JPH025825B2 - - Google Patents

Info

Publication number
JPH025825B2
JPH025825B2 JP58107838A JP10783883A JPH025825B2 JP H025825 B2 JPH025825 B2 JP H025825B2 JP 58107838 A JP58107838 A JP 58107838A JP 10783883 A JP10783883 A JP 10783883A JP H025825 B2 JPH025825 B2 JP H025825B2
Authority
JP
Japan
Prior art keywords
plating
cathode
nickel
dispersion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58107838A
Other languages
Japanese (ja)
Other versions
JPS602685A (en
Inventor
Akihiro Sakata
Toshimasa Okazaki
Kyoji Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP58107838A priority Critical patent/JPS602685A/en
Publication of JPS602685A publication Critical patent/JPS602685A/en
Publication of JPH025825B2 publication Critical patent/JPH025825B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は陰極の活性付与方法特に水溶液中にお
いて優れた低水素過電圧を示す、主として電解の
ための陰極の活性付与方法に関する。 従来より陰極で水素ガスを発生する技術として
隔膜(アスベストの如き多孔性隔膜及びイオン
交換膜の如き密隔膜を含む)を使用したアルカリ
金属塩水溶液の電解が知られており、水水電解等
もこれに該当する。 近年省エネルギーの観点から、この種の技術に
おいて電解電圧の低減化が望まれて来ており、か
かる電解電圧低減の手段として各種活性陰極が提
案されている。 この様な活性陰極は通常鉄、銅、ニツケル及び
これらを含む合金、バルブ金属などの耐アルカリ
性基材の表面に、低減された水素過電圧特性をも
つ活性金属材料の層を、溶射、熱分解、溶融物へ
の浸漬、電気メツキ、化学メツキ、蒸着、爆着な
どの手段で被覆することによつて得られ、就中、
かゝる活性金属材料層の表面に細かい凹凸を形成
して多孔性の粗なる活性表面を作ることにより、
活性金属材料層本来の電気化学的触媒作用に加え
て活性表面積の増大により水素過電圧底減の効用
をより助長せしめることも行なわれている。 これらの陰極の一つとして本発明者等の或る者
は先に陰極基材表面に炭素質の微粒子を分散させ
たメツキ浴を用いて電気メツキを施す方法を提案
した。(特開昭57−35689、特開昭57−86491、特
開昭57−94582、特開昭57−94583など) 本発明はかゝる活性陰極の取得に関してメツキ
時の作業性をより一層向上させると共に、得られ
た陰極基材とメツキ物との密着性を向上させ、陰
極の寿命を延長せんとするもので、陰極基材表面
に、炭素質微粒子を分散させたニツケル主体の金
属成分を含むメツキ浴を用いて電気メツキを施す
ことにより陰極を活性化するに当り、該陰極基材
表面に存在させた粗面化表面を有する被覆層(以
下これを粗面化被覆層と称する)を介して上記電
気メツキ(以下これを分散メツキと称する)を施
すことを特徴とする陰極の活性化法である。 本発明方法で使用する陰極基材としては、その
表面に存在させる粗面化被覆層、およびその表面
に適用する分散メツキ層の各層形成に関して、そ
の層形成が容易であり密着性の格別の支障を及ぼ
さない材料が用いられ、具体的に鉄、銅、ニツケ
ル及びこれらを含む合金や、バルブ金属よりなる
耐アルカリ性の金属素材が好ましく用いられ、又
かゝる金属素材に予めニツケルメツキ等のメツキ
を施したものを使用することも出来る。 又その形状として特に制限はないが、エキスパ
ンドメタル及びこれをプレスした有孔平板、パン
チングメタル、織成金網等の多孔性形状のものが
好ましく採用され、それらの空間率は1〜99%の
範囲が好ましい。 本発明方法は、かゝる基材の表面に粗面化被覆
層を存在させるのであるが、これは陰極基材自体
の表面をサンドプラスト、或は薬液によるエツチ
ング等で表面凹凸を付与して粗面状態となすもの
ではなく、飽迄も陰極基材表面に粗面化被覆層を
別途密着状態で存在させるものであり、かくして
次に施す分散メツキの層を基材に強固に結合させ
ることが出来る。 この場合、新らしい陰極基材を用いて、これに
新規に活性を付与する場合と、陰極として使用の
結果性能劣化を来した陰極を再メツキして活性を
付与する場合とに分けることが出来る。 前者の場合には、新らしい陰極基材表面に新ら
たに粗面化被覆層を形成してその表面に分散メツ
キを施すことが必要であり、いずれにしても粗面
化被覆層の存在下に分散メツキが施される。 この様な粗面化被覆層の形成には種々な手段が
あるが、望ましい方法として金属もしくは非金属
粒子の溶射、上記分散メツキに使用する炭素質微
粒子に代えて特定の粒子状固形物を分散させた以
外にはその浴組成が分散メツキ浴と略同様のメツ
キ浴によるメツキを挙げることが出来る。 この場合の溶射は、通常のフレーム溶射法、或
はプラズマ溶射法により実施することが出来、使
用粒子としてニツケル、コバルト、銀能の金属粒
子、及び酸化ニツケル、酸化ジルコニウム、セラ
ミツク等の非金属粒子が使用出来る。 一方、粒子状固形物を分散した浴による粗面化
被覆形成は、好ましくはタングステンカーバイ
ド、シリコンカーバイト等の炭化物、酸化ニツケ
ル、酸化ジルコニウム等の酸化物、或はニツケル
等の金属より選ばれた概ね0.01〜100μの範囲の平
均粒径を持つ粒子を使用し、これを分散メツキ浴
と略同様の浴組成でその中の炭素質微粒子を上記
の粒子に代えて含有させたメツキ浴で電気メツキ
を施すことで達成出来る。 次に前述の後者の場合、即ち性能劣化した陰極
を再メツキして活性を付与する場合においては、
表面のメツキ層及び下地層をすべて取り除いて基
材を露出せしめた後、前記と同様にして粗面化被
覆層、分散メツキ層を順次形成させてもよいが、
通常は分散メツキとニツケル硫黄メツキなどで形
成されている古いメツキ層の下地を残すよう、例
えばワイヤーバフなどで表面の古いメツキ層を削
り取り、基材に密着している粗面化被覆層を露出
せしめた後、水洗し分散メツキを施すことでよ
い。 本発明において、上記各種の手段によつて得ら
れた粗面化被覆層は、サンドブラストやエツチン
グによる凹凸とは異り、被覆層が基材上に強固に
結合され、しかもその多孔性の凹凸の谷間に適度
の細かさの空洞状の間隙を形成した状態を呈して
おり、これによつて次に施される分散メツキのメ
ツキ物が、この中に入りこむ状態で結着されて堅
牢な密着性を示すに至る。 この様な粗面化被覆層の表面に形成される凹部
の平均開口径は10〜5000μの範囲にあるものが好
ましく、又平均厚みも10〜5000μの範囲が好まし
い。 次にかゝる粗面化被覆層の表面に分散メツキを
施すのであるが、これはメツキ浴中に炭素質から
なる微粒子を約0.01〜200g/の範囲で分散さ
せたニツケルを主体とするメツキ浴により電気メ
ツキを施するものであり、メツキ浴中の金属成分
は、ニツケルを優位量(50重量%以上)とする
が、他の金属の1種又は2種以上併用することは
差支えない。 かゝる併用金属としては、コバルト、鉄、銀、
銅、リン、タングステン、マグネシウム、チタ
ン、モリブデン、ベリリウム、クロム、亜鉛、マ
ンガン、スズ、鉛、ビスマス、等を挙げることが
出来、又前記ニツケル又はニツケルと他の併用金
属に対して更に微量の金属イオン、例えば、銅、
アルミニウム、クロム、スズ、バリリム、亜鉛、
銀、白金、イリジウム、ロジウム、等より選ばれ
た1種又は2種以上を添加することもよい。 かゝる微量金属の使用は分散メツキの密着性の
向上と、陰極の水素過電圧低減の効果をより一層
助長させるものであるが、この微量金属が、上記
併用金属と同種の金属では使用の意味がなく、異
種金属を選定使用すべきである。かゝる微量金属
の添加量は、メツキ浴の種類、炭素質微粒子の濃
度、およびその種類等によつて適宜決定される
が、通常はメツキ浴に対して5000mg/以下が望
ましい。 一方、炭素質からなる微粒子としては木炭、石
炭、骨炭、黒鉛、活性炭、カーボンブラツク、コ
ークス等を挙げることが出来、その粒径は100μ
以下の平均粒径を持つものが好ましく、10μ以下
のものが特に好ましい。 メツキ条件は、電流密度0.1〜15A/dm2、PH
2〜6の範囲で行うことが望ましい。 上記微粒子の分散は、液中へのガスの吹込み、
ポンプ循環、撹拌機による機械的撹拌などで実施
することが好ましい。 以上の如く二層の被覆形成された陰極は粗面化
被覆層が陰極基材表面に多孔性の大きな表面積を
持つた層として強固に結着され、その多孔性表面
に存在する凹凸の谷間に迄分散メツキ層が入り込
み強い密着性をもつた被覆が得られる。 かくて得た陰極は強い密着性と優れた低水素過
電圧特性を有するものであり、又この方法によつ
て得た陰極を運転し、活性が低下したものを再メ
ツキして再生する際にも既述の通り本発明に従い
古いメツキ層を下地を残して削り取り、分散メツ
キすることにより極めて容易に再メツキすること
が出来、又得られた再メツキ物は優れた性能で運
転に供することが出来る。 この様な再生による活性化には特段の煩瑣な前
処理が不要であるという利点を有する。 なお、本発明方法で得た陰極は炭素質微粒子分
散メツキの上層に更にニツケルメツキ或はニツケ
ル―硫黄メツキを行うことでメツキ物の機械的強
度をより一層向上させることが出来る。 以下に実施例および比較例を掲げて本発明を説
明する。 実施例 1 SUS310Sよりなるエクスパンドメタル(12LW
×6SW×1.5W×1.5T、単位mm;LWは網目の長
手方向の長さ、SWは網目の短手方向の長さ、W
は刻み巾、Tは厚みを表わす。以下同じ)の1d
m2のものを塩酸でエツチング後、活性化処理を行
い、下記第1表のメツキ浴、およびメツキ条件で
ニツケルメツキを施した。
The present invention relates to a method for activating a cathode, particularly a method for activating a cathode for electrolysis, which exhibits an excellent low hydrogen overvoltage in an aqueous solution. Conventionally, electrolysis of aqueous alkali metal salt solutions using diaphragms (including porous diaphragms such as asbestos and tight diaphragms such as ion exchange membranes) has been known as a technique for generating hydrogen gas at the cathode, and water electrolysis etc. This applies. In recent years, from the viewpoint of energy saving, it has been desired to reduce the electrolysis voltage in this type of technology, and various active cathodes have been proposed as a means for reducing the electrolysis voltage. Such active cathodes are typically made by spraying, pyrolyzing, or depositing a layer of an active metal material with reduced hydrogen overvoltage characteristics on the surface of an alkali-resistant substrate such as iron, copper, nickel, alloys containing these, or valve metal. Obtained by coating by means such as immersion in a melt, electroplating, chemical plating, vapor deposition, explosion bonding, etc., among others:
By forming fine irregularities on the surface of the active metal material layer to create a porous and rough active surface,
In addition to the inherent electrochemical catalytic action of the active metal material layer, efforts have also been made to increase the active surface area to further enhance the effect of reducing the hydrogen overvoltage. As one of these cathodes, some of the present inventors have previously proposed a method in which the surface of a cathode substrate is electroplated using a plating bath in which carbonaceous fine particles are dispersed. (JP-A-57-35689, JP-A-57-86491, JP-A-57-94582, JP-A-57-94583, etc.) The present invention further improves the workability during plating to obtain such an active cathode. At the same time, the purpose is to improve the adhesion between the obtained cathode base material and the plated material and extend the life of the cathode. When activating the cathode by electroplating using a plating bath containing This is a cathode activation method characterized by performing the above-mentioned electroplating (hereinafter referred to as dispersion plating) through a wafer. The cathode substrate used in the method of the present invention is easy to form and does not pose any particular problem in adhesion with regard to the formation of the roughening coating layer present on the surface and the dispersion plating layer applied to the surface. Specifically, alkali-resistant metal materials such as iron, copper, nickel, alloys containing these, and valve metals are preferably used, and such metal materials are preferably plated with nickel plating or the like in advance. You can also use the prepared one. Although there is no particular restriction on the shape, porous shapes such as expanded metal, perforated flat plates made of pressed metal, punched metal, and woven wire mesh are preferably used, and the void ratio thereof is in the range of 1 to 99%. is preferred. In the method of the present invention, a roughened coating layer is formed on the surface of such a substrate. Rather than creating a rough surface, a roughening coating layer is separately placed in close contact with the surface of the cathode base material, thereby firmly bonding the dispersion plating layer to be applied next to the base material. I can do it. In this case, there are two types of cases: cases where a new cathode base material is used and new activity is imparted to it, and cases where activity is imparted by replating a cathode whose performance has deteriorated as a result of its use as a cathode. . In the former case, it is necessary to form a new roughened coating layer on the surface of the new cathode substrate and apply dispersion plating to that surface. Distributed plating is applied to the bottom. There are various methods for forming such a roughened coating layer, but preferred methods include thermal spraying of metal or non-metal particles, and dispersion of specific particulate solids in place of the carbonaceous fine particles used in the above-mentioned dispersion plating. One example is plating using a plating bath whose bath composition is substantially the same as that of the dispersion plating bath, except that the plating bath composition is the same as that of the dispersion plating bath. Thermal spraying in this case can be carried out by ordinary flame spraying or plasma spraying, and the particles used include metal particles such as nickel, cobalt, and silver, and nonmetallic particles such as nickel oxide, zirconium oxide, and ceramic. can be used. On the other hand, the formation of a roughening coating using a bath in which particulate solids are dispersed is preferably carried out using carbides such as tungsten carbide and silicon carbide, oxides such as nickel oxide and zirconium oxide, or metals such as nickel. Particles with an average particle size in the range of approximately 0.01 to 100μ are used, and these are electroplated in a plating bath that has a bath composition similar to that of the dispersion plating bath and contains carbonaceous fine particles in place of the above particles. This can be achieved by applying Next, in the latter case mentioned above, that is, when replating the cathode whose performance has deteriorated and imparting activity,
After all the surface plating layers and underlayers are removed to expose the base material, a roughening coating layer and a dispersion plating layer may be sequentially formed in the same manner as described above.
The old plating layer on the surface, which is usually formed by dispersion plating and nickel sulfur plating, is scraped away using a wire buff, etc., to leave the base of the old plating layer, and the roughened coating layer that is in close contact with the base material is exposed. After drying, wash with water and apply dispersion plating. In the present invention, the roughened coating layer obtained by the above-mentioned various means is different from the unevenness caused by sandblasting or etching, and the coating layer is firmly bonded to the base material and has no porous unevenness. A cavity-like gap of moderate size is formed in the valley, and the plating material of the dispersion plating that will be applied next enters into this state and is bonded, creating a strong adhesion. This results in the following. The average opening diameter of the recesses formed on the surface of such a roughened coating layer is preferably in the range of 10 to 5,000 microns, and the average thickness is also preferably in the range of 10 to 5,000 microns. Next, dispersion plating is applied to the surface of the roughened coating layer. Electroplating is performed using a bath, and the metal component in the plating bath is nickel in a predominant amount (50% by weight or more), but one or more other metals may be used in combination. Such combined metals include cobalt, iron, silver,
Copper, phosphorus, tungsten, magnesium, titanium, molybdenum, beryllium, chromium, zinc, manganese, tin, lead, bismuth, etc. can be mentioned, and even trace amounts of metals compared to the above-mentioned nickel or nickel and other combined metals can be mentioned. ions, e.g. copper,
aluminum, chromium, tin, varilim, zinc,
One or more selected from silver, platinum, iridium, rhodium, etc. may also be added. The use of such trace metals improves the adhesion of dispersed plating and further promotes the effect of reducing the hydrogen overvoltage of the cathode. However, if this trace metal is the same type of metal as the above-mentioned combined metal, the meaning of its use may be limited. Therefore, dissimilar metals should be selected and used. The amount of such trace metal added is appropriately determined depending on the type of plating bath, the concentration of carbonaceous fine particles, the type thereof, etc., but it is usually preferably 5000 mg or less per plating bath. On the other hand, fine particles made of carbonaceous material include charcoal, coal, bone charcoal, graphite, activated carbon, carbon black, coke, etc., and the particle size is 100 μm.
Those having an average particle size of the following are preferable, and those having an average particle size of 10 μ or less are particularly preferable. The plating conditions are current density 0.1-15A/ dm2 , PH
It is desirable to carry out in the range of 2-6. The dispersion of the fine particles is carried out by blowing gas into the liquid,
It is preferable to use pump circulation, mechanical stirring using a stirrer, or the like. As described above, in the cathode formed with the two-layer coating, the roughened coating layer is firmly bonded to the surface of the cathode substrate as a porous layer with a large surface area, and the roughened coating layer is firmly bonded to the surface of the cathode substrate as a porous layer with a large surface area. The dispersed plating layer penetrates until the end of the coating, resulting in a coating with strong adhesion. The cathode obtained in this way has strong adhesion and excellent low hydrogen overvoltage characteristics, and is also easy to use when operating the cathode obtained by this method and replating and regenerating the cathode whose activity has decreased. As mentioned above, according to the present invention, by scraping off the old plating layer while leaving the underlying layer and performing dispersion plating, re-plating can be performed extremely easily, and the obtained re-plated product can be used for operation with excellent performance. . Activation by such regeneration has the advantage that no particularly complicated pretreatment is required. In addition, the mechanical strength of the cathode obtained by the method of the present invention can be further improved by further performing nickel plating or nickel-sulfur plating on the upper layer of the carbonaceous fine particle dispersed plating. The present invention will be explained below with reference to Examples and Comparative Examples. Example 1 Expanded metal made of SUS310S (12LW
×6SW×1.5W×1.5T, unit: mm; LW is the length of the mesh in the longitudinal direction, SW is the length of the mesh in the short direction, W
represents the cutting width and T represents the thickness. (same below) 1d
After etching m 2 pieces with hydrochloric acid, an activation treatment was performed, and nickel plating was performed using the plating bath and plating conditions shown in Table 1 below.

【表】 次いでその表面に次の第2表の浴、および条件
でタングステンカーバイドを分散粒子とする分散
メツキを実施し粗面化被覆層を形成した。
[Table] Next, dispersion plating using tungsten carbide as dispersed particles was performed on the surface using the bath and conditions shown in Table 2 below to form a roughened coating layer.

【表】 この被覆層の上に第3表の浴及び条件で活性炭
を分散粒子とした分散メツキを施した。
[Table] Dispersion plating using dispersed particles of activated carbon was performed on this coating layer using the bath and conditions shown in Table 3.

【表】 更に又、この分散メツキした電極の表面を水洗
し第4表に示す如きチオ尿素入りの浴でニツケル
―硫黄メツキを施した。
[Table] Furthermore, the surface of the dispersion-plated electrode was washed with water and nickel-sulfur plating was performed in a bath containing thiourea as shown in Table 4.

【表】 次いで又このメツキ物を第3表の浴組成および
メツキ条件で分散メツキし、更に第4表の浴組
成、条件(但しメツキ時間は60分)でニツケル一
硫黄メツキを施した。 かくて得た陰極を温度80℃30%NaOH中で相
手極としてニツケル板を用い、電流密度300A/
dm2、50hrの条件下で水素発生せしめ被覆の密着
性を試験した。その結果メツキ物に異常は認めら
れず20A/dm2の電位(20%KOH、20〜40℃H
g/HgO基準でルギン管を陰極の背面に接触さ
せて測定)は−1.00Vを示した。 実施例 2 実施例1と同様のエクスパンドメタル陰極基材
を、実施例1の第1表と同様にしてニツケルメツ
キし、この上面に平均粒子径50〜80μのニツケル
粒子をプラズマ溶射法により約25μの厚みで溶射
した。 この溶射物は表面に酸化物が存在するので、こ
れを除くため80℃6N―HCl中に30分浸漬し、そ
の後、実施例1の第3表に準じて活性炭分散ニツ
ケルメツキ浴による分散メツキを、次いで第4表
に準じてニツケル―硫黄メツキを施した。 このメツキ物を実施例1と同様300A/dm2×
50hrで水素発生せしめたが異常は認められず、電
位測定の結果も−0.99Vを示した。 実施例 3 実施例1と同様のエクスパンドメタル陰極基材
を用い、これを60℃、6N―HCl中に30分間浸漬
の後、塩化パラジウムを0.2g/の割合で含む
液0.5中に3分間浸漬し、水洗後、塩化ニツケ
ル240g/と塩酸100g/よりなるメツキ浴1
中で温度30℃、電流密度3A/dm2、3分間、
電気メツキせしめた。その後、直ちに実施例1の
第3表及び第4表と同じ条件で活性炭による分散
メツキおよびニツケル硫黄メツキを施した。 この活性化陰極を、イオン交換膜として
Nafion901(デユポン社製)を使用し、SUS310S
製の陰極室を有する1dm2の電解槽の陰極室中に
組込み、温度90℃で電解により31%NaOHの製
造を300日間実施した。 300日運転後の陰極の電位は−1.03Vを示し、
若干の劣化が認められた。 この陰極を取外し、ワイヤーブラシを用いてメ
ツキ層が0.05〜0.2mm厚さに残るように古いメツ
キ層を取除き分散メツキ、ニツケル硫黄の古い層
よりなる粗面化被覆層を露出させた。これを水洗
し、実施例1の第3表、第4表に準拠して分散メ
ツキおよびニツケル硫黄メツキを行つた。かくて
得たメツキ物を300A/dm2×50hrの条件で水素
発生を行なつた結果、異常は認められず電位は−
1.00Vであつた。 実施例 4 実施例1で得た活性陰極(第1表〜第4表に従
つてメツキした陰極)を1dm2の電解槽に組込ん
で実施例3に記載したと同様な構成及び操作条件
で450日間運転した。 運転期間経過後の電位は−1.03Vを示し、若干
の劣化が認められた。 そこでこの陰極の再生を行うため、実施例3と
同様にして古いメツキ層を除き、水洗後、実施例
1の第3表、第4表記載の通り、分散メツキおよ
びニツケル硫黄メツキを施した。 この再メツキされた陰極を300A/dm2×50hr
水素発生を行つたところ異常は認められず、電位
は−1.00Vであつた。 比較例 1 実施例1における第1表に従つて基材にニツケ
ルメツキを施した5枚の陰極を準備し、これを
300A/dm2×50hr水素発生を行なつた結果、該
ニツケルメツキの大巾な剥離が認められたもの1
枚、部分的に剥離が認められたもの2枚、残り2
枚は異常が認められなかつた。この様にメツキ密
着性にバラツキにより密着不良のものが生じた。 比較例 2 同一の基材5枚を準備し実施例1における第1
表に従い2A/dm2×4hrの条件でニツケルメツキ
を施した。次いでこれらの表面を#150のアラン
ダムを用いて5Kg/cm2Gの空気圧でサンドブラス
トして表面を粗にした。次いでこれらを60℃、
6N−HCl中に10分間浸漬後、実施例1の第3表、
第4表に従い分散メツキおよびニツケル―硫黄メ
ツキを施した。 これらのメツキ物を300A/dm2×50H水素発
生を行つた結果、大巾なハクリは認められなかつ
たが、部分的ハクリが生じたものが2枚あつた。 このようにサンドプラスト処理をして表面に平
面的な凹凸を作つてもまた密着不良が生ずる。 比較例 3 実施例3に示す方法により得られた活性化陰極
を、イオン交換膜としてNafion901(デユポン社
製)を使用し、SUS301S製の陰極室を有する1d
m2電解槽の陰極室中に組込み、温度90℃で電解に
より31%NaOHの製造を300日間実施した。 300日運転後の陰極の電位は−1.03Vを示し、
若干の劣下が認められた。 この陰極を取外し、以下の条件で湿式ブラスト
を行つた。 圧力 4Kg/cm2 ブラスト研摩材 ガラスビーズ#80 距離 10cm 時間 5秒 ブラスト後の表面はムラを生じ、全面積の26%
が完全に剥離し、基材が露出していた。 これを水洗し、実施例1の第3表及び第4表に
準拠して分散メツキ及びニツケル―硫黄メツキを
行つた。 メツキ後、強く水洗したところ、基材露出部分
のメツキ物が脱落した。
[Table] This plated product was then dispersion plated using the bath composition and plating conditions shown in Table 3, and then nickel monosulfur plating was applied using the bath composition and conditions shown in Table 4 (however, the plating time was 60 minutes). The cathode thus obtained was heated at a temperature of 80°C in 30% NaOH using a nickel plate as the other electrode, and at a current density of 300A/
The adhesion of the coating was tested by generating hydrogen under conditions of dm 2 and 50 hours. As a result, no abnormality was observed in the plated material, and a potential of 20A/ dm2 (20% KOH, 20 to 40℃H) was applied.
g/HgO (measured with a Luggin tube in contact with the back surface of the cathode) showed -1.00V. Example 2 The same expanded metal cathode base material as in Example 1 was nickel-plated in the same manner as in Table 1 of Example 1, and nickel particles with an average particle size of 50 to 80 μm were coated on the upper surface with a particle size of about 25 μm by plasma spraying. Sprayed in thickness. Since this sprayed product had oxides on its surface, it was immersed in 6N-HCl at 80°C for 30 minutes to remove this, and then dispersion plating was performed using an activated carbon dispersed nickel plating bath according to Table 3 of Example 1. Next, nickel-sulfur plating was applied according to Table 4. As in Example 1, this plated material was heated at 300A/dm 2 ×
Hydrogen was generated for 50 hours, but no abnormality was observed, and the potential measurement result also showed -0.99V. Example 3 Using the same expanded metal cathode base material as in Example 1, it was immersed in 6N-HCl at 60°C for 30 minutes, and then immersed in a solution 0.5 containing palladium chloride at a ratio of 0.2 g/min for 3 minutes. After washing with water, plating bath 1 consisting of nickel chloride 240g and hydrochloric acid 100g
inside at a temperature of 30°C and a current density of 3A/dm 2 for 3 minutes.
I had it electrified. Immediately thereafter, dispersion plating with activated carbon and nickel sulfur plating were applied under the same conditions as in Tables 3 and 4 of Example 1. This activated cathode can be used as an ion exchange membrane.
Using Nafion901 (manufactured by Dupont), SUS310S
The product was installed in the cathode chamber of a 1 dm 2 electrolytic cell with a cathode chamber made of aluminum, and the production of 31% NaOH was carried out by electrolysis at a temperature of 90 °C for 300 days. The potential of the cathode after 300 days of operation shows -1.03V,
Some deterioration was observed. This cathode was removed, and the old plating layer was removed using a wire brush so that the plating layer remained at a thickness of 0.05 to 0.2 mm, exposing the roughened coating layer consisting of the old layer of dispersed plating and nickel sulfur. This was washed with water, and dispersion plating and nickel sulfur plating were performed according to Tables 3 and 4 of Example 1. Hydrogen generation was performed on the plated material obtained in this way under conditions of 300 A/dm 2 × 50 hr, and no abnormality was observed and the potential was -
It was 1.00V. Example 4 The active cathode obtained in Example 1 (cathode plated according to Tables 1 to 4) was assembled into a 1 dm 2 electrolytic cell under the same configuration and operating conditions as described in Example 3. Driven for 450 days. After the operating period, the potential showed -1.03V, and some deterioration was observed. Therefore, in order to regenerate this cathode, the old plating layer was removed in the same manner as in Example 3, and after washing with water, dispersion plating and nickel sulfur plating were applied as described in Tables 3 and 4 of Example 1. This replated cathode is used at 300A/dm 2 ×50hr.
When hydrogen was generated, no abnormality was observed and the potential was -1.00V. Comparative Example 1 Five cathodes with nickel plating on the base material were prepared according to Table 1 in Example 1, and
As a result of hydrogen generation at 300A/dm 2 ×50hr, extensive peeling of the nickel plating was observed 1
2 pieces with partial peeling, remaining 2 pieces
No abnormality was observed in the sample. As described above, due to variations in plating adhesion, some cases of poor adhesion occurred. Comparative Example 2 Five identical base materials were prepared and the first one in Example 1 was prepared.
Nickel plating was applied under the conditions of 2 A/dm 2 ×4 hr according to the table. These surfaces were then roughened by sandblasting using #150 alundum at an air pressure of 5 kg/cm 2 G. Then heat these to 60℃,
Table 3 of Example 1 after immersion in 6N-HCl for 10 minutes,
Dispersion plating and nickel-sulfur plating were applied according to Table 4. When these plated products were subjected to hydrogen generation at 300 A/dm 2 ×50 H, no extensive peeling was observed, but two pieces had partial peeling. Even if the sandplast treatment is performed to create planar irregularities on the surface, poor adhesion will still occur. Comparative Example 3 The activated cathode obtained by the method shown in Example 3 was prepared using Nafion 901 (manufactured by Dupont) as an ion exchange membrane and a 1d cathode chamber made of SUS301S.
It was installed in the cathode chamber of a m2 electrolytic cell, and 31% NaOH was produced by electrolysis at a temperature of 90°C for 300 days. The potential of the cathode after 300 days of operation shows -1.03V,
Some deterioration was observed. This cathode was removed and wet blasting was performed under the following conditions. Pressure 4Kg/cm 2 Blasting abrasive glass beads #80 Distance 10cm Time 5 seconds The surface after blasting is uneven, 26% of the total area
was completely peeled off and the base material was exposed. This was washed with water, and dispersion plating and nickel-sulfur plating were performed according to Tables 3 and 4 of Example 1. After plating, the plated material on the exposed part of the base material fell off when it was rinsed with water.

Claims (1)

【特許請求の範囲】[Claims] 1 陰極基材表面に、炭素質微粒子を分散させた
ニツケル主体の金属成分を含むメツキ浴を用いて
電気メツキを施すことにより陰極を活性化するに
当り、該陰極基材表面に存在させた粗面化表面を
有する被覆層を介して上記電気メツキを施すこと
を特徴とする陰極の活性化法。
1. When activating the cathode by electroplating the surface of the cathode substrate using a plating bath containing a metal component mainly composed of nickel in which carbonaceous fine particles are dispersed, the roughness present on the surface of the cathode substrate is activated. A method for activating a cathode, characterized in that the electroplating described above is performed through a coating layer having a planarized surface.
JP58107838A 1983-06-17 1983-06-17 Activating method of cathode Granted JPS602685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58107838A JPS602685A (en) 1983-06-17 1983-06-17 Activating method of cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58107838A JPS602685A (en) 1983-06-17 1983-06-17 Activating method of cathode

Publications (2)

Publication Number Publication Date
JPS602685A JPS602685A (en) 1985-01-08
JPH025825B2 true JPH025825B2 (en) 1990-02-06

Family

ID=14469324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58107838A Granted JPS602685A (en) 1983-06-17 1983-06-17 Activating method of cathode

Country Status (1)

Country Link
JP (1) JPS602685A (en)

Also Published As

Publication number Publication date
JPS602685A (en) 1985-01-08

Similar Documents

Publication Publication Date Title
RU2268324C2 (en) Electrode for production of hydrogen (versions) and method of its manufacture (versions)
US3864163A (en) Method of making an electrode having a coating containing a platinum metal oxide thereon
JPS6143436B2 (en)
US3055811A (en) Electrolysis with improved platinum plated titanium anode and manufacture thereof
JP4354821B2 (en) Electrode for electrolysis in acidic media
US4240895A (en) Raney alloy coated cathode for chlor-alkali cells
US5035789A (en) Electrocatalytic cathodes and methods of preparation
JP3080971B2 (en) Electrode structure for ozone production and method for producing the same
US2305539A (en) Electrode
US4518457A (en) Raney alloy coated cathode for chlor-alkali cells
US4370361A (en) Process of forming Raney alloy coated cathode for chlor-alkali cells
US5227030A (en) Electrocatalytic cathodes and methods of preparation
JPH0790664A (en) Low hydrogen overvoltage cathode and production thereof
JPH0633481B2 (en) Electrolytic cathode and method of manufacturing the same
JP4115575B2 (en) Activated cathode
JP3676554B2 (en) Activated cathode
KR890000710B1 (en) Cathode
JPH025825B2 (en)
US4405434A (en) Raney alloy coated cathode for chlor-alkali cells
JP3868513B2 (en) Electrode for seawater electrolysis and method for producing the same
US4394228A (en) Raney alloy coated cathode for chlor-alkali cells
EP0048284B1 (en) Improved raney alloy coated cathode for chlor-alkali cells and method for producing the same
JPH11269688A (en) Electrolytic electrode
JPS636634B2 (en)
JP3769492B2 (en) Performance recovery method of gas diffusion electrode