JPS602685A - Activating method of cathode - Google Patents
Activating method of cathodeInfo
- Publication number
- JPS602685A JPS602685A JP58107838A JP10783883A JPS602685A JP S602685 A JPS602685 A JP S602685A JP 58107838 A JP58107838 A JP 58107838A JP 10783883 A JP10783883 A JP 10783883A JP S602685 A JPS602685 A JP S602685A
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- plating
- coating layer
- nickel
- roughened
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は陰極の活性付与方法特に水溶液中において優れ
た低水素過電圧を示す、主として電解のための陰極の活
性付与方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for activating a cathode, particularly a method for activating a cathode mainly for electrolysis, which exhibits an excellent low hydrogen overvoltage in an aqueous solution.
従来より陰極で水素ガスを発生する技術として隔膜(ア
スベストの如き多孔性炉隔膜及びイオン交換膜の如き密
隔膜を含む)を使用したアルカリ金属塩水溶液の電解が
知られており、又水電解等もこれに該当する。Conventionally, electrolysis of an aqueous alkali metal salt solution using a diaphragm (including a porous furnace diaphragm such as asbestos and a dense diaphragm such as an ion exchange membrane) is known as a technique for generating hydrogen gas at a cathode, and water electrolysis etc. This also applies.
近年省エネルギーの観点から、この種の技術において電
解電圧の低減化が望まれて来ており、かかる電解電圧低
減の手段として各種活性陰極が提案されている。In recent years, from the viewpoint of energy saving, it has been desired to reduce the electrolysis voltage in this type of technology, and various active cathodes have been proposed as a means for reducing the electrolysis voltage.
この様な活性陰極は通常鉄、銅、ニッケル及びこれらを
含む合金、バルブ金属などの耐アルカリ性基材の表面に
、低減された水素過電圧特性をもへ
つ活性金属材料の層を、溶射、熱分解、溶融物人の浸漬
、電気メッキ、化学メッキ、蒸着、爆着などの手段で被
覆することによって得られ、就中、か匁る活性金属材料
層の表面に細かい凹凸を形成して多孔性の粗なる活性表
面を作ることにより、活性金属材料層本来の電気化学的
触媒作用に加えて活性表面積の増大により水素過電圧低
減の効用をより助長せしめることも行なわれている。Such active cathodes are typically made by thermally spraying or heat-spraying a layer of an active metal material that also has reduced hydrogen overvoltage characteristics onto the surface of an alkali-resistant substrate such as iron, copper, nickel, alloys containing these, or valve metals. It is obtained by coating by means such as decomposition, immersion in molten material, electroplating, chemical plating, vapor deposition, explosion bonding, etc., and in particular, forming fine irregularities on the surface of the active metal material layer to make it porous. By creating a rough active surface, in addition to the electrochemical catalytic action inherent to the active metal material layer, the active surface area is increased to further enhance the hydrogen overvoltage reduction effect.
これらの陰極の一つとして本発明者等の成る者は先に陰
極基材表面に炭素質の微粉子を分散させたメッキ浴を用
い【電気メッキを施す方法を提案した。(特開昭57−
35689、特開昭57−89491、特開昭57−9
4582、特開昭57−94583など)
本発明ばか入る活性陰極の取得に関してメッキ時の作業
性をより一層向上させると共に、得られた陰極基材とメ
ッキ物との密着性を向上させ、陰極の寿命を延長せんと
するもので、陰極基材表面に、炭素質微粒子を分散させ
たニッケル主体の金属成分を含むメッキ浴を用いて電気
メッキを施すことにより陰極を活性化するに当り、該陰
極基材表面に存在させた粗面化表面を有する被覆層(以
下これを粗面化被覆層と称する)を介して上記電気メッ
キ(以下これを分散メッキと称する)を施すことを特徴
とする陰極の活性化法である。As one of these cathodes, the present inventors previously proposed a method of electroplating using a plating bath in which carbonaceous fine particles were dispersed on the surface of the cathode substrate. (Unexamined Japanese Patent Publication No. 57-
35689, JP-A-57-89491, JP-A-57-9
4582, Japanese Unexamined Patent Publication No. 57-94583, etc.) The present invention further improves the workability during plating with regard to obtaining an active cathode, and also improves the adhesion between the obtained cathode base material and the plated object, thereby improving the effectiveness of the cathode. In order to extend the life of the cathode, the cathode is activated by electroplating the surface of the cathode base material using a plating bath containing a metal component mainly composed of nickel in which carbonaceous fine particles are dispersed. A cathode characterized in that the electroplating described above (hereinafter referred to as dispersion plating) is applied through a coating layer having a roughened surface (hereinafter referred to as a roughened coating layer) that is present on the surface of a base material. This is an activation method.
本発明方法で使用する陰極基材としては、その表面に存
在させる粗面化被覆層、およびその表面に適用する分散
メッキ層の各層形成に関して、その層形成が容易であり
密着性に格別の支障を及ぼさない材料が用いられ、具体
的には鉄、銅、ニッケル及びこれらを含む合金や、バル
ブ金属よりな搗
る耐アルカリ土類金層素材が好ましく用いられ、又か〜
る金属素材に予めニッケルメッキ等のメッキを施したも
のを使用することも出来る。As for the cathode substrate used in the method of the present invention, the roughening coating layer present on the surface and the dispersion plating layer applied to the surface are easy to form and there is no particular problem in adhesion. Specifically, iron, copper, nickel, alloys containing these, and alkaline earth gold layer materials that are more resistant to abrasion than valve metals are preferably used;
It is also possible to use a metal material that has been plated with nickel or the like in advance.
又その形状として特に制限はないが、エキスバンドメタ
ル及びこれをプレスした有孔平板、パンチングメタル、
織成金網等の多孔板形状のものが好ましく採用され、そ
れらの空間率は1〜99チの範囲が好ましい。There are no particular restrictions on its shape, but it can be expanded metal, a perforated flat plate made by pressing it, punched metal,
Perforated plates such as woven wire mesh are preferably used, and the porosity thereof is preferably in the range of 1 to 99 inches.
本発明方法は、か−る基材の表面に粗面化被覆層を存在
させるのであるが、これは陰極基材自体の表面をサンド
ブラスト、或は薬液によるエツチング等で表面凹凸を付
与して粗面状態となすものではなく、飽迄も陰極基材表
面に粗面化被覆層を別途密着状態で存在させるものであ
り、か(して次に施す分散メッキの層を基材に強固に結
合させることが出来る。In the method of the present invention, a roughening coating layer is present on the surface of such a substrate, and this is done by imparting surface roughness to the surface of the cathode substrate itself by sandblasting or etching with a chemical solution. It is not a surface condition, but a roughening coating layer is separately adhered to the surface of the cathode substrate, and the next dispersion plating layer is firmly bonded to the substrate. I can do it.
この場合、新らしい陰極基材を用いて、これに新規に活
性を付与する場合と、陰極として使用の結果、性能劣化
を来した陰極を再メッキしズ活性を付与する場合とに分
けることが出来る。In this case, there are two types of cases: one is to use a new cathode base material and add new activity to it, and the other is to re-plate a cathode whose performance has deteriorated as a result of being used as a cathode and give it activity. I can do it.
前者の場合には、新らしい陰極基材表面に新らたに粗面
化被覆層を形成してその表面に分散メッキを施すことが
必要であり、いずれにしても粗面化被覆層の存在下に分
散メッキが施される。In the former case, it is necessary to form a new roughened coating layer on the surface of the new cathode substrate and apply dispersion plating to that surface. Dispersion plating is applied underneath.
この様な粗面化被覆層の形成には種々な手段があるが、
望ましい方法として金属もしくは非金属粒子の溶射、上
記分散メッキに使用する炭素質微粒子に代えて特定の粒
子状固形物を分散させた以外にはその浴組成が分散メッ
キ浴と略同様のメッキ浴によるメッキを挙げることが出
来る。There are various methods for forming such a roughened coating layer, but
A desirable method is thermal spraying of metal or non-metal particles, or a plating bath whose bath composition is approximately the same as that of the dispersion plating bath, except that specific particulate solids are dispersed in place of the carbonaceous fine particles used in the above-mentioned dispersion plating. One example is plating.
この場合の溶射は、通常のフレーム溶射法、或はプラズ
マ溶射法により実施することが出来、使用粒子として二
、ケル、コバルト、銀等の金属粒子、及び酸化ニッケル
、酸化ジルコニウム、セラミック等の非金属粒子が使用
出来る。Thermal spraying in this case can be carried out by the usual flame spraying method or plasma spraying method, and the particles used are metal particles such as dichloromethane, cobalt, silver, etc., and non-metallic particles such as nickel oxide, zirconium oxide, and ceramics. Metal particles can be used.
一方、粒子状固形物を分散した浴による粗面化被覆形成
は、好ましくはタングステンカーバイド、シリコンカー
バイド等の炭化物、酸化ニッケル、酸化ジルコニウム等
の酸化物、或は二、ケル等の金屑より選ばれた概ね0.
01〜100μの範囲の平均粒径な持つ粒子を使用し、
これを分散メッキ浴と略同様の浴組成でその中の炭素質
微粒子を上記の粒子に代えて含有させたメッキ浴で電気
メッキを施すことで達成出来る。On the other hand, the formation of a roughening coating using a bath in which particulate solids are dispersed is preferably carried out using carbides such as tungsten carbide and silicon carbide, oxides such as nickel oxide and zirconium oxide, or metal scraps such as nickel oxide and zirconium oxide. Approximately 0.
Using particles with an average particle size in the range of 01 to 100μ,
This can be achieved by electroplating using a plating bath that has substantially the same bath composition as the dispersion plating bath and contains carbonaceous fine particles in place of the above-mentioned particles.
次に前述の後者の場合、即ち性能劣化した陰極を再メッ
キして活性を付与する場合においては、表面のメッキ層
及び下地層をすべて取り除いて基材を露出せしめた後、
前記と同様にして粗面化被イヤーバフなどで表面の古い
メッキ層を削り取り、基材に密着している粗面化被覆層
を露出せしめた後、水洗し分散メッキを施すことでよい
。Next, in the latter case described above, that is, when re-plating a cathode whose performance has deteriorated to give it activity, after removing all the surface plating layer and base layer to expose the base material,
In the same manner as described above, the old plating layer on the surface is scraped off with a roughening buff or the like to expose the roughening coating layer that is in close contact with the base material, and then washing with water and dispersion plating may be performed.
本発明において、上記各種の手段によって得られた粗面
化被覆層は、サンドブラストやエツチングによる凹凸と
は異り、被覆層が基材上に強固に結合され、しかもその
多孔性の凹凸の谷間に適度の細かさの空洞状の間隙を形
成した状態を呈しており、これによって次に施される分
散メッキのメッキ物が、この中に入りこむ状態で結着さ
れて堅牢な密着性を示すに至る。In the present invention, the roughened coating layer obtained by the above-mentioned various means is different from the unevenness caused by sandblasting or etching, and the coating layer is firmly bonded to the base material, and moreover, the roughened coating layer is formed in the valleys of the porous unevenness. A cavity-like gap of moderate size is formed, and the plated material of the dispersion plating that will be applied next enters into this state and is bonded, resulting in a strong adhesion. .
この様な粗面化被覆層の表面に形成される凹部の平均開
口径は10〜5000μの範囲にあるものが好ましく、
又平均厚みも10〜5000μの範囲が好ましい。The average opening diameter of the recesses formed on the surface of such a roughened coating layer is preferably in the range of 10 to 5000μ,
Also, the average thickness is preferably in the range of 10 to 5000μ.
次にか〜る粗面化被覆層の表面に分散メッキを施すので
あるが、これはメッキ浴中に炭素質からなる微粒子を約
0,01〜200 /l/lの範囲で分散させたニッケ
ルを主体とするメッキ浴により電気メッキを施すもので
あり、メッキ浴中の金属酸は差支えない。Next, dispersion plating is applied to the surface of the roughened coating layer. Electroplating is performed using a plating bath mainly composed of, and metal acids in the plating bath do not interfere.
か〜る併用金属としては、コバルト、鉄、銀、銅、リン
、タングステン、マグネシウム、チタン、モリブデン、
ベリリウム、クロム、亜鉛、マンガン、スズ、鉛、ビス
マス、等を挙げることが出来、又前記ニッケル又はニッ
ケルと他の併用金属に対して更に微量の金属イオン、例
えば、銅、アルミニウム、クロム、スズ、バリウム、亜
鉛、銀、白金、イリジウム、ロジウム、等より選ばれた
1種又は2種以上を添加することもよい。Cobalt, iron, silver, copper, phosphorus, tungsten, magnesium, titanium, molybdenum,
Beryllium, chromium, zinc, manganese, tin, lead, bismuth, etc. can be mentioned, and even trace amounts of metal ions such as copper, aluminum, chromium, tin, One or more selected from barium, zinc, silver, platinum, iridium, rhodium, etc. may also be added.
か〜る微量金属の使用は分散メッキの密着性の向上と、
陰極の水素過電圧低減の効果をより一層助長させるもの
であるが、この微量金属が、上記併用金属と同種の金属
では使用の意味がなく、異種金属を選定使用すべきであ
る。か−る微量金属の添加量は、メッキ浴の種類、炭素
質微粒子の濃度、およびその種類等によって適宜決定さ
れるが、通常はメッキ浴に対して5000■/2以下が
望ましい。The use of trace metals improves the adhesion of dispersion plating,
Although it further promotes the effect of reducing the hydrogen overvoltage of the cathode, there is no point in using this trace metal if it is the same type of metal as the metal used in combination, and a different type of metal should be selected and used. The amount of the trace metal added is appropriately determined depending on the type of plating bath, the concentration of carbonaceous fine particles, the type thereof, etc., but it is usually desirable to add 5000 μ/2 or less to the plating bath.
一方、炭素質からなる微粒子としては木炭、石炭、骨炭
、黒鉛、活性炭、カーボンプラ、り、コークス等を挙げ
ることが出来、その粒径は100μ以下の平均粒径を持
つものが好ましく、10μ以下のものが特に好ましい。On the other hand, fine particles made of carbonaceous material include charcoal, coal, bone charcoal, graphite, activated carbon, carbon plastic, coke, etc. The particle size preferably has an average particle size of 100μ or less, and 10μ or less. Particularly preferred are those.
メッキ条件は、電流密度0.1〜15 A/dm2、p
H2〜6の範囲で行うことが望ましい。The plating conditions were a current density of 0.1 to 15 A/dm2, p
It is desirable to carry out in the range of H2-6.
上記微粒子の分散は、液中へのガスの吹込み、ポンプ循
環、攪拌機による機械的攪拌などで実施することが好ま
しい。The dispersion of the fine particles is preferably carried out by blowing gas into the liquid, pump circulation, mechanical stirring using a stirrer, or the like.
以上の如く二層に被覆形成された陰極は粗面化被覆層が
陰極基材表面に多孔性の大きな表面積を持った層として
強固に結着され、その多孔性表面に存在する凹凸の谷間
に迄分散メッキ層が入り込み強い密着性をもった被覆が
得られる。As described above, in the cathode coated with two layers, the roughened coating layer is firmly bonded to the surface of the cathode base material as a porous layer with a large surface area, and the roughened coating layer is firmly bonded to the surface of the cathode substrate as a porous layer with a large surface area. The dispersion plating layer penetrates into the coating to provide a coating with strong adhesion.
かくて得た陰極は強い密着性と優れた低水素過電圧特性
を有するものであり、又この方法によって得た陰極を運
転し、活性が低下したものを再メッキして再生する際に
も既述の通り本発明よって古いメッキ層を下地を残して
削り取り、分散メッキすることにより極めて容易に再メ
ッキすることが出来、又得られた再メ、キ物は優れた性
能モ運転に供することが出来る。The cathode obtained in this way has strong adhesion and excellent low hydrogen overvoltage characteristics, and it can also be used as described above when operating the cathode obtained by this method and re-plating and regenerating the cathode whose activity has decreased. As described above, according to the present invention, it is possible to extremely easily re-plat the old plating layer by scraping off the old plating layer leaving behind the base and performing dispersion plating, and the obtained re-plating and plating can be used for operation with excellent performance. .
この様な再生による活性化には特段の煩瑣な前処理が不
要であるという利点を有する。Activation by such regeneration has the advantage that no particularly complicated pretreatment is required.
でメッキ物の機械的強度をより一層向上させることが出
来る。The mechanical strength of the plated product can be further improved.
以下に実施例および比較例を掲げて本発明を説明する。The present invention will be explained below with reference to Examples and Comparative Examples.
実施例1
SUS510 S よりなるエクスパンドメタル(12
LWx6SWx1.5Wx1.5T、単位mm;LWは
網目の長手方向の長さ、SWは網目の短手方向の長さ、
Wは刻み巾、Tは厚みを表わす。以下同じ)の1dm”
のものを塩酸で工、チング後、活性化処理を行い、下
記第1表のメッキ浴、およびメッキ条件でニッケルメッ
キを施した。Example 1 Expanded metal made of SUS510S (12
LWx6SWx1.5Wx1.5T, unit: mm; LW is the length of the mesh in the longitudinal direction, SW is the length of the mesh in the short direction,
W represents the cutting width and T represents the thickness. (same below) 1dm”
After treatment with hydrochloric acid and quenching, an activation treatment was performed, and nickel plating was performed using the plating bath and plating conditions shown in Table 1 below.
第1表
次いでその表面に次の第2表の浴、および条件でタング
ステンカーバイドを分散粒子とする分散メッキを実施し
粗面化被覆層を形成した。Table 1 Next, dispersion plating using tungsten carbide as dispersed particles was carried out on the surface using the bath and conditions shown in Table 2 below to form a roughened coating layer.
第2表
この被覆層の上に第3表の浴及び条件で活性炭を分散粒
子とした分散メッキを施した。Table 2 Dispersion plating using dispersed particles of activated carbon was applied to this coating layer using the bath and conditions shown in Table 3.
1
第3表
更に又、この分散メッキした電極の表面を水洗し第4表
に示す如きチオ尿素入りの浴でニッケルー硫黄メッキを
施した。1 Table 3 Furthermore, the surface of the dispersion plated electrode was washed with water and nickel-sulfur plated in a bath containing thiourea as shown in Table 4.
2
第4表
次いで又このメッキ物を第6表の浴組成およびメッキ条
件で分散メッキし、更に第4表の浴組成、条件(但しメ
ッキ時間は60分)でニッケルー硫黄メッキを施した。2 Table 4 Next, this plated product was subjected to dispersion plating using the bath composition and plating conditions shown in Table 6, and further nickel-sulfur plating was performed using the bath composition and conditions shown in Table 4 (however, the plating time was 60 minutes).
かくて得た陰極を温度80℃304 NaOH中で相手
極としてニッケル板を用い、電流密度300A/dm2
.50 hr の条件下で水素発生せしめ被覆の密着性
を試験した。その結果メッキ物に異常は認められず20
A / dm2の電位(20%KOH120〜40°
C)Ig/HgO基準でルギン管を陰極の背面に接触さ
せて測定)は−1,00Vを示した。The cathode thus obtained was heated in NaOH at a temperature of 80°C using a nickel plate as a counter electrode, and a current density of 300A/dm2.
.. The adhesion of the coating was tested under conditions of 50 hr of hydrogen generation. As a result, no abnormality was found in the plated material20
Potential in A/dm2 (20% KOH120~40°
C) Measured by bringing the Luggin tube into contact with the back surface of the cathode on an Ig/HgO basis) showed -1,00V.
実施例2
実施例1と同様のエクスパンドメタル陰極基材を、実施
例1の第1表と同様にしてニッケルメッキし、この上面
に平均粒子径50〜80μのニッケル粒子をプラズマ溶
射法により約25μの厚みで溶射した。Example 2 The same expanded metal cathode base material as in Example 1 was nickel-plated in the same manner as in Table 1 of Example 1, and approximately 25 μm of nickel particles with an average particle size of 50 to 80 μm were applied to the upper surface by plasma spraying. It was sprayed to a thickness of .
この溶射物は表面に酸化物が存在するので、これを除く
ため80℃ 6N−H(J中に30分浸漬し、その後、
実施例1の第3表に準じて活性炭分散ニッケルメッキ浴
による分散メッキを、次いで第4表に準じてニッケルー
硫黄メッキを施した。Since this sprayed product has oxides on its surface, it was immersed in 6N-H (J) at 80°C for 30 minutes to remove it.
Dispersion plating using an activated carbon dispersed nickel plating bath was performed according to Table 3 of Example 1, and then nickel-sulfur plating was performed according to Table 4.
このメッキ物を実施例1と同様300 A/dm2X
50 hrで水素発生せしめたが異常は認められず、電
位測定の結果も−0,99Vを示した。This plated product was heated at 300 A/dm2X as in Example 1.
Although hydrogen was generated for 50 hours, no abnormality was observed, and the potential measurement result also showed -0.99V.
実施例3
実施例1と同様のエクスパンドメタル陰極基材を用い、
これを60℃、6N−HC沼中に30分間浸漬の後、塩
化パラジウムを0.21743の割合で含む液0.5沼
中に6分間浸漬し、水洗後、塩化ニッケル240 g/
e3と塩酸10011/、、eよりなるメッキ浴1−e
中で温度60℃、電流密度3A/d m2.6分間、電
気メッキせしめた。その後、直ちに実施例1の第6表及
び第4表と同じ条件で活性炭による分散メッキおよびニ
ッケル硫黄メッキを施した。Example 3 Using the same expanded metal cathode base material as in Example 1,
After immersing this in a 6N-HC swamp at 60°C for 30 minutes, it was immersed for 6 minutes in a 0.5 swamp solution containing palladium chloride at a ratio of 0.21743, and after washing with water, nickel chloride 240 g/
Plating bath 1-e consisting of e3 and hydrochloric acid 10011/, e
Electroplating was carried out in a chamber at a temperature of 60° C. and a current density of 3 A/d m for 2.6 minutes. Immediately thereafter, dispersion plating with activated carbon and nickel-sulfur plating were performed under the same conditions as in Tables 6 and 4 of Example 1.
この活性化陰極を、イオン交換膜としてNafion9
01(デュポン社製)を使用し、5US310S製の陰
極室を有する1dm”の電解槽の陰極室中に組込み、温
度90℃で電解により31%NaOHの製造を300日
間実施した。This activated cathode was used as an ion exchange membrane using Nafion9.
01 (manufactured by DuPont), was incorporated into the cathode chamber of a 1 dm'' electrolytic cell having a cathode chamber made of 5US310S, and 31% NaOH was produced by electrolysis at a temperature of 90° C. for 300 days.
300日運転後の陰極の電位は−1,03Vを示し、若
干の劣化が認められた。The potential of the cathode after 300 days of operation was -1.03 V, and some deterioration was observed.
この陰極を取外し、ワイヤーブラシを用いてメロ表、第
4表に準拠して分散メッキおよびニッケ5
ル硫黄メッキを行った。かくて得たメッキ物を300A
/dm2X50 hrの条件で水素発生を行なった結果
、異常は認められず電位は−1,00Vであった。This cathode was removed, and dispersion plating and nickel 5 sulfur plating were performed using a wire brush in accordance with the Melo table and Table 4. The plated product obtained in this way is 300A
As a result of hydrogen generation under the conditions of /dm2 x 50 hr, no abnormality was observed and the potential was -1,00V.
実施例4
実施例1で得た活性陰極(第1表〜第4表に従ってメッ
キした陰極)を1dm”の電解槽に組込んで実施例乙に
記載したと同様な構成及び操作条件で約450日間運転
した。Example 4 The active cathode obtained in Example 1 (the cathode plated according to Tables 1 to 4) was assembled into a 1 dm" electrolytic cell, and the electrolytic cell was heated to approximately 450 mL under the same configuration and operating conditions as described in Example B. I drove for days.
運転期間経過後の電位は−1,05Vを示し、若干の劣
化が認められた。After the operating period, the potential showed -1.05V, and some deterioration was observed.
そこでこの陰極の再生を行うため、実施例3と同様にし
て古いメッキ層を除き、水洗後、実施例1の第3表、第
4表記載の通り、分散メッキおよびニッケル硫黄メッキ
を施した。Therefore, in order to regenerate this cathode, the old plating layer was removed in the same manner as in Example 3, and after washing with water, dispersion plating and nickel-sulfur plating were performed as described in Tables 3 and 4 of Example 1.
この再メッキされた陰極を500 A/dm2X 50
hr水素発生を行ったところ異常は認められず、電位は
−1,00Vであった。This re-plated cathode is heated to 500 A/dm2X 50
When hydrogen generation was performed for hr, no abnormality was observed and the potential was -1,00V.
比較例1
実施例1における第1表に従って基材にニッケ6
ルメツキを施した5枚の陰極を準備し、これを300A
/dm2X50hr水素発生を行なった結果該ニッケル
メッキの大巾な剥離が認められたもの1枚、部分的に剥
離が認められたもの2枚、残り2枚は異常が認められな
かった。この様にメッキの密着性にバラツキにより密着
不良のものが生じた。Comparative Example 1 Five cathodes whose base materials were coated with nickel 6 lume according to Table 1 in Example 1 were prepared, and the cathodes were heated at 300A.
As a result of hydrogen generation for /dm2 x 50 hours, one piece showed extensive peeling of the nickel plating, two pieces showed partial peeling, and no abnormalities were found on the remaining two pieces. As described above, due to variations in the adhesion of plating, some cases of poor adhesion occurred.
比較例2
同一の基材5枚を準備し実施例1における第1表に従い
2A/dm2X4hrの条件でニッケルメッキを施した
。次いでこれらの表面な#150のアランダムを用いて
5に9/mGの空気圧でサンドブラストして表面を粗に
した。次いでこれらを60℃、6 N −H(J中に1
0分間浸漬後、実施例1の第3表、第4表に従い分散メ
ッキおよびニッケルー硫黄メッキを施した。Comparative Example 2 Five identical substrates were prepared and nickel plated under the conditions of 2 A/dm 2 × 4 hr according to Table 1 in Example 1. These surfaces were then roughened by sandblasting using #150 alundum at an air pressure of 5 to 9/mG. These were then incubated at 60°C with 6N-H (1 in J).
After immersion for 0 minutes, dispersion plating and nickel-sulfur plating were performed according to Tables 3 and 4 of Example 1.
これらのメッキ物を300 A / dm2X501−
1水素発生を行った結果、大巾なハクリは認められなか
ったが、部分的ハクリが生じたものが2枚あった。These plated items are rated at 300 A/dm2X501-
1 As a result of hydrogen generation, no extensive peeling was observed, but there were two pieces with partial peeling.
このようにサンドブラスト処理をして表面に平面的な凹
凸を作ってもまた密着不良が生ずる。Even if sandblasting is performed to create planar irregularities on the surface, poor adhesion will still occur.
特許出願人の名称 東亜合成化学工業株式会社Patent applicant name Toagosei Chemical Industry Co., Ltd.
Claims (1)
ケル主体の金属成分を含むメッキ浴を用いて電気メッキ
を施すことにより陰極を活性化するに当り、該陰極基材
表面に存在させた粗面化表面を有する被覆層を介して上
記電気メッキを施すことを特徴とする陰極の活性化法。1. When activating the cathode by electroplating the surface of the cathode substrate using a plating bath containing a metal component mainly composed of nickel in which carbonaceous fine particles are dispersed, A method for activating a cathode, characterized in that the electroplating described above is applied through a coating layer having a roughened surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58107838A JPS602685A (en) | 1983-06-17 | 1983-06-17 | Activating method of cathode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58107838A JPS602685A (en) | 1983-06-17 | 1983-06-17 | Activating method of cathode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS602685A true JPS602685A (en) | 1985-01-08 |
JPH025825B2 JPH025825B2 (en) | 1990-02-06 |
Family
ID=14469324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58107838A Granted JPS602685A (en) | 1983-06-17 | 1983-06-17 | Activating method of cathode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS602685A (en) |
-
1983
- 1983-06-17 JP JP58107838A patent/JPS602685A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH025825B2 (en) | 1990-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3794501B2 (en) | Durable electrode coating | |
RU2268324C2 (en) | Electrode for production of hydrogen (versions) and method of its manufacture (versions) | |
CN1009562B (en) | Electrode for use in electrochemical process, method for preparing the same and use thereof in electrolysis cells | |
EP0067975B1 (en) | Method for water electrolysis | |
US4240895A (en) | Raney alloy coated cathode for chlor-alkali cells | |
US2305539A (en) | Electrode | |
US4370361A (en) | Process of forming Raney alloy coated cathode for chlor-alkali cells | |
JPH0790664A (en) | Low hydrogen overvoltage cathode and production thereof | |
CA1072915A (en) | Cathode surfaces having a low hydrogen overvoltage | |
GB2046795A (en) | Porous nickel electrode and process for its production | |
JP4115575B2 (en) | Activated cathode | |
EP0129231B1 (en) | A low hydrogen overvoltage cathode and method for producing the same | |
JPH0633481B2 (en) | Electrolytic cathode and method of manufacturing the same | |
JP3676554B2 (en) | Activated cathode | |
JPS602685A (en) | Activating method of cathode | |
JPH06212471A (en) | Method for activating cathode with catalyst | |
CN1226289A (en) | Durable electrode coatings | |
JPS6145711B2 (en) | ||
EP0048284B1 (en) | Improved raney alloy coated cathode for chlor-alkali cells and method for producing the same | |
US4394228A (en) | Raney alloy coated cathode for chlor-alkali cells | |
JPS6029487A (en) | Manufacture of cathode with low hydrogen overvoltage | |
JPS5867883A (en) | Manufacture of low hydrogen overvoltage cathode | |
JPS6261677B2 (en) | ||
USRE31410E (en) | Raney alloy coated cathode for chlor-alkali cells | |
JPH0245719B2 (en) |