JPS60264293A - Optical recording member - Google Patents

Optical recording member

Info

Publication number
JPS60264293A
JPS60264293A JP59122370A JP12237084A JPS60264293A JP S60264293 A JPS60264293 A JP S60264293A JP 59122370 A JP59122370 A JP 59122370A JP 12237084 A JP12237084 A JP 12237084A JP S60264293 A JPS60264293 A JP S60264293A
Authority
JP
Japan
Prior art keywords
recording
heat dissipation
dissipation layer
layer
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59122370A
Other languages
Japanese (ja)
Inventor
Kunio Kimura
邦夫 木村
Nobuo Akahira
信夫 赤平
Noboru Yamada
昇 山田
Eiji Ono
鋭二 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59122370A priority Critical patent/JPS60264293A/en
Priority to US06/715,395 priority patent/US4587209A/en
Priority to KR1019850001951A priority patent/KR860002121B1/en
Priority to DE8585302068T priority patent/DE3572067D1/en
Priority to EP85302068A priority patent/EP0163378B1/en
Publication of JPS60264293A publication Critical patent/JPS60264293A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25706Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing transition metal elements (Zn, Fe, Co, Ni, Pt)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To enable the uniformization and stabilization of a recording bit by dissipating and diffusing heat, by providing a heat dissipation layer, which comprises a metal of which the heat conductivity is better than that of a Te-O-Au recording layer, to either one of or both of the front and back surfaces of said recording layer. CONSTITUTION:To either one of or both of the front and back surfaces of a Te- O-Au recording layer 25, a heat dissipation layer 26, which comprises a metal of which the heat conductivity is better than that of the recording layer 25, is provided. As the material of the heat dissipation layer 26, Au, Al, Ni or Pd is pref. used. The heat dissipation layer 26 dissipates and diffuses heat generated, when energy exceeding a level required in recording is applied, to promote the uniformization and stabilization of a recording bit.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光、熱などを用いて高速かつ、高密度に情報
を記録、再生可能な光学情報記録部材に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical information recording member capable of recording and reproducing information at high speed and with high density using light, heat, or the like.

従来例の構成とその問題点 近年、情報量の増大化、記録、再生の高速化。Conventional configuration and its problems In recent years, the amount of information has increased and recording and playback speeds have become faster.

高密度化に伴ない、レーザ光線を利用した光ディスクが
注目されている。この様な要求を満たす記録材料として
、本発明者らは先に、T e −0−Auより構成され
る媒体を発明し出願した。この材料の特長は、記録感度
が良好で耐湿性に優れていることである。T o −〇
 −Auが高感度である理由はAuが非晶質から結晶に
なる際に有効な結晶核になること、また非晶質状態のT
e−Au合金は融点が低く、低いパワーで容易に融解し
て結晶化してしまうことによる。これは記録感度という
観点からすれば、好ましいことであるが高パワーで記録
し3 へ− た場合、もしくはディスクの内周など、低パワーであっ
ても必然的に高パワー記録と同条件になった場合などは
、記録ビットの変形や、ビット内での材料の光学的濃度
の分布が生ずる。記録ビットがこの様な状態になると、
ビットを光学的に再生した場合に、その信号が歪み得ら
れる情報のC/Nは低くなり、また、二次高調波成分が
大きくなり、良好な信号が得られなくなる。したがって
、To −0−Au系記録材料の利点を活かしつつ、巾
広い仕様で使用できるよう改良することが要望されてい
た。
As density increases, optical discs that utilize laser beams are attracting attention. As a recording material that satisfies such requirements, the present inventors previously invented and filed an application for a medium composed of T e -0-Au. This material has good recording sensitivity and excellent moisture resistance. The reason why T o -〇 -Au has high sensitivity is that Au becomes an effective crystal nucleus when changing from amorphous to crystal, and that T
This is because the e-Au alloy has a low melting point and easily melts and crystallizes with low power. This is a good thing from the perspective of recording sensitivity, but when recording with high power, or on the inner circumference of a disc, even with low power, the conditions are inevitably the same as high power recording. In some cases, deformation of the recording bit and distribution of optical density of the material within the bit may occur. When the recording bits are in this state,
When bits are optically reproduced, the signal is distorted and the C/N of the information obtained becomes low, and the second harmonic component becomes large, making it impossible to obtain a good signal. Therefore, it has been desired to improve the To-0-Au recording material so that it can be used in a wide range of specifications while taking advantage of its advantages.

発明の目的 本発明は、記録層であるT e −0−Au層が過度の
熱エネルギーを受けることによる不都合な影響を防止す
ることを目的とする。
OBJECTS OF THE INVENTION The present invention aims to prevent undesirable effects caused by excessive thermal energy being applied to the T e -0-Au layer, which is a recording layer.

発明の構成 本発明は、上述したT e −0−Au系材料の欠点を
克服するため、Te −0−Au記録層の表面あるいは
裏面のいずれか一方あるいは双方に、記録層より熱伝導
性の良好な金属の放熱層を設けることを特徴とするもの
で、さらに詳細にはAI 、 Au 、 Ni 。
Structure of the Invention In order to overcome the above-mentioned drawbacks of the Te-0-Au-based material, the present invention provides a material having higher thermal conductivity than the recording layer on either or both of the front and back surfaces of the Te-0-Au recording layer. It is characterized by providing a good heat dissipation layer of metal, more specifically AI, Au, Ni.

Pd より選択される金属で構成される放熱層を設けた
ものである。この放熱層は記録に必要以上のエネルギー
が加わった時の熱を放熱拡散するもので、記録ビットの
均一化、安定化を促すものである。
A heat dissipation layer made of a metal selected from Pd is provided. This heat dissipation layer radiates and diffuses heat when more energy than necessary is applied to recording, and promotes uniformity and stabilization of recording bits.

実施例の説明 第1図に本発明の概略図を示す。図において、24は基
材、26は記録層、26は放熱層、27は記録用光源の
位置を示している。(a)、■)は一方側に放熱層を設
けたもので、(c)は双方側に設けた場合を示している
DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows a schematic diagram of the present invention. In the figure, 24 is the base material, 26 is the recording layer, 26 is the heat dissipation layer, and 27 is the position of the recording light source. (a) and ■) show a case in which a heat dissipation layer is provided on one side, and (c) shows a case in which a heat dissipation layer is provided on both sides.

放熱層26は、記録層26のいずれか一方、あるいは双
方に配置しても良いが、製造工程の簡略化のためいずれ
か一方にすることが有益である。
The heat dissipation layer 26 may be disposed on either one or both of the recording layers 26, but it is advantageous to dispose it on either one in order to simplify the manufacturing process.

申すまでもなく放熱効果は、記録層の双方に位置させる
方がよい。いずれか一方に設ける場合は、記録用光源と
は反対側に位置させる方が好ましい。
Needless to say, it is better to place the heat dissipation effect on both sides of the recording layer. When provided on either side, it is preferable to position it on the opposite side from the recording light source.

この理由は、放熱層26に金属で構成される材料を用い
た場合、記録用光源、すなわちレーザ光に5ベア 対して反射率が大きくなシ光が記録層25に到達する前
に反射されて、吸収率が悪くなり感度が低下することに
ある。
The reason for this is that when a material made of metal is used for the heat dissipation layer 26, the recording light source, that is, the laser light, which has a large reflectance compared to the laser beam, is reflected before reaching the recording layer 25. , absorption rate deteriorates and sensitivity decreases.

本発明における放熱層26の条件としては、記録層25
の熱伝導性よシも良好であることが必要である。T e
 −0−Au より構成される記録層よシ熱伝導性が優
れているものとしては金属があるが、酸化物としてはア
ルミナ(A12o3)、ベリリア(Boo ) 、また
非酸化物としてはBNなどがある。
The conditions for the heat dissipation layer 26 in the present invention include the recording layer 25
It is also necessary to have good thermal conductivity. T e
There are metals that have better thermal conductivity than the recording layer composed of -0-Au, but oxides such as alumina (A12O3) and beryllia (Boo), and non-oxides such as BN etc. be.

本発明では、これらの物質を使用することは可能ではあ
るが、好ましいのは金属である。金属の中でも、特にA
u 、 AI 、 Ni 、 Pdが好ましい。この理
由は、まず第一に耐食性に優れてい名ことである。
Although it is possible to use these materials in the present invention, metals are preferred. Among metals, especially A
U, AI, Ni, and Pd are preferred. The reason for this is, first of all, that it is famous for its excellent corrosion resistance.

次にAu 、 Ni 、 Pdは融点が高((Al:s
6o″C,Ni:1455°C,Pd:1555°C)
レーザ光の熱によって溶融しないことである。A[は融
点が低く(eeo”c)、レーザ光の熱によって溶融す
る場合もあるが、熱伝導率が大きいので上述した材料よ
り膜厚を大きくすることにより溶融を阻止することが可
能である。これらの材料の中で、特に好6 ′・ ましい材料はAuである。Auは上述した放熱層に要求
される条件を全て満たしているだけでなく、記録層の構
成がTo 、 O、Auからなっているので、製法も簡
単である。唯、Auを使用する場合の難点としては、価
格が高いことである。したがって情況に応じ、上述した
材料を使い分ける必要があるO 次に放熱層に必要な膜厚について述べる。
Next, Au, Ni, and Pd have high melting points ((Al:s
6o''C, Ni: 1455°C, Pd: 1555°C)
It must not melt due to the heat of the laser beam. A[ has a low melting point (eeo"c) and may melt due to the heat of the laser beam, but since it has high thermal conductivity, it is possible to prevent melting by making the film thicker than the above-mentioned materials. Among these materials, a particularly preferable material is Au.Au not only satisfies all the conditions required for the heat dissipation layer described above, but also has a recording layer composition of To, O, Since it is made of Au, the manufacturing method is simple.However, the drawback of using Au is that it is expensive.Therefore, it is necessary to use the above-mentioned materials depending on the situation.Next, the heat dissipation layer The film thickness required for this is explained below.

Te 、 O、Au より構成される記録層の膜厚は通
常1000〜1200八である。この膜厚は、記録前の
反射率と記録後の反射率の差が最大となる膜厚で決定さ
れる。適正な膜厚より薄い場合、膜の熱容量が小さくな
るため、感度は向上するが、記録膜の反射率の変化量が
少な(C/Nは低下する。逆に厚い場合もC/Nは低下
する。しかしながら、Te 、 O、Au よりなる記
録層は本質的に記録後の光学的変化、すなわち、屈折率
が大きいので、適性な膜厚より薄くしても実用に可能な
C/Nが得られる。したがって、記録感度を上昇させる
ために薄くすることも可能である。記録膜が薄い場合7
1\−ノ は放熱層も薄くすることができ、逆に厚い場合は、厚く
する必要がある。こうした条件により、放熱層に必要な
膜厚は、記録層の膜厚によって決定され、本発明では記
録層に対し、10〜80%内の膜厚であることが必要で
ある。ただし、これらの必要な膜厚は放熱層の材質によ
り異なりAuの場合は16〜40%で、Pd、Niは1
0〜36%。
The thickness of the recording layer composed of Te, O, and Au is usually 1,000 to 1,200 mm. This film thickness is determined by the film thickness at which the difference between the reflectance before recording and the reflectance after recording is maximum. If the film is thinner than the appropriate thickness, the heat capacity of the film becomes smaller, so the sensitivity improves, but the amount of change in the reflectance of the recording film is small (the C/N decreases. Conversely, if the film is thicker, the C/N also decreases). However, since the recording layer made of Te, O, and Au essentially has a large optical change after recording, that is, a large refractive index, it is difficult to obtain a practically acceptable C/N even if the film is made thinner than the appropriate thickness. Therefore, it is possible to make the recording film thinner to increase the recording sensitivity.If the recording film is thin, 7
In case of 1\-, the heat dissipation layer can also be made thin; on the other hand, if it is thick, it needs to be made thicker. Under these conditions, the thickness required for the heat dissipation layer is determined by the thickness of the recording layer, and in the present invention, the thickness needs to be within 10 to 80% of the recording layer. However, the required film thickness varies depending on the material of the heat dissipation layer, and for Au it is 16-40%, and for Pd and Ni it is 16% to 40%.
0-36%.

A4は35〜80%である。この本発明の放熱層に必要
な膜厚は、放熱層が一層の場合記録用光源に対し、どの
位置にあるかによっても適切な範囲が変るが、一般的に
、光源側にある場合は上述した範囲内の少ない方とし、
反対側は多くする。まだ記録層の両側方にある場合は、
両層を合わせだ膜厚が、本発明の範囲にあればよい。
A4 is 35-80%. The appropriate film thickness required for the heat dissipation layer of the present invention varies depending on the position of the heat dissipation layer with respect to the recording light source when the heat dissipation layer is a single layer. within the range given, whichever is smaller;
Add more on the other side. If it is still on both sides of the recording layer,
The combined thickness of both layers may be within the range of the present invention.

以下実施例について詳述する。Examples will be described in detail below.

実施例1 TeO2: 60 wt%、Al : 10wt%、C
u:wt%からなる混合物30yを675°Cで10h
焼結し、T e02の一部が還元され、Te−TeO2
になっている焼結体を得た。AI、CuはTeO2の還
元剤である。
Example 1 TeO2: 60 wt%, Al: 10 wt%, C
A mixture 30y consisting of u:wt% was heated at 675°C for 10h.
sintered, a part of Te02 is reduced, and Te-TeO2
A sintered body was obtained. AI and Cu are reducing agents for TeO2.

この焼結体を粉砕しプレス後3yのベレットを得たこの
Te −TeO2のペレットを1ソースとし、他をAu
とした2ソースで第2図に示すように電子ビーム蒸着法
により蒸着を行なった。同図において、0)はTo T
eO2ペレット、(掲はAu、(3)は電子ビームの流
れ、(4)はアクリル製の2ocrnのディスクよりな
る基板であり、矢印のように回転している0 蒸着速度はTeTe02(1)が20 A/S 、 A
u (2)は2A/Sで行ない膜厚は1200八とした
。放熱層としてはAuを用い、第2図において(2)の
Auのみを上述した記録層の上に300人付着きせた。
The sintered body was crushed and pressed to obtain pellets of 3y. This Te-TeO2 pellet was used as one source, and the other was Au.
Vapor deposition was carried out by the electron beam evaporation method as shown in FIG. 2 using two sources. In the same figure, 0) is To T
The eO2 pellet (shown is Au, (3) is the flow of the electron beam, and (4) is the substrate consisting of an acrylic 2ocrn disk, rotating as shown by the arrow.) The deposition rate is TeTe02 (1) 20 A/S, A
u (2) was carried out at 2A/S and the film thickness was 1200. Au was used as the heat dissipation layer, and in FIG. 2, only Au (2) was deposited on the recording layer described above by 300 people.

このAu層はレーザ光が照射されるべき側の反対側に位
置している。蒸着後の試料は、基材と同質のアクリル板
をUV樹脂を用いて張り合せ試験用のディスクとしだ。
This Au layer is located on the opposite side to the side to which the laser beam is to be irradiated. After vapor deposition, an acrylic plate of the same quality as the base material was laminated with UV resin to form a disk for testing.

以上のようにして作成したディスクの評価を、第3図に
示した評価装置で行なった。ディスクは600 rpm
で回転させ、φ110IJl付近で、0.875MHz
の半導体レーザの単一周波数を用い9 A−S゛ て行なった。
The disc produced as described above was evaluated using the evaluation apparatus shown in FIG. Disc is 600 rpm
Rotate at 0.875MHz around φ110IJl
9 A-S' were conducted using a single frequency semiconductor laser.

第3図において光導体レーザ6を出た光は第ルンズ6に
よって疑似平行光7となシ第2のレンズ8で丸く整形し
た後、第3のレンズ9で再び平行光になり、ミラー10
.ハーフミラ−15を介して第4のレンズ11で、ディ
スク上に波長限界約0.8μmの大きさのスポット13
に集光される。
In FIG. 3, the light emitted from the light guide laser 6 is transformed into pseudo-parallel light 7 by the first lens 6, shaped into a round shape by the second lens 8, and then transformed into parallel light again by the third lens 9.
.. A spot 13 with a wavelength limit of about 0.8 μm is formed on the disk by the fourth lens 11 via the half mirror 15.
The light is focused on.

この円スポット13によって照射されたディスク12上
の記録膜は黒化変態し記録が行きわれる。
The recording film on the disk 12 irradiated by the circular spot 13 undergoes a blackening transformation and recording is performed.

ここで半導体レーザを変調してディスク上に情報信号を
記録することができる。
Here, the semiconductor laser can be modulated to record information signals on the disk.

信号の検出は、ディスク面12からの反射光14をハー
フミラ−15を介して受け、レンズ16を通じて光感応
ダイオード17で行なった。C/Nおよび2次高調波(
SH,)の測定はスペクトルアナライザーを用いて行な
った。結果を第4図に示す。同図の横軸は第3図の13
の箇所での半導体レーザ(λ= 830 nm)の出力
を表わしている。
Signal detection was performed by receiving reflected light 14 from the disk surface 12 via a half mirror 15, passing through a lens 16, and using a photosensitive diode 17. C/N and second harmonic (
SH,) was measured using a spectrum analyzer. The results are shown in Figure 4. The horizontal axis of the figure is 13 in Figure 3.
It represents the output of the semiconductor laser (λ=830 nm) at the point.

第4図より明らかな様に本発明品は出方が大きくなって
も、ビットの変形にょるC/Nの低下は10 ・\ みられず、またSHO値も低い。図において従来例とは
、本実施例においてAuの放熱層のみを設けていないも
ので他は同一条件でディスクを作成したものである。
As is clear from FIG. 4, the product of the present invention shows no decrease in C/N due to bit deformation even if the protrusion becomes large, and the SHO value is also low. In the figure, the conventional example is one in which only the Au heat dissipation layer is not provided in the present example, and a disk was manufactured under the same conditions except for the one in which the Au heat dissipation layer was not provided.

実施例2 実施例1において、Auの放熱層の代シに、それぞれ、
Ni 、 Pd 、 A(Jを250,300.及び7
00人付着きせた試料を作成した。この試料の記録特性
の結果を第6図に示す。図において18と19はPdの
c/NとsHを示シ、20と21はNi、22と23は
AIを示す。
Example 2 In Example 1, instead of the Au heat dissipation layer,
Ni, Pd, A (J 250, 300. and 7
A sample with 00 people attached was prepared. The results of the recording characteristics of this sample are shown in FIG. In the figure, 18 and 19 indicate c/N and sH of Pd, 20 and 21 indicate Ni, and 22 and 23 indicate AI.

実施例3 実施例1において、Auの放熱層の膜厚を100人、1
80人、250人、400人、700人。
Example 3 In Example 1, the thickness of the Au heat dissipation layer was
80 people, 250 people, 400 people, 700 people.

960人、1000八と変化させて半導体レーザ出力9
mWでのC/Nを測定した結果を第6図に示す。
Semiconductor laser output 9 by changing 960 people and 10008 people
The results of measuring the C/N in mW are shown in FIG.

Au層が180人よシ薄い場合、すなわち記録層(12
00人)に対して、15%以下の場合は放熱層としての
役割を充分発揮していないので、波形歪みが生じ、C/
Nが低い。逆に、960人(SO%)11 ヘージ より厚くなるとAu放熱層でレーザの熱がうばわれてし
まりので、C/Nは再び減少する。したがってAu放熱
層の場合の適性膜厚は記録層の膜厚の10%(120人
)〜80%(960人)で特に15%(180人)〜4
0%(480人)が良い。
When the Au layer is thinner than 180 mm, that is, the recording layer (12
00 people), if it is less than 15%, it does not fully perform its role as a heat dissipation layer, resulting in waveform distortion and C/
N is low. On the other hand, if it becomes thicker than 960 people (SO%) 11 hage, the heat of the laser will be absorbed by the Au heat dissipation layer, so the C/N will decrease again. Therefore, the appropriate thickness for the Au heat dissipation layer is 10% (120 people) to 80% (960 people) of the recording layer thickness, especially 15% (180 people) to 4.
0% (480 people) is good.

実施例4 実施例1において放熱層をAIとし膜厚を300゜40
0.500.700.960.1000八と変化させた
。結果を第6図に示す。第7図は実施例3と同条件で測
定したものである。AIを放熱層に用いた場合、C/N
は全体的に放熱層がない場合よりも低いが、これは、A
Iの一部が膜中に融解したためと思われる。Agを用い
た場合の膜厚の適正値は、400〜960八で記録膜に
対し約36〜8oチである。
Example 4 In Example 1, the heat dissipation layer was made of AI and the film thickness was 300°40
It was changed to 0.500.700.960.10008. The results are shown in Figure 6. FIG. 7 shows measurements taken under the same conditions as in Example 3. When AI is used for the heat dissipation layer, C/N
is lower overall than when there is no heat dissipation layer, but this is because A
This is probably because a part of I was melted into the film. When Ag is used, the appropriate film thickness is 400 to 960 mm, which is approximately 36 to 8 mm relative to the recording film.

発明の効果 以上の様にして構成される光学記録部材は、従来のTo
 、O,Auより構成されるものに対し、レーザが高パ
ワーでも、ビットの歪みが少なく、2次高調波成分が小
さ゛く、巾広い仕様で使用できるものである。
The optical recording member constructed in the manner described above is different from the conventional To
, O, and Au, even if the laser has high power, the bit distortion is small, the second harmonic component is small, and it can be used in a wide range of specifications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における光学記録部材の断面図
、第2図は本発明の一実施例における光学記録部材の製
造工程中の蒸着方法を示す図、第3図は光学記録部材の
評価装置の概要を示す図、第4図、第5図は、半導体レ
ーザ出力とつ1及び2次高調波との関係を示すグラフ、
第el11第7図は、放熱層の膜厚とC/Nとの関係を
示すグラフである。 24・・・・・・基材、25・・・・・・記録層、26
・・・・・放熱層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ↑z7 第2図 第3図 第4図 牢埠イネレーザ゛出arm劉 第5図 −4檀4イ、奎し−ボ出右 (y*) 第6図 Au層(A) 第7図
FIG. 1 is a sectional view of an optical recording member in an embodiment of the present invention, FIG. 2 is a diagram showing a vapor deposition method during the manufacturing process of an optical recording member in an embodiment of the present invention, and FIG. 3 is a cross-sectional view of an optical recording member in an embodiment of the present invention. 4 and 5 are graphs showing the relationship between the semiconductor laser output and the first and second harmonics,
FIG. 7 is a graph showing the relationship between the thickness of the heat dissipation layer and the C/N. 24... Base material, 25... Recording layer, 26
...Heat dissipation layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure ↑ z7 Figure 2 Figure 3 Figure 4 Figure 2 Laser exit arm Liu Figure 5

Claims (1)

【特許請求の範囲】 0)少′なくともTe 、 O、Au からなる光学記
録薄膜を有し、前記記録薄膜の表面もしくは裏面の一方
の側、あるいは双方の側に、金属よりなる放熱層を設け
たことを特徴とする光学記録部材。 (2)放熱層がAu 、 AI 、 N’i 、 Pd
より選択される金属で構成されていることを特徴とする
特許請求の範囲第1項記載の光学記録部材。 (3)放熱層が、記録用光源からの照射を受けるべき側
の反対側にのみに設゛けられたことを特徴とする特許請
求の範囲第1項記載の光学記録部材。 (4)放熱層がAuであることを特徴とする特許請求の
範囲第1項記載の光学記録部材。 (5)放熱層の膜厚が、記録層の膜厚の1o〜8゜チ内
であることを特徴とする特許請求の範囲第1項記載の光
学記録部材。 (6)放熱層の膜厚が、記録層の膜厚に対し15〜2 
パ 40チ内であることを特徴とする特許請求の範囲第4項
記載の光学記録部材。
[Claims] 0) An optical recording thin film made of at least Te, O, and Au, and a heat dissipation layer made of metal on one or both sides of the front or back surface of the recording thin film. An optical recording member comprising: (2) Heat dissipation layer made of Au, AI, N'i, Pd
The optical recording member according to claim 1, wherein the optical recording member is made of a metal selected from the following. (3) The optical recording member according to claim 1, wherein the heat dissipation layer is provided only on the side opposite to the side to be irradiated from the recording light source. (4) The optical recording member according to claim 1, wherein the heat dissipation layer is made of Au. (5) The optical recording member according to claim 1, wherein the thickness of the heat dissipation layer is within 1 to 8 degrees of the thickness of the recording layer. (6) The thickness of the heat dissipation layer is 15 to 2 times the thickness of the recording layer.
5. The optical recording member according to claim 4, wherein the optical recording member is within a range of 40°.
JP59122370A 1984-03-28 1984-06-14 Optical recording member Pending JPS60264293A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59122370A JPS60264293A (en) 1984-06-14 1984-06-14 Optical recording member
US06/715,395 US4587209A (en) 1984-03-28 1985-03-25 Optical information recording member comprising Au, TeO2 and Te
KR1019850001951A KR860002121B1 (en) 1984-03-28 1985-03-25 Optical information recording material
DE8585302068T DE3572067D1 (en) 1984-03-28 1985-03-26 Optical information recording member
EP85302068A EP0163378B1 (en) 1984-03-28 1985-03-26 Optical information recording member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59122370A JPS60264293A (en) 1984-06-14 1984-06-14 Optical recording member

Publications (1)

Publication Number Publication Date
JPS60264293A true JPS60264293A (en) 1985-12-27

Family

ID=14834174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59122370A Pending JPS60264293A (en) 1984-03-28 1984-06-14 Optical recording member

Country Status (1)

Country Link
JP (1) JPS60264293A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187435A (en) * 1987-01-29 1988-08-03 Matsushita Electric Ind Co Ltd Optical information recording carrier
JPH05159360A (en) * 1991-12-10 1993-06-25 Nec Corp Phase shift type optical disk
WO2003028021A1 (en) * 2001-09-26 2003-04-03 Tdk Corporation Optical recording medium and its recording system
WO2003028022A1 (en) * 2001-09-26 2003-04-03 Tdk Corporation Optical recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187435A (en) * 1987-01-29 1988-08-03 Matsushita Electric Ind Co Ltd Optical information recording carrier
JPH07118096B2 (en) * 1987-01-29 1995-12-18 松下電器産業株式会社 Optical information recording carrier
JPH05159360A (en) * 1991-12-10 1993-06-25 Nec Corp Phase shift type optical disk
WO2003028021A1 (en) * 2001-09-26 2003-04-03 Tdk Corporation Optical recording medium and its recording system
WO2003028022A1 (en) * 2001-09-26 2003-04-03 Tdk Corporation Optical recording medium
US7203150B2 (en) 2001-09-26 2007-04-10 Tdk Corporation Optical recording medium and its recording system
US7245578B2 (en) 2001-09-26 2007-07-17 Tdk Corporation Optical recording medium

Similar Documents

Publication Publication Date Title
KR860002121B1 (en) Optical information recording material
JPS6326461B2 (en)
JPS60264293A (en) Optical recording member
JPS6278746A (en) Optical recording tape and its production
JPS62127286A (en) Optical recording material
JPS62226445A (en) Optical recording medium
JPH01298545A (en) Disk-shaped optical information recording medium and its production
JPH09326135A (en) Optical information recording medium and its recording and reproducing method
KR100258938B1 (en) Phase changing type optical disk
WO1982004159A1 (en) An information recording medium
JPH0776171A (en) Write-once optical disk
JPS58164038A (en) Recording medium for optical disk
JP2560711B2 (en) Optical recording medium
JP2982329B2 (en) Information optical recording medium and recording / reproducing method thereof
JPH05159363A (en) Optical recording medium
JPS59171689A (en) Optical recording method
JPS6381631A (en) Recording method for optical disk
JPS639039A (en) Optical information recording medium
JP2508056B2 (en) Optical recording medium manufacturing method
JPS5940336A (en) Information recording medium
JPS6140195A (en) Optical recording medium
JPS62144998A (en) Optical recording material
JPH0296941A (en) Optical information recording medium and optical information recording system using this medium
JPS60208290A (en) Recording material
JPH06251422A (en) Optical disk