JPS6026497B2 - Manufacturing method of cation exchange membrane - Google Patents

Manufacturing method of cation exchange membrane

Info

Publication number
JPS6026497B2
JPS6026497B2 JP56179612A JP17961281A JPS6026497B2 JP S6026497 B2 JPS6026497 B2 JP S6026497B2 JP 56179612 A JP56179612 A JP 56179612A JP 17961281 A JP17961281 A JP 17961281A JP S6026497 B2 JPS6026497 B2 JP S6026497B2
Authority
JP
Japan
Prior art keywords
exchange membrane
cation exchange
layer
membrane
base layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56179612A
Other languages
Japanese (ja)
Other versions
JPS5883030A (en
Inventor
徹 清田
克則 折坂
秀雄 朱山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP56179612A priority Critical patent/JPS6026497B2/en
Publication of JPS5883030A publication Critical patent/JPS5883030A/en
Publication of JPS6026497B2 publication Critical patent/JPS6026497B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 本発明は、新規な陽イオン交換膿の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing cation-exchanged pus.

陽イオン交換膜を用いる塩化アルカリ金属塩水溶液の電
解法は水銀法、隅膜法の従来技術の欠点を克服すると共
に省エネルギー型の新しい技術として発展してきた。
Electrolysis of an aqueous alkali metal chloride solution using a cation exchange membrane has overcome the drawbacks of the conventional techniques such as the mercury method and the corneal membrane method, and has developed as a new energy-saving technology.

公害発生の恐れがなく、製品純度も優れ、電力・蒸気の
合計でみた総エネルギーコストも、既に水銀法、隔膜法
をしのいでいると云われている。しかし、省エネルギー
型とは云え、製造費に占める電力費の割合は大きく、消
費電力を下げるための技術開発の必要性は、エネルギー
コストの上昇と共に益々大きくなっている。腸イオン交
換膜を用いる電解法において、電解電圧を下げる試みは
いくつか提案されている。陽極と陰極の極間距離を小さ
くし、その部分に存在する液及びガス量を少なくするこ
とは、電圧を下げるための有効な方法と考えられ、例え
ば、侍関昭50一80974号公報および同50一10
班99号公報などに開示されている。しかし、これらの
方法では陽極と腸イオン交換膜との間隔は短縮されてい
るものの陰極と腸イオン交換膜との間隔は依然として大
きく電圧降下は不充分である。袴開昭54一47877
号公報には、バネ等の力により機械的に陰陽電極そのも
のを陽イオン交換膜に密着することを提案しているが、
電極の製作精度上および濃保護の立場から極間距離をあ
まり小さくできず、電圧降下は不充分である。
There is no risk of pollution, product purity is excellent, and the total energy cost (combined electricity and steam) is said to already exceed the mercury method and diaphragm method. However, although they are energy-saving types, electricity costs account for a large proportion of manufacturing costs, and the need for technological development to reduce power consumption is increasing as energy costs rise. Several attempts have been made to lower the electrolysis voltage in electrolysis methods using intestinal ion exchange membranes. Reducing the distance between the anode and cathode and reducing the amount of liquid and gas present in that area is considered an effective method for lowering the voltage. 50-10
This is disclosed in Ban No. 99 Publication. However, in these methods, although the distance between the anode and the intestinal ion exchange membrane is shortened, the distance between the cathode and the intestinal ion exchange membrane is still large and the voltage drop is insufficient. Hakama Kaisho 54-147877
The publication proposes mechanically bringing the negative and positive electrodes into close contact with the cation exchange membrane using the force of a spring, etc.
Due to the manufacturing precision of the electrodes and the standpoint of high protection, the distance between the electrodes cannot be made too small, and the voltage drop is insufficient.

また、極間距離を更に短縮した電解装置として、特開昭
52一78788号公報および同53−52597号公
報がある。
In addition, as electrolyzers in which the inter-electrode distance is further shortened, there are Japanese Patent Laid-Open Nos. 52-78788 and 53-52597.

これらには膜の片側表面に陽極を、他面に陰極を埋め込
んだ装置が提案されている。この方法では、極間距離は
陽イオン交換膜の厚さだけであるため、これを塩化アル
カリ金属塩の電解に応用した場合には、確かに電圧降下
は期待できるものの、次のような不都合がある。1 電
解電圧は電流密度の小さい範囲では低下するが、電流密
度が大きくなると電極自体のm損によって逆に高くなる
頃向がある。
For these, devices have been proposed in which an anode is embedded in one surface of the membrane and a cathode is embedded in the other surface. In this method, the distance between the electrodes is only the thickness of the cation exchange membrane, so if this method is applied to the electrolysis of alkali metal chloride salts, although a voltage drop can certainly be expected, there are the following disadvantages: be. 1. The electrolytic voltage decreases in a range where the current density is low, but as the current density increases, it tends to increase due to m-loss of the electrode itself.

2 このため両電極への電流供給装置は、いわゆる集電
体として高価な装置を用いる必要がある。
2 For this reason, it is necessary to use an expensive device as a so-called current collector for the current supply device to both electrodes.

3 集電体と電極の接触を確実にしないと接触抵抗が増
大するので集電体と電極をバネ等の機械的力で接触させ
る必要がある。
3. If the contact between the current collector and the electrode is not ensured, the contact resistance will increase, so it is necessary to bring the current collector and the electrode into contact using mechanical force such as a spring.

この機械的力によって膜を傷つけ易い。4 工業用の大
型電解槽への適用が難しい。5 電極、膜のどちらかに
破損を生ずると電解続行は不可能となる。
This mechanical force tends to damage the membrane. 4. Difficult to apply to large industrial electrolytic cells. 5. If either the electrode or membrane is damaged, it will be impossible to continue electrolysis.

6 電流効率は電流密度が大きくなると減少する頭向に
あり、かつ、陽極では塩化アルカリ金属の供給不足から
水分解が起こり易くなり、塩素ガス中の酸素ガス含量が
従来法に比較して大きくなる。
6 The current efficiency tends to decrease as the current density increases, and at the anode, water decomposition tends to occur due to insufficient supply of alkali metal chloride, and the oxygen gas content in the chlorine gas increases compared to the conventional method. .

すなわち、この方法は、電圧降下に対して大きな期待が
もてるが、上述のような機械的、装置的に解決すべき問
題点も多く、工業的に最も重要な運転・装置の安定性に
は問題があり、実際的には非常に難しい。
In other words, this method has great promise in reducing voltage drops, but there are many mechanical and equipment problems that need to be solved as mentioned above, and it is difficult to achieve stability in operation and equipment, which is the most important industrially. This is problematic and, in practice, extremely difficult.

更に特関昭55−164086号公報には、陽イオン交
換膜の陰極側の面に陰極を固着して、該陰極に通電して
電解を行う方法が開示されている。この方法は、陰陽両
極面に電極を固着した方法に比べるといくつかの点で改
良されているが、陰極に電流を供給するためには、多孔
性支持体および弾力性のある積層体からなる集電体およ
び陰極と集電体との接触を確実にする装置を必要とし、
前述した工業的に重要な問題点の解決はほとんどなされ
ていないのである。すなわち、腸イオン交換膜が間にあ
るように、陽極、陰極を設置した従来型の電解槽を用い
た電解では蚤槽構造が単純なため、運転条件、操作、保
守管理が容易で運転の安全性は優れているが、電極と膜
との間に存在する液および気泡による霧*圧が高いとい
う欠点がある。
Further, Tokukan Sho 55-164086 discloses a method in which a cathode is fixed to the cathode side surface of a cation exchange membrane and electricity is applied to the cathode to perform electrolysis. This method is improved in several respects compared to the method in which electrodes are fixed to the cathode and anode surfaces, but in order to supply current to the cathode, a porous support and an elastic laminate are required. Requires a device to ensure contact between the current collector and the cathode and the current collector;
The industrially important problems mentioned above have hardly been solved. In other words, in electrolysis using a conventional electrolytic cell with an anode and a cathode installed with an intestinal ion exchange membrane in between, the structure of the cell is simple, so the operating conditions, operation, and maintenance are easy and the operation is safe. Although it has excellent properties, it has the disadvantage of high fog* pressure due to the liquid and bubbles existing between the electrode and the membrane.

これに対して膜に陽、陰極を固着し、その固着電極に通
電して電解する場合には、大中な電圧低減が期待できる
反面、特殊構造とくに電極へ電流を供給するための複雑
で精度の高い装置を備えた電解槽を必要とするため、前
述した問題点が解決されてとしても、従来法に比べて露
槽価格、運転、保守経費は高価となり経済的に有利な方
法とはいい難い。本発明者の1人は、このような両者の
欠点を取り除き両者の利点だけをもつ、工業的、経済的
に優れた電解方法を蓮成すべく鋭意検討し、陽イオン交
換膜の陰極側の面に金属を固着した膜を従来型の電解槽
に使用することで大中な電解電圧の低減が達成できるこ
とを見出して発明を完成させて提案した。
On the other hand, when the positive and negative electrodes are fixed to the membrane and electrolysis is carried out by passing current through the fixed electrodes, a large or medium voltage reduction can be expected. Even if the above-mentioned problems are solved, the dew tank price, operation, and maintenance costs are higher than the conventional method, so it is not an economically advantageous method. hard. One of the inventors of the present invention has made extensive studies to develop an industrially and economically superior electrolysis method that eliminates the drawbacks of both and has only the advantages of both, and has developed They discovered that a significant reduction in electrolytic voltage could be achieved by using a membrane with fixed metals in a conventional electrolytic cell, and completed and proposed the invention.

このような方法によると、腸イオン交換膜に施した化学
メッキ層の耐久性が重要な要件となる。
According to such a method, the durability of the chemical plating layer applied to the intestinal ion exchange membrane is an important requirement.

一般に、食塩電解用の陽イオン交換膜は、電流効率の面
から陰極側にカルボン酸基層が向くように設計されてい
る。しかし、このようなカルボン酸基層に化学メッキし
た場合、その耐久性に若干の問題を生じた。そこで、本
発明者らは、この問題を解決するため鋭意検討を続けて
きた結果、本発明の目的を達成した。すなわち、陰極側
にカルボン酸基層を有する陽イオン交換膜において、該
層上に0.01ム〜5仏の厚さの範囲で、スルホン酸基
を含む層を形成させ、続いて該層上に化学メッキを施す
ことによって、耐久性に鰻れた金属の固着した腸イオン
交換膜の製造方法を提供するものである。
Generally, cation exchange membranes for salt electrolysis are designed so that the carboxylic acid base layer faces the cathode side from the viewpoint of current efficiency. However, when such a carboxylic acid base layer is chemically plated, some problems arise in its durability. Therefore, the inventors of the present invention have continued intensive studies to solve this problem, and as a result, have achieved the object of the present invention. That is, in a cation exchange membrane having a carboxylic acid base layer on the cathode side, a layer containing a sulfonic acid group is formed on the layer to a thickness of 0.01 μm to 5 μm, and then a layer containing a sulfonic acid group is formed on the layer. The present invention provides a method for manufacturing an intestinal ion exchange membrane with a durable metal bonded to it by chemical plating.

本発明の中で使用される陽イオン交換膜の製造に用いら
れる単量体としては例えば下記一般式で示されるものを
あげることができる。
Examples of monomers used in the production of the cation exchange membrane used in the present invention include those represented by the following general formula.

〔ただし、 R=CF3,一CF2−○−CF荻 n=0又は1〜5 m;0又は1 o=0又はl p=1〜6 x=S02F2,S02CI,COOR,(R,=1〜
5のアルキル基)CN,COF〕上記単量体を用いて製
造される腸イオン交換膜の製造に用いる重合体としては
具体的には、例えば下記の重合体を示すことができる。
[However, R = CF3, -CF2-○-CF o n = 0 or 1 to 5 m; 0 or 1 o = 0 or l p = 1 to 6 x = S02F2, S02CI, COOR, (R, = 1 to
5 alkyl group) CN, COF] Specific examples of the polymer used in the production of the intestinal ion exchange membrane produced using the above monomer include the following polymers.

(A 群) A群の中で示した重合体は、スルホン酸基になりうる基
を有するパーフルオロカーポン重合体であり、スルホン
酸基に転換した時の交換基容量が0.5〜1.仇heg
/g乾燥樹脂の範囲のものを使用することができる。
(Group A) The polymer shown in Group A is a perfluorocarbon polymer having a group that can become a sulfonic acid group, and has an exchange group capacity of 0.5 to 1. enemy heg
/g dry resin can be used.

B群の中で示した重合体は、カルボン酸基になりうる基
を有するパーフルオロカーボン重合体であり、カルポン
酸基に転換した時の交換基容量が0.6〜1.靴eg/
g乾燥樹脂の範囲のものを使用することができる。
The polymer shown in Group B is a perfluorocarbon polymer having a group that can become a carboxylic acid group, and has an exchange group capacity of 0.6 to 1. shoes eg/
A range of dry resins can be used.

本発明の中で用いられる陽イオン交換膜は、例えばI
A群で示された重合体のフィルムとB群で示されたフィ
ルムをはり合せたのち、加水分解し、カルボン酸基層の
所定の層のカルボン酸基をヨウ素で転換したのち、S0
2等で処理する。
The cation exchange membrane used in the present invention is, for example, I
After laminating a film of the polymer shown in Group A and a film shown in Group B, they were hydrolyzed and the carboxylic acid groups in a predetermined layer of the carboxylic acid base layer were converted with iodine.
Processed as 2nd prize.

2 B群で示された重合体のフィルムの上にA群で示さ
れた重合体を塗布したり、フィルムをはり合わせる。
2. Apply the polymer shown in Group A on the film of the polymer shown in Group B, or laminate the film together.

3 A群で示された重合体のフィルムを加水分解したの
ち、スルホン酸基を所定の層でスルホニルハラィド‘こ
転化、次いでスルホニルハラィド層を所定の層に加水分
解し、さらに酸化剤、あるいは還元処理する。
3 After hydrolyzing a film of the polymer shown in Group A, converting the sulfonic acid groups into sulfonyl halide in a predetermined layer, then hydrolyzing the sulfonyl halide layer into a predetermined layer, and further oxidizing. agent or reduction treatment.

などの手段によって得ることができる。It can be obtained by means such as.

もちろん、本発明で用いられる陽イオン交換膜は、これ
らのみに制限されるものではない。
Of course, the cation exchange membranes used in the present invention are not limited to these.

本発明で用いられる陽イオン交換膜は、50ムないし5
00Aの厚さで一般に用いられ、腰の比電導度、電流効
率を考慮して適当な厚みを選択する。カルボン酸基層上
に形成させるスルホン酸基層の厚さは、使用する膜によ
って異なるが、電流効率の低下しない範囲内にすべきで
ある。その範囲は0.01ム〜5山である。腸イオン交
換膜のカルボン酸基層上に形成させたスルホン酸基層に
固着させる金属としては、陰極反応に対して充分な触媒
作用を有するものであれば特に制限はないが、通常は白
金、パラジウム・ルテニウム、イリジウム等の白金族金
属およびニッケルあるいはこれらの混合物が用いられる
The cation exchange membrane used in the present invention is 50 μm to 5 μm.
It is generally used with a thickness of 00A, and an appropriate thickness is selected in consideration of specific conductivity and current efficiency. The thickness of the sulfonic acid base layer formed on the carboxylic acid base layer varies depending on the membrane used, but it should be within a range that does not reduce current efficiency. The range is 0.01mm to 5mm. The metal to be fixed to the sulfonic acid base layer formed on the carboxylic acid base layer of the intestinal ion exchange membrane is not particularly limited as long as it has sufficient catalytic activity for the cathode reaction, but platinum, palladium, etc. are usually used. Platinum group metals such as ruthenium and iridium and nickel or mixtures thereof are used.

これら金属は化学メッキ法で該膜に固着される。ただし
、化学メッキ法自体としては、通常の方法で特に制限は
なく、例えば陽イオン交換膜の陰極側にメッキしたい金
属塩溶液を、陽極側に還元溶液を対置させて、膜への浸
透速度の差を利用してメッキする方法(侍関昭55−総
934号公報)金属塩溶液中に膜を浸潰し、膿内に該金
属塩を含浸させた後、還元剤中に浸潰して膜表面に金属
を析出させる方法、無電籍〆ツキ液を用いる方法等適宜
選択でき、また上記方法を組合せてもよい。また、固着
電極の電気伝導度はIQ‐1節‐1以上あれば充分目的
は達成でき、かつ、この伝導度は化学メッキ法で容易に
達成できる。以下、具体的に効果の一部を示す。
These metals are fixed to the membrane by chemical plating. However, the chemical plating method itself is a normal method and there are no particular restrictions. For example, a metal salt solution to be plated is placed on the cathode side of a cation exchange membrane, and a reducing solution is placed on the anode side to control the permeation rate into the membrane. Method of plating using difference (Samurai Seki Sho 55-So No. 934) The membrane is immersed in a metal salt solution, the pus is impregnated with the metal salt, and then immersed in a reducing agent to improve the membrane surface. A method of precipitating a metal, a method of using a non-electrostatic coating liquid, etc. can be selected as appropriate, and the above methods may be combined. Further, the electrical conductivity of the fixed electrode should be IQ-1 clause-1 or higher to achieve the purpose, and this conductivity can be easily achieved by chemical plating. Some of the effects will be specifically shown below.

なお、本発明はこれら具体例によって何ら制限されるも
のではない。実施例 1 とのモノマーを1,1,2−トリクロロー1,2,2−
トリフルオロェタン中、バ−フルオロプロピオニルベル
オキシドを開始剤として共重合体を得たのち、厚さ25
0仏のフィルムに成形した。
Note that the present invention is not limited in any way by these specific examples. Example 1 The monomer with 1,1,2-trichloro-1,2,2-
After obtaining a copolymer using perfluoropropionyl peroxide as an initiator in trifluoroethane,
It was molded into a film with a size of 0.

次に、2肌t%KOH−メタノール(重量比=1/1)
中、90午0で加水分解することによって、交換容量0
.91meg/g乾燥樹脂の腸イオン交換膜を得た。該
膜を塩酸で処理し、S03KをS03日に転化した。こ
のように処理した膜を、五塩化リンーオキシ塩化リン(
重量比1/1)中で片面のみ反応させ、SQH 150
ム,S02CIIOOムのフィルムを得た。
Next, 2 skin t% KOH-methanol (weight ratio = 1/1)
By hydrolyzing at 90 pm, the exchange capacity is 0.
.. An intestinal ion exchange membrane of 91 meg/g dry resin was obtained. The membrane was treated with hydrochloric acid to convert S03K to S03 day. The membrane thus treated was treated with phosphorus pentachloride-phosphorus oxychloride (
React only on one side in 1/1 weight ratio), SQH 150
A film of S02CIIOO was obtained.

次に該フィルムのS02CI面のみを、2仇K%KOH
−メタノール(重量比1/1)で処理し、S02C1の
層を0.5〃の厚でS03H‘こ転化した。次いでョ‐
ウ化水素で、85℃、5日間処理し、次いで、2肌t%
−メタノール(重量比1/1)で加水分解することによ
って、該フィルム中のS02CIをCOOKに転化した
Next, only the S02CI side of the film was coated with 2 K% KOH.
- methanol (weight ratio 1/1) to convert the layer of S02C1 to S03H' with a thickness of 0.5〃. Next
Treated with hydrogen uride at 85°C for 5 days, then 2 skin t%
- S02CI in the film was converted to COOK by hydrolysis with methanol (1/1 weight ratio).

次にCOOK層上のS03K層面に、白金塩を含浸した
後、NaB日を用いて還元し、その後ジメチルアミンボ
ラン(以下DMABと記す。
Next, the surface of the S03K layer on the COOK layer was impregnated with platinum salt, and then reduced using NaB, and then dimethylamine borane (hereinafter referred to as DMAB) was impregnated with platinum salt.

)を含む白金の無電解〆ッキ液で化学メッキを施した。
陽極として、ルテニウム酸化物を被覆したチタンエキス
パンテッドメタル、陰極として、鉄製のエキスパンテッ
ドメタルを用いた。腸陰極間を2脚とし、かつ、膜の白
金の固着した面を陰極と接するように陽極室の淡塩水抜
き出しのレベルを陰極室の液レベルに対し20弧高くし
た。陽極室に飽和食塩水、陰極室のカ性ソーダを34w
t%にコントロールしながら、90qoで、電解密度3
船/dm2で電解した。3ケ月運転後の電圧は3.2V
電流効率は93%であった。
) was chemically plated with a platinum electroless finishing liquid.
Titanium expanded metal coated with ruthenium oxide was used as the anode, and expanded metal made of iron was used as the cathode. Two legs were used between the intestinal cathodes, and the level at which fresh salt water was extracted from the anode chamber was set 20 arcs higher than the liquid level in the cathode chamber so that the platinum-fixed surface of the membrane was in contact with the cathode. Saturated salt solution in the anode chamber and 34w of caustic soda in the cathode chamber.
Electrolytic density 3 at 90qo while controlling to t%
Electrolyzed at ship/dm2. Voltage after 3 months of operation is 3.2V
Current efficiency was 93%.

セルを解体して、腸イオン交換膜を取り出し、化学メッ
キした層を調べたが、‘‘はくり”は見られなかった。
比較例 1 実施例1で用いた陽イオン交換膜の代りに、COOK層
上にSQK層を有しない陽イオン交換膜を用いて実施例
1と同様に化学メッキを施し、実施例1と同様に運転し
た。
The cell was disassembled, the intestinal ion exchange membrane was taken out, and the chemically plated layer was examined, but no ``peeling'' was observed.
Comparative Example 1 Instead of the cation exchange membrane used in Example 1, a cation exchange membrane without an SQK layer was used on the COOK layer, and chemical plating was applied in the same manner as in Example 1. I drove.

3ケ月運転後の電圧は3.4V、電流効率は93%であ
った。
After three months of operation, the voltage was 3.4V and the current efficiency was 93%.

セルを解体して、陽イオン交換膜を取り出し、化学メッ
キした層を調べたところ、一部“はくり”が生じていた
。比較例 2 実施例1で用いた陽イオン交換膜を、化学メッキを施す
ことなく、実施例1と同様に運転した。
When the cell was disassembled, the cation exchange membrane was taken out, and the chemically plated layer was examined, some ``peeling'' had occurred. Comparative Example 2 The cation exchange membrane used in Example 1 was operated in the same manner as in Example 1 without chemical plating.

3ケ月連転後の電圧は3.6V、電流効率は93%であ
った。
After three months of continuous operation, the voltage was 3.6V and the current efficiency was 93%.

実施例 2 テトラフルオロヱチレンと CF2=CFOCF2CF(CF3)OCF2CF2C
OOCH3を1,1,2−トリクロロ−1,2,2ート
リフルオロエタン中でパーフルオロブロピオニルベルオ
キシドを開始剤としてステンレス製オートクレープ中で
共重合した。
Example 2 Tetrafluoroethylene and CF2=CFOCF2CF(CF3)OCF2CF2C
OOCH3 was copolymerized in 1,1,2-trichloro-1,2,2-trifluoroethane using perfluoropropionyl peroxide as an initiator in a stainless steel autoclave.

得られた生成物を250qoにてプレス成型して透明な
200仏のフィルム状原膜(1)を得た。このフィルム
状原膜(1)を10%KOH−メタノール(50/50
V/V)中で加水分解したのち、滴定によってカルポン
酸塩含量は1.2heg/g乾燥樹脂であることを確認
した。この原膜(1)2膜をアクリル樹脂製の枠の間に
テフロン製パッキンを用いて挟み、この枠ごと2%Na
OH水溶液に室温で浸潰し、片側表層部のみ加水分解し
た。この膜を原膜(0)とする。
The obtained product was press-molded at 250 qo to obtain a transparent raw film (1) of 200 qo. This film-like raw film (1) was mixed with 10% KOH-methanol (50/50).
After hydrolysis in V/V), the carponate content was determined to be 1.2 heg/g dry resin by titration. These two raw films (1) were sandwiched between acrylic resin frames using Teflon packing, and each frame was coated with 2% Na.
It was immersed in an OH aqueous solution at room temperature, and only the surface layer on one side was hydrolyzed. This film is referred to as a raw film (0).

原腰(0)をクリスタルバイオレットで染色すると片側
表層部の1.0ミクロン程度が染色された。
When Harakoshi (0) was stained with crystal violet, about 1.0 micron of the surface layer on one side was stained.

源膜(D)をIN−AgN03水溶液に浸潰して片側1
.0山の層に存在する−COONaをCOOAgに転換
した後水洗し、80午0で加熱しながら真空乾燥した。
The source membrane (D) was immersed in IN-AgN03 aqueous solution and one side 1
.. After converting -COONa present in the layer of Mt.

片側1.0〃の層がAg塩に置換された膜状物を12存
在下180℃に1時間反応させた。メタノールで洗浄後
乾燥し、表面赤外スペクトルを探ると−COOAgの1
650伽‐1のピークが全く消失し、一CF21の91
0仇‐1のピークが新たに出現した。
A film-like material in which the 1.0〃 layer on one side was substituted with Ag salt was reacted at 180° C. for 1 hour in the presence of 12. After washing with methanol and drying, examining the surface infrared spectrum reveals -COOAg 1
The peak at 650-1 completely disappeared, and the peak at 91 at CF21
A new peak of 0-1 appeared.

この膜を原膜(m)とする。原膜(扱)を、N2雰囲気
下で無水ジメチルスルフオキシド中でZnパウダーと酢
酸鋼を反応させ、Zn−Cuカップルを生成させておい
たサスベンジョン中に浸澄し、そこにS02をバブルさ
せながら、温度400で6時間反応させた。
This film is referred to as a raw film (m). The raw film (handled) was immersed in a suspension in which Zn powder and acetic acid steel had been reacted in anhydrous dimethyl sulfoxide under a N2 atmosphere to form a Zn-Cu couple, and S02 was bubbled therein. The reaction was carried out at a temperature of 400°C for 6 hours.

反応後、膜を取り出しCI2を溶解したメタノール中に
30q0で1虫時間浸潰した。メタノールで充分洗浄後
、乾燥して表面赤外スペクトルを探ると−CF21の9
10伽−,のピークはほとんど消失し、新たに1420
肌−,に一CF2S02CIによると思われるピークが
出現した。
After the reaction, the membrane was taken out and soaked in methanol in which CI2 was dissolved at 30q0 for 1 hour. After thoroughly washing with methanol, drying and examining the surface infrared spectrum, -CF21 9
The peak of 10g-, almost disappeared, and a new peak of 1420
A peak that appeared to be due to CF2S02CI appeared on the skin.

この膜を原膜(W)とする。This film is referred to as a raw film (W).

原膜(W)を10%KOHーメタノール(50/50V
/V)中で60℃にて1母時間浸潰して加水分解した。
The raw film (W) was diluted with 10% KOH-methanol (50/50V
/V) at 60° C. for 1 hour for hydrolysis.

次に、COOK層上のS03K層に白金塩を含浸した後
に、NaB比を用いて還元し、その後DMABを含む白
金の無電解〆ツキ液で化学メッキを施した。陽極として
、ルテニウム酸化物を被覆したチタンエキスパンテッド
メタル、陰極として、鉄製のエキスパンテッドメタルを
用いた。
Next, the S03K layer on the COOK layer was impregnated with platinum salt, and then reduced using a NaB ratio, and then chemically plated with a platinum electroless finishing solution containing DMAB. Titanium expanded metal coated with ruthenium oxide was used as the anode, and expanded metal made of iron was used as the cathode.

陽陰極間を2柳とし、かつ膜の白金の固着した面を陰極
と接触するように陽極室の淡塩水の抜き出しのレベルを
陰極室の液レベルに対し2比ネ高くした。陽極室に飽和
食塩水、陰極室のカ性ソーダを32叶%にコントロール
しながら、90qoで、電流密度3M/dm2で電解し
た。3ケ月運転後の電葦は3.4V、電流効率は95%
であった。
There was a gap between the anode and cathode, and the level of fresh salt water drawn from the anode chamber was set 2 times higher than the liquid level in the cathode chamber so that the platinum-fixed surface of the membrane was in contact with the cathode. While controlling the saturated saline solution in the anode chamber and the caustic soda in the cathode chamber to 32%, electrolysis was carried out at 90 qo and a current density of 3 M/dm2. After 3 months of operation, the electric reed is 3.4V and the current efficiency is 95%.
Met.

セルを解体して、陽イオン交換膜を取り出し、化学メッ
キした層を調べたが“はくり”は見られなかった。比較
例 3 実施例2で用いた陽イオン交換膜の代りに、COOK層
上にSQK層を有しない腸イオン交換膜を用いて実施例
2と同様に化学メッキを施し、実施例2と同様に運転し
た。
The cell was disassembled, the cation exchange membrane was taken out, and the chemically plated layer was examined, but no peeling was found. Comparative Example 3 Instead of the cation exchange membrane used in Example 2, an intestinal ion exchange membrane without an SQK layer was used on the COOK layer, and chemical plating was performed in the same manner as in Example 2. I drove.

3ケ月連転後の電圧は3.7V、電流効率は95%であ
った。
After three months of continuous operation, the voltage was 3.7V and the current efficiency was 95%.

セルを解体して、腸イオン交換膜を取り出し、化学メッ
キした層を調べたところ、一部“はくり”が生じていた
。比較例 4 実施例2で用いた陽イオン交換膜を、化学メッキを施す
ことなく、実施例2と同様に運転した。
When the cell was disassembled, the intestinal ion exchange membrane was removed, and the chemically plated layer was examined, some ``peeling'' had occurred. Comparative Example 4 The cation exchange membrane used in Example 2 was operated in the same manner as in Example 2 without chemical plating.

3ヶ月運転後の電圧は4.肌、電流効率は96%であっ
た。
The voltage after 3 months of operation is 4. The current efficiency was 96%.

実施例 3 実施例1の中で用いた白金塩の代りに、ニッケル塩を用
いた以外は、実施例1と同機の運転を行つた。
Example 3 The same machine as in Example 1 was operated except that nickel salt was used in place of the platinum salt used in Example 1.

3ケ月連転後の電圧は3.3V、電流効率は93%であ
った。
After three months of continuous operation, the voltage was 3.3V and the current efficiency was 93%.

Claims (1)

【特許請求の範囲】 1 カルボン酸基層を有する陽イオン交換膜において、
該層上に、0.01μ〜5μの厚さの範囲で、スルホン
酸基を含む層を形成させ、続いて該層上に化学メツキを
施すことによつて、金属を固着することから成る陽イオ
ン交換膜の製造方法。 2 カルボン酸基層を有する陽イオン交換膜として、カ
ルボン酸基層とスルホン酸基層が多層状になつている陽
イオン交換膜である特許請求の範囲第1項記載の方法。 3 カルボン酸基層を有する陽イオン交換膜として、カ
ルボン酸基層のみからなつている陽イオン交換膜である
特許請求の範囲第1項記載の方法。4 固着される金属
が白金、パラジウム、ルテニウム、イリジウム、ニツケ
ルあるいはこれらの混合物から選ばれる特許請求の範囲
第1,2または第3項記載の方法。
[Claims] 1. In a cation exchange membrane having a carboxylic acid base layer,
A method of forming a layer containing sulfonic acid groups on the layer with a thickness ranging from 0.01 μm to 5 μm, and then chemically plating the layer to fix the metal. A method for manufacturing an ion exchange membrane. 2. The method according to claim 1, wherein the cation exchange membrane having a carboxylic acid base layer is a cation exchange membrane having a multilayered structure of a carboxylic acid base layer and a sulfonic acid base layer. 3. The method according to claim 1, wherein the cation exchange membrane having a carboxylic acid base layer is a cation exchange membrane consisting only of a carboxylic acid base layer. 4. The method according to claim 1, 2 or 3, wherein the metal to be fixed is selected from platinum, palladium, ruthenium, iridium, nickel or a mixture thereof.
JP56179612A 1981-11-11 1981-11-11 Manufacturing method of cation exchange membrane Expired JPS6026497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56179612A JPS6026497B2 (en) 1981-11-11 1981-11-11 Manufacturing method of cation exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56179612A JPS6026497B2 (en) 1981-11-11 1981-11-11 Manufacturing method of cation exchange membrane

Publications (2)

Publication Number Publication Date
JPS5883030A JPS5883030A (en) 1983-05-18
JPS6026497B2 true JPS6026497B2 (en) 1985-06-24

Family

ID=16068788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56179612A Expired JPS6026497B2 (en) 1981-11-11 1981-11-11 Manufacturing method of cation exchange membrane

Country Status (1)

Country Link
JP (1) JPS6026497B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3882925T2 (en) * 1987-06-12 1994-03-17 Asahi Glass Co Ltd METHOD FOR PRODUCING ALKALINE METAL HYDROXIDE.
ATE191101T1 (en) * 1996-06-26 2000-04-15 Siemens Ag METHOD FOR PRODUCING MEMBRANE ELECTRODE UNITS (ME) FOR POLYMER ELECTROLYTE MEMBRANE (PEM) FUEL CELLS
WO2017043591A1 (en) * 2015-09-08 2017-03-16 旭硝子株式会社 Production method for ion exchange membrane for alkali chloride electrolysis and production method for alkali chloride electrolysis device

Also Published As

Publication number Publication date
JPS5883030A (en) 1983-05-18

Similar Documents

Publication Publication Date Title
US4683040A (en) Process for electrolysis of sodium chloride
JPH05504170A (en) Electrochemical production method of chloric acid/alkali metal chlorate mixture
US6685818B2 (en) Process for the electrochemical preparation of hydrogen peroxide
JPS6016518B2 (en) Ion exchange membrane electrolyzer
EP0192261B1 (en) Multilayer cation exchange membrane
JPS62500243A (en) Novel ionic fluorinated polymer and its manufacturing method
JPS6026497B2 (en) Manufacturing method of cation exchange membrane
US4118308A (en) Method of renewing a porous diaphragm having reduced permeability to alkali metal chloride brines
JPS58199884A (en) Improved cation exchange membrane for electrolysis
EP0008232B1 (en) Oxygen electrode rejuvenation methods
JPH01242794A (en) Production of sodium hydroxide
CA1155792A (en) Air-depolarized chlor-alkali cell operation methods
JP4447081B2 (en) Method for producing polysulfide
US5512143A (en) Electrolysis method using polymer additive for membrane cell operation where the polymer additive is ionomeric and added to the catholyte
US4360412A (en) Treatment of permionic membrane
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
JPS622036B2 (en)
US4316781A (en) Method for electrolyzing alkali metal halide
JPS5925036B2 (en) Fluorine resin cation exchange membrane for electrolysis
JPS5842626A (en) Production of fluorine-containing ion exchange resin membrane
JPS6120634B2 (en)
JPS6136074B2 (en)
CA1165277A (en) Process for electrolysis of sodium chloride
JPH0816275B2 (en) Method for separating acid and alkali from aqueous salt solution
JPS6299487A (en) Separation of acid and alkali from aqueous salt solution