JPS6123384A - Multi-wavelength semiconductor laser - Google Patents

Multi-wavelength semiconductor laser

Info

Publication number
JPS6123384A
JPS6123384A JP14531384A JP14531384A JPS6123384A JP S6123384 A JPS6123384 A JP S6123384A JP 14531384 A JP14531384 A JP 14531384A JP 14531384 A JP14531384 A JP 14531384A JP S6123384 A JPS6123384 A JP S6123384A
Authority
JP
Japan
Prior art keywords
semiconductor laser
wavelength
active layers
waveguide layer
wavelength semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14531384A
Other languages
Japanese (ja)
Inventor
Teruhito Matsui
松井 輝仁
Kenichi Otsuka
健一 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14531384A priority Critical patent/JPS6123384A/en
Publication of JPS6123384A publication Critical patent/JPS6123384A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a multi-wavelength semiconductor laser which has excellent coupling efficiency and can be controlled independently, by forming resonator mirrors by diffraction lattices having periods corresponding to the respective oscillation wavelengths of a plurality of active layers and a common cleavage surface, respectively. CONSTITUTION:Active layers 14a, 14b which serve as light-emitting areas have respective compositions and energy band gaps, which correspond to their respective oscillation wavelengths. Diffraction lattices 23a, 23b having periods which respectively correspond to the oscillation wavelengths are provided on a waveguide layer 13. A multi-wavelength semiconductor laser having a combination of various kinds of wavelength can be formed by appropriately selecting a composition for each of the active layers 14a, 14b of the first and second semiconductor lasers and a period for each of the diffraction lattices 23a, 23b. An etched surface 26 is formed by chemical etching or the like in such a manner that the surface 26 slants with respect to the end face of the waveguide layer 13 so as not to constitute a reflecting surface. A reflection preventing film may be provided on a cleavage surface 25 which serves as a resonator mirror.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、複数の波長で発振する多重波長半導体レー
ザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a multi-wavelength semiconductor laser that oscillates at multiple wavelengths.

〔従来技術〕[Prior art]

従来の多重波長半導体レーザの構造を第1図に示す。 The structure of a conventional multi-wavelength semiconductor laser is shown in FIG.

゛第1図はW 、 T 、 T sang (Appl
、Phys、Lett。
゛Figure 1 shows W, T, T sang (Appl.
, Phys., Lett.

to 1.3B 、pp、441−443 、1980
)に示された多重波長を放出する半導体レーザの斜視図
である。第1図において、1はn型のGaAs基板、2
−1゜2−2.2−3.2−4はそれぞれn型cr+A
lx rGaz−x(A  s   、   Aug 
  2   Gat−x2’As   。
to 1.3B, pp, 441-443, 1980
) is a perspective view of a semiconductor laser emitting multiple wavelengths shown in FIG. In FIG. 1, 1 is an n-type GaAs substrate, 2
-1゜2-2.2-3.2-4 are each n-type cr+A
lx rGaz-x(A s , Aug
2 Gat-x2'As.

A、llx 3 Gat−13As 、klx 4 G
at−14AS(7)活性層、3はn型のA11y 1
 Gat−y As(ただし、’!> l++ +  
X2 +  13 +  X4) (1)クラッド層、
4はZn拡散領域、5はp型領域、6はn側電極、7は
p側電極、8は5i02絶縁層である。
A, llx 3 Gat-13As, klx 4 G
at-14AS (7) active layer, 3 is n-type A11y 1
Gat-y As (however, '!> l++ +
X2 + 13 + X4) (1) Cladding layer,
4 is a Zn diffusion region, 5 is a p-type region, 6 is an n-side electrode, 7 is a p-side electrode, and 8 is a 5i02 insulating layer.

次に動作について説明する。Next, the operation will be explained.

p側電極7をプラス、n側電極6をマイナスにして電圧
を印加すると、電流はZn拡散領域4のp壁領域5から
4つの活性層2−1.2−2.2−3゜2−4のpn接
合を経て水平方向に流れる。クラッド層3は活性層2−
1〜2−4よりもエネルギー・バンドギャップが大きい
ので、キャリアは活性層2−1〜2−4に閉じ込められ
る。電流は4つの活性層2−1〜2−4にほぼ等分割さ
れるが、4つの活性層2−1〜2−4のAM成分比11
+l12+I+3+×4がそれぞれ異なっているので、
各活性層2−1〜2−4のpn接合で波長λ1〜λ4の
レーザ発振が生じ、多重波長レーザ発振光が得られる。
When a voltage is applied with the p-side electrode 7 being positive and the n-side electrode 6 being negative, a current flows from the p wall region 5 of the Zn diffusion region 4 to the four active layers 2-1.2-2.2-3°2- It flows horizontally through the pn junction of 4. The cladding layer 3 is the active layer 2-
Since the energy band gap is larger than that of active layers 2-1 to 2-4, carriers are confined in active layers 2-1 to 2-4. The current is divided almost equally into the four active layers 2-1 to 2-4, but the AM component ratio of the four active layers 2-1 to 2-4 is 11.
Since +l12+I+3+×4 are different,
Laser oscillation with wavelengths λ1 to λ4 occurs at the pn junction of each active layer 2-1 to 2-4, and multi-wavelength laser oscillation light is obtained.

従来の多重波長レーザは以−にのように構成されている
ので、任意波長(活性層)のレーザ光の光出力を独立に
制御することは困難であり、また、発光部は積層構造と
なっているため、光ファイバに結合する際にどの波長の
光に対しても同じ結合効果を得ることは難しいという欠
点があった。
Conventional multi-wavelength lasers are configured as shown below, so it is difficult to independently control the optical output of laser light of any wavelength (active layer), and the light emitting part has a laminated structure. Therefore, it has the disadvantage that it is difficult to obtain the same coupling effect for light of any wavelength when coupling it to an optical fiber.

〔発明の概要〕[Summary of the invention]

この発明は、」−記のような従来のものの欠点を除去す
るためになされたもので、同一光軸」二の導波路層上に
異なる発振波長をもつ活性層を配置することにより、そ
れぞれのレーザ光の光出力を独立に制御し得る多重波長
半導体レーザを提供するものである。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by arranging active layers with different oscillation wavelengths on two waveguide layers on the same optical axis, each The present invention provides a multi-wavelength semiconductor laser that can independently control the optical output of laser light.

以下、この発明の一実施例を図面について説明する。An embodiment of the present invention will be described below with reference to the drawings.

〔発明の実施例〕[Embodiments of the invention]

第2図、第3図はこの発明の一実施例を示す側断面図と
そのA−A線による断面図である。
FIGS. 2 and 3 are a side sectional view and a sectional view taken along the line A-A of the embodiment of the present invention.

これらの図において、11はn型のInP基板。In these figures, 11 is an n-type InP substrate.

12はn型のInPnチク9フ、13はn型のInGa
AsP導波路層、14a、14bはInGaAsP活性
層、15はInGaAsPバッファ層、16はp型のI
nPnチク9フ、17はp型c7)InGaAsPキー
?−/プ層、18はp型のInPブロック層、19はn
型のInPブロック層、20はn側電極、21a、21
bはp側電極、22は5in2絶縁層、23a、23b
は回折格子、24a、24bはリード線、25はへき開
面、26はエツチング面である。
12 is n-type InPn chip 9, 13 is n-type InGa
AsP waveguide layer, 14a, 14b InGaAsP active layer, 15 InGaAsP buffer layer, 16 p-type I
nPn chiku 9fu, 17 is p type c7) InGaAsP key? -/p layer, 18 is p-type InP block layer, 19 is n
type InP block layer, 20 is an n-side electrode, 21a, 21
b is a p-side electrode, 22 is a 5in2 insulating layer, 23a, 23b
is a diffraction grating, 24a and 24b are lead wires, 25 is a cleavage plane, and 26 is an etched plane.

半導体レーザの発光部となる活性層14a。An active layer 14a serves as a light emitting part of a semiconductor laser.

14bは、それぞれその発振光波長に応じた組成とエネ
ルギー・バンドギャップをもち、また、それらの発振波
長に対応した周期長を持つ回折格子23a、23bを導
波路層13上に設けている。
14b is provided on the waveguide layer 13 with diffraction gratings 23a and 23b each having a composition and an energy band gap corresponding to the wavelength of the oscillated light, and a period length corresponding to the oscillating wavelength.

次にこの発明の動作について説明する。Next, the operation of this invention will be explained.

第1の半導体レーザのp側電極21aとn側電極20に
電圧を印加し、電流を注入すると、活性層14aで発光
し、この光は導波路層13に結合伝ばんされる。導波路
層13の回折格子23aとへき開面25でレーザ共振器
が構成されているので、この回折格子23aの周期長に
より半導体レーザの発振波長が決定される。
When a voltage is applied to the p-side electrode 21a and the n-side electrode 20 of the first semiconductor laser and a current is injected, the active layer 14a emits light, and this light is coupled and propagated to the waveguide layer 13. Since a laser resonator is constituted by the diffraction grating 23a of the waveguide layer 13 and the cleavage plane 25, the oscillation wavelength of the semiconductor laser is determined by the period length of the diffraction grating 23a.

同様に第2の半導体レーザもp型電極21bとn型電極
20に電圧を印加し、電流を注入すると、活性層14b
で発光した光は回折格子23bにより決定される波長で
発振する。共振器ミラーとしてのへき開面25は、第1
の半導体レーザと共用し、第1.第2の半導体レーザの
発振光はへき開面25の導波路層13から外部へ取り出
される。
Similarly, in the second semiconductor laser, when a voltage is applied to the p-type electrode 21b and the n-type electrode 20 and a current is injected, the active layer 14b
The emitted light oscillates at a wavelength determined by the diffraction grating 23b. The cleavage plane 25 as a resonator mirror has a first
It is shared with the semiconductor laser of 1st. The oscillation light of the second semiconductor laser is extracted from the waveguide layer 13 at the cleavage plane 25 to the outside.

従って、第1.第2の半導体レーザに別々の変調信号電
流を印加することにより光波長多重通信用光源として利
用することができる。これら2つの波長の光は同一点か
ら放射されるため、光ファイバへの結合も容易である。
Therefore, the first. By applying separate modulation signal currents to the second semiconductor laser, it can be used as a light source for optical wavelength multiplex communication. Since these two wavelengths of light are emitted from the same point, they can be easily coupled to an optical fiber.

また、共振器に回折格子23a、23bを利用している
ため、単色性、温度特性がすぐれている。
Furthermore, since the diffraction gratings 23a and 23b are used in the resonators, monochromaticity and temperature characteristics are excellent.

導波路層13のエネルギーOバンドギャップは、いずれ
の活性層14a、14bのエネルギーΦバンドギャップ
よりも大きくすることにより、レーザ発振光に対して透
明にすることができる。発振波長が短くなるに従って、
光のエネルギ−hνが導波路fi13のエネルギー・バ
ンドギャップに近くなり、導波路損失が増加するため、
2つの半導体レーザのうち、波長の短い方の回折格子2
3aを出力端(へき開面25)の近くに配置する方がよ
い。
By making the energy O bandgap of the waveguide layer 13 larger than the energy Φ bandgap of any of the active layers 14a and 14b, it can be made transparent to laser oscillation light. As the oscillation wavelength becomes shorter,
Since the light energy hν becomes close to the energy bandgap of the waveguide fi13 and the waveguide loss increases,
Diffraction grating 2 of the shorter wavelength of the two semiconductor lasers
3a is preferably placed near the output end (cleavage plane 25).

第1.第2の半導体レーザの活性層14a。1st. Active layer 14a of the second semiconductor laser.

14bの組成と回折格子23a、23bの周期選択によ
り、種々の波長の組み合わせの多重波長半導体レーザが
構成できる。また、エツチング面26は反射面とならな
いように化学エツチング等により、導波路層13の端面
に対して斜めに加工されている。この場合、へき開面2
5に反射防止膜を設けてもよい。
By selecting the composition of grating 14b and the period of diffraction gratings 23a and 23b, multi-wavelength semiconductor lasers with various wavelength combinations can be constructed. Furthermore, the etched surface 26 is processed to be oblique to the end surface of the waveguide layer 13 by chemical etching or the like so that it does not become a reflective surface. In this case, cleavage plane 2
5 may be provided with an antireflection film.

第4図はこの発明の他の実施例を示すもので、回折格子
23bが導波路層13の上部に設けらている場合がある
。この構成によっても、第2図。
FIG. 4 shows another embodiment of the present invention, in which a diffraction grating 23b may be provided above the waveguide layer 13. With this configuration as well, FIG.

第3図の実施例と同様の効果がある。There is an effect similar to that of the embodiment shown in FIG.

第5図はこの発明のさらに他の実施例を示すも(7)−
t’、活性層14a、14bと回折格子23a。
FIG. 5 shows still another embodiment of the present invention (7)-
t', active layers 14a, 14b and diffraction grating 23a.

23bの位置関係を変えた場合であり、この場合にも第
2図、第3図の実施例と同様の効果がある。
This is a case where the positional relationship of 23b is changed, and in this case as well, the same effects as in the embodiments shown in FIGS. 2 and 3 can be obtained.

なお、」二記実施例においては、2波長の場合について
述べたが、この発明は2波長以上の場合についても有効
であり、活性層14a、14bと回折格子23a 、2
3bとの数を増やすことにより実現できる。
In addition, in the second embodiment, the case of two wavelengths has been described, but the present invention is also effective in the case of two or more wavelengths.
This can be achieved by increasing the number of 3b.

また、上記実施例では半導体レーザとして、発振波長が
1.2〜1.6gmのInP系の材料のものについて示
したが、発振波長0.7〜0.9pmのGaAs系材料
についても同じような構成のものを実現することができ
る。
Furthermore, in the above example, a semiconductor laser made of an InP-based material with an oscillation wavelength of 1.2 to 1.6 gm is shown, but the same applies to a GaAs-based material with an oscillation wavelength of 0.7 to 0.9 pm. configuration can be realized.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、この発明の多重波長半導体
レーザは、同一基板上の導波路層に近接して配置された
発振波長の異なる組成をもつ複数の活性層を有し、それ
ぞれ独立して電流の注入を可能にする電極を備え、前記
複数の異なる発振波長の光を前記導波路層より取り出し
可能にした多重波長半導体レーザにおいて、前記複数の
活性層の各発振波長に対応した周期長をもつ回折格子を
導波路層との上部または下部に各々形成し、かつ各回折
格子と共通のへき開面とでそれぞれ共振用ミラーを構成
したので、同一光軸上の導波路層に、複数の活性層を近
接させて配置することができ、結合効率が良く、独立に
制御可能な多重波長半導体レーザが得られる利点を有す
る。
As described in detail above, the multi-wavelength semiconductor laser of the present invention has a plurality of active layers having different compositions and oscillation wavelengths disposed close to a waveguide layer on the same substrate, each of which is independently In a multi-wavelength semiconductor laser that includes an electrode that enables current injection and that allows light of a plurality of different oscillation wavelengths to be extracted from the waveguide layer, a period length corresponding to each oscillation wavelength of the plurality of active layers is set. Since the diffraction gratings with the same optical axis were formed above or below the waveguide layer, and each diffraction grating and the common cleavage plane constituted a resonant mirror, multiple active It has the advantage that layers can be placed close to each other, a multi-wavelength semiconductor laser with good coupling efficiency and independently controllable can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多重波長半導体レーザを示す断面側面図
、第2図はこの発明の一実施例による多重波長半導体レ
ーザを示す側断面図、第3図は第2図のA−A線の断面
図、第4図、第5図はそれぞれこの発明の他の実施例を
示す側断面図である。 図中、11はInP基板、12はクラッド層、13は導
波路層、14a、14bは活性層、15はバッファ層、
16はクラッド層、17はキャップ層、18.19はブ
ロック層、20はn側電極、21a、21bはp側電極
、22は絶縁層、23a、23bは回折格子、24a、
24bはリード線、25はへき開面、26はエツチング
面である。 なお、図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄   (外2名)第1図 第2図 ハ 第3図 第4図 第5図 手続補正書(自発) 3、補正をする者 事件との関係 特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社代表者片山仁八部 4、代理人 5、補正の対象 図面 6、補正の内容 図面中温2園、第3図を別紙のように補正する。 以」二 第2図 第3図
FIG. 1 is a cross-sectional side view showing a conventional multi-wavelength semiconductor laser, FIG. 2 is a side cross-sectional view showing a multi-wavelength semiconductor laser according to an embodiment of the present invention, and FIG. 3 is a cross-sectional side view taken along line A-A in FIG. The sectional view, FIG. 4, and FIG. 5 are side sectional views showing other embodiments of the present invention. In the figure, 11 is an InP substrate, 12 is a cladding layer, 13 is a waveguide layer, 14a, 14b are active layers, 15 is a buffer layer,
16 is a cladding layer, 17 is a cap layer, 18.19 is a block layer, 20 is an n-side electrode, 21a, 21b are p-side electrodes, 22 is an insulating layer, 23a, 23b is a diffraction grating, 24a,
24b is a lead wire, 25 is a cleavage surface, and 26 is an etched surface. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 1 Figure 2 C Figure 3 Figure 4 Figure 5 Procedural amendment (voluntary) 3. Relationship with the case of the person making the amendment Patent applicant address Tokyo 2-2-3 Marunouchi, Chiyoda-ku Name (601) Mitsubishi Electric Co., Ltd. Representative Hitoshi Katayama 4, Agent 5, Drawing subject to amendment 6, Details of amendment Drawing Nakaon 2, Figure 3 attached. Correct it as follows. Figure 2 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)同一基板上の導波路層に近接して配置され、かつ
発振波長の異なる組成をもつ複数の活性層を有し、それ
ぞれ独立して電流の注入が可能な電極を備え、さらに前
記複数の異なる発振波長の光を前記導波路層より取り出
し可能にした多重波長半導体レーザにおいて、前記複数
の活性層の各発振波長に対応した周期長をもつ回折格子
を導波路層上の上部または下部に各々形成し、かつ前記
各回折格子と共通のへき開面とでそれぞれ共振用ミラー
を構成したことを特徴とする多重波長半導体レーザ。
(1) It has a plurality of active layers arranged close to the waveguide layer on the same substrate and have compositions different from each other in oscillation wavelength, each of which has an electrode capable of independently injecting a current, and In the multi-wavelength semiconductor laser, in which light having different oscillation wavelengths can be extracted from the waveguide layer, a diffraction grating having a period length corresponding to each oscillation wavelength of the plurality of active layers is provided above or below the waveguide layer. A multi-wavelength semiconductor laser, characterized in that each of the diffraction gratings and a common cleavage plane constitute a resonant mirror.
(2)導波路層のエネルギー・バンドギャップは複数の
活性層のエネルギー・バンドギャップより大きいことを
特徴をする特許請求の範囲第(1)項記載の多重波長半
導体レーザ。
(2) The multi-wavelength semiconductor laser according to claim (1), wherein the energy bandgap of the waveguide layer is larger than the energy bandgaps of the plurality of active layers.
(3)複数の回折格子は分布反射型であることを特徴と
する特許請求の範囲第(1)項記載の多重波長半導体レ
ーザ。
(3) The multi-wavelength semiconductor laser according to claim (1), wherein the plurality of diffraction gratings are of a distributed reflection type.
(4)異なる発振波長のうち短波長側の回折格子の方が
短共振器長となるようにしたことを特徴とする特許請求
の範囲第(1)項乃至第(3)項のいずれかに記載の多
重波長半導体レーザ。
(4) Any one of claims (1) to (3), characterized in that the diffraction grating on the shorter wavelength side among different oscillation wavelengths has a shorter resonator length. The described multi-wavelength semiconductor laser.
JP14531384A 1984-07-11 1984-07-11 Multi-wavelength semiconductor laser Pending JPS6123384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14531384A JPS6123384A (en) 1984-07-11 1984-07-11 Multi-wavelength semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14531384A JPS6123384A (en) 1984-07-11 1984-07-11 Multi-wavelength semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6123384A true JPS6123384A (en) 1986-01-31

Family

ID=15382264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14531384A Pending JPS6123384A (en) 1984-07-11 1984-07-11 Multi-wavelength semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6123384A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221185A (en) * 1986-03-24 1987-09-29 Fujikura Ltd Semiconductor laser
JPS63278290A (en) * 1987-05-08 1988-11-15 Mitsubishi Electric Corp Semiconductor laser and its use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221185A (en) * 1986-03-24 1987-09-29 Fujikura Ltd Semiconductor laser
JPS63278290A (en) * 1987-05-08 1988-11-15 Mitsubishi Electric Corp Semiconductor laser and its use

Similar Documents

Publication Publication Date Title
JPH0636457B2 (en) Method for manufacturing monolithic integrated optical device incorporating semiconductor laser and device obtained by this method
JPH084187B2 (en) Semiconductor laser
US4636821A (en) Surface-emitting semiconductor elements
JPS60124887A (en) Distributed feedback type semiconductor laser
JPS60102789A (en) Distributed feedback semiconductor laser
JPS6123384A (en) Multi-wavelength semiconductor laser
JPH1197789A (en) Semiconductor laser
JP2950302B2 (en) Semiconductor laser
JPH06326420A (en) Monolithic laser array
JPS6089990A (en) Optical integrated circuit
JPS6123382A (en) Multi-wavelength semiconductor laser
KR20060089740A (en) Surface-emitting semiconductor laser comprising a structured waveguide
JPH0365029B2 (en)
JPS6012294Y2 (en) Composite optical semiconductor device
JPS6123385A (en) Multi-wavelength semiconductor laser
JPS62124791A (en) Semiconductor laser
KR100364772B1 (en) Semiconductor laser
JPH0311689A (en) Surface light-emitting type wavelength-control dbr laser
JPH01101684A (en) Manufacture of wavelength multiplexed semiconductor laser
JPS59184585A (en) Semiconductor laser of single axial mode
JPH04245494A (en) Multiwavelength semiconductor laser element and driving method of that element
JPS62183587A (en) Semiconductor laser
JPS6066489A (en) Distributed feedback and distributed bragg reflector type semiconductor laser
JPH06244493A (en) Distributed feedback type semiconductor laser and its manufacture
JPS63241978A (en) Distributed feedback semiconductor laser