JPS6027197B2 - integrated light source - Google Patents

integrated light source

Info

Publication number
JPS6027197B2
JPS6027197B2 JP52093776A JP9377677A JPS6027197B2 JP S6027197 B2 JPS6027197 B2 JP S6027197B2 JP 52093776 A JP52093776 A JP 52093776A JP 9377677 A JP9377677 A JP 9377677A JP S6027197 B2 JPS6027197 B2 JP S6027197B2
Authority
JP
Japan
Prior art keywords
light
active regions
light emitting
active region
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52093776A
Other languages
Japanese (ja)
Other versions
JPS5427786A (en
Inventor
茂雄 松下
功郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP52093776A priority Critical patent/JPS6027197B2/en
Publication of JPS5427786A publication Critical patent/JPS5427786A/en
Publication of JPS6027197B2 publication Critical patent/JPS6027197B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】 本発明は光通信システムに適合した集積化された光源に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated light source suitable for optical communication systems.

近年、光半導体素子や光フアィバの高品質化が進み、光
フアィバ通信システムの実用化が急速に進展している。
In recent years, the quality of optical semiconductor elements and optical fibers has improved, and the practical use of optical fiber communication systems has progressed rapidly.

この実用化に際し、光波長分割多重伝送システムが大容
量情報を安価に通信できるシステムとして期待されてい
る。しかしながら従来の光波長分割多重伝送システムで
は、発光波長の異なる複数個の光源(発光ダイオードや
レーザダィオード等)を用いるとともに、光源からの光
を結合回路により多重化するために構成素子の数が増大
し、またこれらを組立・調整する工数が増加してシステ
ムの低価格化や、より一層の高品質化が困難であった。
本発明の目的は上述の欠点を除去して安価で高品質な光
波長分割多重伝送システムを実現するための集積化され
た光源を提供することにある。本発明によれば活性領域
とこの領域を囲み接合を形成する接合層とを含む発光素
子を基板上に複数個配列してなる集積化光源において〜
前記各発光素子の活性領域を近接継続して発光方向が一
方向になるように配置し、且つ前記発光素子の活性領域
を前記一方向に沿ってエネルギーギャップのより大きい
材料で構成した発光素子群を含むことを特徴とする集積
化光源が得られる。さて、以下の説明のために良好な光
源を実現するための基本的な要件を述べておこう。
When put into practical use, optical wavelength division multiplexing transmission systems are expected to be a system that can communicate large amounts of information at low cost. However, conventional optical wavelength division multiplexing transmission systems use multiple light sources (light emitting diodes, laser diodes, etc.) with different emission wavelengths, and the number of components increases because the light from the light sources is multiplexed by a coupling circuit. In addition, the number of man-hours required to assemble and adjust these components increased, making it difficult to lower the cost of the system and further improve its quality.
SUMMARY OF THE INVENTION An object of the present invention is to provide an integrated light source for eliminating the above-mentioned drawbacks and realizing an inexpensive, high-quality optical wavelength division multiplexing transmission system. According to the present invention, in an integrated light source in which a plurality of light emitting elements including an active region and a bonding layer surrounding the active region and forming a bond are arranged on a substrate.
A group of light emitting elements, wherein the active regions of the light emitting elements are arranged in close proximity so that the light emission direction is in one direction, and the active regions of the light emitting elements are made of a material having a larger energy gap along the one direction. An integrated light source is obtained, characterized in that it includes: Now, for the purpose of the following explanation, let us state the basic requirements for realizing a good light source.

通信用光源として長寿命性と高効率性が不可欠である。Long life and high efficiency are essential for communication light sources.

長寿命の光源を製作するには化合物のへテロ接合間の格
子定数の整合とともに、基板と化合物間の電子定数の整
合が重要である。格子定数の差が存在すると歪が発生し
、この歪により転位の発生や伝播が顕著になる。発光素
子では光の電磁ェネルギが大きく、転位はこのェネルギ
を吸収し増殖伝播を助長し素子は急速に劣化する。特に
レーザ素子の場合にこの現象は著しい。高効率な光源は
活性領域を屈析率が低くてエネルギーギャップが大きい
層で囲んだいわゆるダブルヘテo構造のもので実現され
る。ダブルヘテロ構造では、周囲の層より屈折率が高く
エネルギーギャップが小さい活性領域に光と電子がとじ
こめられるために高輝度の光を低電力で発生させること
ができる。次に本発明を図面を用いて詳細に説明する。
In order to produce a long-life light source, it is important to match the lattice constant between the heterojunctions of the compound and the electronic constant between the substrate and the compound. When a difference in lattice constant exists, strain occurs, and this strain causes the generation and propagation of dislocations to become noticeable. In a light-emitting element, the electromagnetic energy of light is large, and dislocations absorb this energy and promote multiplication and propagation, causing rapid deterioration of the element. This phenomenon is particularly noticeable in the case of laser devices. A highly efficient light source is realized with a so-called double heterostructure in which an active region is surrounded by layers with a low refractive index and a large energy gap. In a double heterostructure, light and electrons are trapped in the active region, which has a higher refractive index and a smaller energy gap than surrounding layers, making it possible to generate high-intensity light with low power. Next, the present invention will be explained in detail using the drawings.

第竃図は本発明の第一の実施例を示し、aはの斜視図、
bは断面図である。1,2,3及び4はn型の基板5の
表面に形成されたそれぞれ第一、第二、第三及び第四の
発光ダイオード素子で、6,?, 8及び9はそれぞれ
第一、第二「第三及び第四の発光ダイオード素子の活性
領域である。
Figure 1 shows the first embodiment of the present invention, a is a perspective view,
b is a sectional view. 1, 2, 3 and 4 are first, second, third and fourth light emitting diode elements formed on the surface of the n-type substrate 5, respectively; 6, ? , 8 and 9 are the active regions of the first, second, third and fourth light emitting diode elements, respectively.

ここで活性領域6, 7,8及び9はp型をなしている
とともに基板5をつくる物質の格子定数と同じ格子定数
を有する化合物で形成されており、かつ活性領域6,7
,8及び9はそれぞれこの順にェネルギギャップが順次
大きい化合物で形成されている。10及び亀iは活性領
域6,7,8及び9を囲むそれぞれn型及びp型の化合
物の接合層で、活性領域9(活性領域6,T,8及び9
の中でェネルギギャップは最大)のェネルギギャップよ
り大きく、且つ基板6の格子定数と同じ格子定数を有す
る化合物で構成される。
Here, the active regions 6, 7, 8 and 9 are p-type and are formed of a compound having the same lattice constant as the lattice constant of the substance forming the substrate 5, and the active regions 6, 7
, 8 and 9 are formed of compounds having successively larger energy gaps in this order. 10 and turtle i are bonding layers of n-type and p-type compounds surrounding active regions 6, 7, 8, and 9, respectively;
Among them, the energy gap is larger than the energy gap of the substrate 6 (maximum), and it is made of a compound having the same lattice constant as the lattice constant of the substrate 6.

12,13,亀4及び15‘まそれぞれ第一、第二、第
三及び第四の発光ダイオード素子を駆動するための正電
極で、16は第一、第二ト第三の発光ダイオード素子に
共通な負電極である。
12, 13, tortoise 4 and 15' are positive electrodes for driving the first, second, third and fourth light emitting diode elements, respectively, and 16 is a positive electrode for driving the first, second to third light emitting diode elements. It is a common negative electrode.

この構成において、正電極亀2と負電極16の間に電圧
を印加すると、ダブルヘテロ構造の発光ダイオード素子
1の活性領域6で発光が起こる。
In this configuration, when a voltage is applied between the positive electrode turtle 2 and the negative electrode 16, light emission occurs in the active region 6 of the double heterostructure light emitting diode element 1.

この発光の波長は活性領域6のヱネルギギャップの値で
ほぼ決定される^,である。活性領域7,8及び9のェ
ネルギギャップが活性領域6のそれよりも大きいために
、波長入,の光は活性領域7,8及び9をほとんど損失
なく伝搬して発光ダイオード素子4の端面から出射する
。次に正電極13と負電極16の間にのみ電圧を印放し
た場合には、活性領域7で発光した波長人2の光は、活
性領域8及び9を損失なく伝搬するが、活性領域6では
吸収損失が大きいので伝搬することができない。正電極
14と負電極16の間、または正電極15と負電極16
の間に電圧を印加した場合も同様にして、活性領域葱又
は活性領域9で発光した波長が入3又は入4 の光は活
性領域7の方向へは伝搬できないが、それぞれ活性領域
9又はその出射端面の方向にはほとんど無損失で伝搬す
ることができる。このようにして「正電極12,奪3,
14及び16と負電極16の間に電圧を印加することに
より、発光ダイオード素子4の端面から高輝度の4波長
の発光と多重化について説明したがもこれに限定される
ことなく、2波長以上の任意の数の発光と多重化が可能
であることは明らかである。また本実施例において「活
性領域6,7,8及び9を囲む層として、共通な材料の
接合層10及び11を用いたが、活性領域のェネルギギ
ャツプよりも大きいェネルギギャツブの化合物であれば
共通である必要はなく「発光ダイオード素子1,2,3
及び川こそれぞれ独立した化合物の層を用いてもよいこ
とは当然である。
The wavelength of this light emission is approximately determined by the energy gap value of the active region 6. Since the energy gap between the active regions 7, 8 and 9 is larger than that of the active region 6, the incident wavelength light propagates through the active regions 7, 8 and 9 with almost no loss and exits from the end face of the light emitting diode element 4. Emits light. Next, when a voltage is applied only between the positive electrode 13 and the negative electrode 16, the light of wavelength 2 emitted in the active region 7 propagates through the active regions 8 and 9 without loss, but the active region 6 Since the absorption loss is large, it cannot propagate. Between the positive electrode 14 and the negative electrode 16, or between the positive electrode 15 and the negative electrode 16
Similarly, when a voltage is applied between the active region 9 and the active region 9, the light emitted in the active region 9 or the active region 9 cannot propagate in the direction of the active region 7, but The light can be propagated with almost no loss in the direction of the output end face. In this way, "positive electrode 12, electrode 3,
14 and 16 and the negative electrode 16, high-intensity light emission of four wavelengths and multiplexing from the end face of the light-emitting diode element 4 has been described. However, the present invention is not limited to this; It is clear that multiplexing with any number of emissions is possible. Furthermore, in this example, "the bonding layers 10 and 11 made of a common material were used as the layers surrounding the active regions 6, 7, 8, and 9, but any compound having an energy gap larger than the energy gap of the active region may be used." There is no need for "light emitting diode elements 1, 2, 3"
It goes without saying that separate compound layers may be used.

さらに、本実施例では基板5にn型物質を、活性領域6
,7,8及び9にp型化合物を、また層亀0及び亀1に
それぞれn型及びp型の化合物を用いたがもn型及びp
型が逆に選ばれた化合物を用いてもよいことは明らかで
ある。
Furthermore, in this embodiment, the substrate 5 is coated with an n-type material, and the active region 6 is coated with an n-type material.
, 7, 8, and 9, and n-type and p-type compounds were used for layer 0 and layer 1, respectively.
It is clear that compounds of opposite type may also be used.

この場合正電極亀2,亀3,14及び15には正電圧が
、負電極量6には正電圧が印加される。第2図を用いて
本発明の第二の実施例を説明する。
In this case, a positive voltage is applied to the positive electrodes 2, 3, 14, and 15, and a positive voltage is applied to the negative electrode amount 6. A second embodiment of the present invention will be described using FIG.

aは斜視図、bは断面図である。2審,22隻及び23
は基板24上に形成されたレーザダィオード素子、25
,26及び27はそれぞれレーザダィオード素子21,
22及び23の活性領域である。
A is a perspective view, and b is a sectional view. 2nd trial, 22 ships and 23
25 is a laser diode element formed on a substrate 24;
, 26 and 27 are laser diode elements 21,
22 and 23 active regions.

ここで活性領域25,26及び27は基板24をつくる
物質の格子定数と同じ格子定数を有し「またェネルギギ
ャップが活性領域25,26及び27の順に大きなp型
の化合物で形成されている。28及び29は活性領域2
5,26及び27をつくる物質のェネルギギャツプより
も大きいェネルギギャップのそれぞれn型及びp型の化
合物でかつ基板24の格子定数と同じ格子定数をもつ化
合物でつくられた接合層である。
Here, the active regions 25, 26, and 27 have the same lattice constant as that of the material forming the substrate 24, and are made of a p-type compound with a larger energy gap in the order of the active regions 25, 26, and 27. .28 and 29 are active regions 2
These bonding layers are made of n-type and p-type compounds, respectively, which have an energy gap larger than that of the substances forming materials 5, 26, and 27, and which have the same lattice constant as that of the substrate 24.

接合層28と活性領域25,26及び27の間には光の
進行方向に活性領域25,26及び27に対応して格子
間隔が互いに異なる複数組の回折格子が反射体として設
けられておりレーザダィオード素子21,22及び23
をレーザ発振可能な構成につくっている。30,3亀及
び32は正の電圧を印加するための電極で33は負の電
圧を印加するための電極である。
Between the bonding layer 28 and the active regions 25, 26, and 27, a plurality of sets of diffraction gratings are provided as reflectors, corresponding to the active regions 25, 26, and 27, with different grating intervals in the direction of light propagation, and the laser diode is Elements 21, 22 and 23
The structure is designed to enable laser oscillation. Reference numerals 30, 3 and 32 are electrodes for applying a positive voltage, and 33 is an electrode for applying a negative voltage.

以上の構成において、電極30,31,32及び33に
電圧を印加するとしーザダィオード素子21,22及び
23でレーザ発振が起こり、それらの活性領域25,2
6及び27から波長入,,^2及び入3の光が発振する
、第一の実施例の場合と同様に、活性領域25,26及
び27のエネルギーギャップはこの順に大きくなってい
るので波長入,の光は活性領域26及び27を吸収され
ずに伝搬し、波長入2 の活性領域25に向かって進む
光は吸収されてしまうが、活性領域27に向かって進む
光は吸収されずに伝搬する。
In the above configuration, when a voltage is applied to the electrodes 30, 31, 32, and 33, laser oscillation occurs in the laser diode elements 21, 22, and 23, and their active regions 25, 2
As in the case of the first embodiment in which the wavelength input light from 6 and 27 is oscillated, the energy gaps of the active regions 25, 26, and 27 are increasing in this order, so that the wavelength input light is oscillated. , propagates through the active regions 26 and 27 without being absorbed, and light propagating toward the active region 25 with a wavelength of 2 is absorbed, but light propagating toward the active region 27 is not absorbed. do.

このようにレーザタ、1ィオード素子23の端面からは
波長^,,^2及び入3の多重光が得られる。本実施例
において、3波長の発振光の多重化について説明したが
、レーザダィオード素子の数はこの3個に限定されず、
2個以上であればよいことは明らかである。
In this way, from the end face of the laser diode element 23, multiplexed light of wavelengths ^, , ^2, and 3 is obtained. In this embodiment, multiplexing of oscillation light of three wavelengths has been described, but the number of laser diode elements is not limited to three.
It is clear that it is sufficient if there are two or more.

また本実施例において、活性領域25,26及び27に
共通な接合層28及び29を形成したが、活性領域のヱ
ネルギギャップよりも大きいェネルギギャツプの化合物
であれば、活性領域25,26及び27に対応した独立
の接合層としてもよい。
Further, in this embodiment, bonding layers 28 and 29 common to the active regions 25, 26, and 27 are formed, but if the compound has an energy gap larger than that of the active regions, the bonding layers 28 and 29 can be formed in the active regions 25, 26, and 27. A corresponding independent bonding layer may also be provided.

また本実施例ではn型の基板5,n型の接合層28,p
型の活性領域と接合層29を用いたが、n型とp型を逆
に組みかえた基板5、接合層28,29、そして活性領
域を用いることもできるのは当然である。
Further, in this embodiment, an n-type substrate 5, an n-type bonding layer 28, a p
Although a type active region and a bonding layer 29 are used, it is of course possible to use a substrate 5, bonding layers 28 and 29, and an active region in which n-type and p-type are reversed.

さらに本実施例においてレーザダイオード素子21,2
2及び23の反射体として、活性領域25,26及び2
7と接合層28の間に設けた回折格子を用いたが、活性
領域25,26及び27と接合層29の間に回折格子や
活性領域25,26及び27の内部に格子状の屈折率変
化を形成してなる回折格子等を用いることもできる。
Furthermore, in this embodiment, the laser diode elements 21, 2
active regions 25, 26 and 2 as reflectors of 2 and 23;
Although a diffraction grating was used between the active regions 25, 26 and 27 and the bonding layer 29, a diffraction grating was used between the active regions 25, 26 and 27 and the bonding layer 29, and a grating-like refractive index change inside the active regions 25, 26 and 27 was used. It is also possible to use a diffraction grating formed by forming.

以上、第一及び第二の実施例において、光の伝播軸に配
列された複数個の発光素子が、1組の場合について説明
したが、2組以上の発光素子群が−基板上に設けられて
もよいことは明らかである。
Above, in the first and second embodiments, the case where a plurality of light emitting elements arranged along the light propagation axis is one set has been described, but when two or more sets of light emitting elements are provided on a substrate, It is clear that it is possible.

さらに上記の実施例では多重化された光を活性領域のェ
ネルギギャップの大きな発光ダイオードやレーザダィオ
ードの端面からとりだしたが、これらの発光素子に近接
して同一基板上に光導波路を形成し、この光導波路を通
じて多重化された光を他の光学素子等へ結合しても良い
Furthermore, in the above embodiment, the multiplexed light is extracted from the end face of the light emitting diode or laser diode, which has a large energy gap in the active region. The multiplexed light may be coupled to other optical elements through the optical waveguide.

最後に本発明が有する特徴を挙げれば、多重回路を用い
ず、異波長の光を直接的に多重化することができかつ一
基板上に複数個の光源が一体化されて構成されているた
めに、安価で高品質な光波長分割多重伝送システムに適
した高効率で高い信頼性を有した小形の光源を提供する
ことができることである。
Finally, the features of the present invention are that light of different wavelengths can be directly multiplexed without using a multiplex circuit, and multiple light sources are integrated on one substrate. Another object is that it is possible to provide a compact light source with high efficiency and high reliability suitable for an inexpensive and high quality optical wavelength division multiplexing transmission system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよびbはそれぞれ本発明の第一の実施例の斜
視図および断面図、第2図aおよびbは本発明の第二の
実施例の斜視図および断面図である。 1,2,3及び4は発光ダイオード素子、5は基板、6
,7,8及び9は活性領域、10及び11は接合層、1
2,亀3,14及び15は正電極、そして16は負電極
、21,22及び23はしーザダィオード素子、2Wま
基板、25,26及び27は活性領域、28及び29は
接合層、そして30,31,32及び33は電極である
。 第1図第1図 第2図
1A and 1B are a perspective view and a sectional view of a first embodiment of the invention, and FIGS. 2A and 2B are a perspective view and a sectional view of a second embodiment of the invention, respectively. 1, 2, 3 and 4 are light emitting diode elements, 5 is a substrate, 6
, 7, 8 and 9 are active regions, 10 and 11 are bonding layers, 1
2, turtles 3, 14 and 15 are positive electrodes, 16 is a negative electrode, 21, 22 and 23 are laser diode elements, 2W substrate, 25, 26 and 27 are active regions, 28 and 29 are bonding layers, and 30 , 31, 32 and 33 are electrodes. Figure 1 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 活性領域とこの領域を囲み接合を形成する接合層と
を含む発光素子を基板上に複数個配列してなる集積化光
源において、前記各発光素子の活性領域を同一平面上に
位置するように近接継続して発光方向が同一直線方向に
なるように配置し且つ前記発光素子の活性領域を前記同
一直線方向に沿つてエネルギーギヤツプの大きい材料で
構成した発光素子群を含むことを特徴とする集積化光源
1. In an integrated light source in which a plurality of light emitting elements each including an active region and a bonding layer surrounding this region and forming a junction are arranged on a substrate, the active regions of the light emitting elements are located on the same plane. The device is characterized by comprising a group of light emitting elements that are arranged so that their light emitting directions are in the same straight line in close proximity to each other, and the active regions of the light emitting elements are made of a material with a large energy gap along the same straight line direction. integrated light source.
JP52093776A 1977-08-04 1977-08-04 integrated light source Expired JPS6027197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52093776A JPS6027197B2 (en) 1977-08-04 1977-08-04 integrated light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52093776A JPS6027197B2 (en) 1977-08-04 1977-08-04 integrated light source

Publications (2)

Publication Number Publication Date
JPS5427786A JPS5427786A (en) 1979-03-02
JPS6027197B2 true JPS6027197B2 (en) 1985-06-27

Family

ID=14091813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52093776A Expired JPS6027197B2 (en) 1977-08-04 1977-08-04 integrated light source

Country Status (1)

Country Link
JP (1) JPS6027197B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542594A (en) * 2010-09-27 2013-11-21 アルカテル−ルーセント Photonic integrated circuit for wavelength division multiplexing

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153388A (en) * 1979-05-18 1980-11-29 Nec Corp Semiconductor laser device for oscillating multiple wavelength
JPS55153387A (en) * 1979-05-18 1980-11-29 Nec Corp Composite semiconductor laser device
JPS55141779A (en) * 1979-04-24 1980-11-05 Nec Corp Semiconductor laser
JPS55163888A (en) * 1979-06-08 1980-12-20 Nec Corp Wavelength multiplex semiconductor laser device
JPS5664490A (en) * 1979-10-30 1981-06-01 Matsushita Electric Ind Co Ltd Semiconductor laser element and its manufacture
JPS5962103U (en) * 1982-10-18 1984-04-24 株式会社竹中工務店 Entrance/exit structure in air membrane structure architecture
JPH02144976A (en) * 1988-11-25 1990-06-04 Nec Kansai Ltd Wavelength-variable light-emitting element
JPH02266549A (en) * 1989-04-07 1990-10-31 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542594A (en) * 2010-09-27 2013-11-21 アルカテル−ルーセント Photonic integrated circuit for wavelength division multiplexing

Also Published As

Publication number Publication date
JPS5427786A (en) 1979-03-02

Similar Documents

Publication Publication Date Title
JPS6027197B2 (en) integrated light source
JPH04138427A (en) Optical wavelength filter device
WO2020246042A1 (en) Surface-emitting optical circuit and surface-emitting light source using same
CN208707076U (en) A kind of multiple beam vertical cavity surface-emitting laser chip
JPH07162072A (en) Semiconductor laser having heterogeneous structure
JP2004037485A (en) Semiconductor optical modulator and semiconductor optical device
JP3120100B2 (en) Semiconductor light emitting device
JPS62170907A (en) Integrated light emitting element
JPS61255087A (en) Semiconductor laser oscillation device
JPH0365029B2 (en)
JPH02310986A (en) Semiconductor laser element, photomask and manufacture thereof
JPS6310582A (en) Semiconductor laser array
JPS622676A (en) Semiconductor light emitting device
JPS6366436B2 (en)
JPH02271583A (en) Laser integration light modulator
JP2022188411A (en) phase shifter
JP2963527B2 (en) Semiconductor surface light modulator
JPS6079774A (en) Optical integrated circuit
JPS63164379A (en) Photo output device
RU2095901C1 (en) Multichannel semiconductor laser
JP2933779B2 (en) Transmission system
JPH11163383A (en) Semiconductor light-receiving element
JPS6123382A (en) Multi-wavelength semiconductor laser
JPH06244500A (en) Semiconductor laser device
JPS6123384A (en) Multi-wavelength semiconductor laser