en) Method for producing intermetallic superconductor